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MAXIMAL 0-1-FILLINGS OF MOON POLYOMINOES

WITH RESTRICTED CHAIN LENGTHS AND

RC-GRAPHS

MARTIN RUBEY

Abstract. We show that maximal 0-1-fillings of moon polyno-
mials, with restricted chain lengths, can be identified with certain
rc-graphs, also known as pipe dreams. In particular, this exhibits
a connection between maximal 0-1-fillings of Ferrers shapes and
Schubert polynomials. Moreover, it entails a bijective proof show-
ing that the number of maximal fillings of a stack polyomino S

with no north-east chains longer than k depends only on k and the
multiset of column heights of S.

1. Introduction

1.1. Triangulations, multitriangulations and 0-1-fillings. The sys-
tematic study of 0-1-fillings of polyominoes with restricted chain lengths
likely originates in an article by Jakob Jonsson [5]. At first, he was
interested in a generalisation of triangulations, where the objects un-
der consideration are maximal sets of diagonals of the n-gon, such
that at most k diagonals are allowed to cross mutually. Thus, in the
case k = 1 one recovers ordinary triangulations. He realised these
objects as fillings of the staircase shaped polyomino with row-lengths
n − 1, n − 2, . . . , 1 with zeros and ones. The condition that at most
k diagonals cross mutually then translates into the condition that the
longest north-east chain in the filling has length k, see Definition 2.3.
Instead of studying fillings of the staircase shape only, he went on to
consider more general shapes which he called stack and moon polyomi-

noes, see Definition 2.2 and Figure 1.
For stack polyominoes he was able to prove that the number of

maximal fillings depends only on k and the multiset of heights of the
columns, not on the particular shape of the polyomino. He conjectured
that this statement holds more generally for moon polyominoes, which
was eventually proved by the author [13] using a technique introduced

Key words and phrases. multitriangulations, rc-graphs, Edelman-Greene inser-
tion, Schubert polynomials.
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by Christian Krattenthaler [8] based on Sergey Fomin’s growth dia-
grams for the Robinson-Schensted-Knuth correspondence. However,
the proof given there is not fully bijective: what one would hope for is
a correspondence between fillings of any two moon polyominoes that
differ only by a permutation of the columns. This article is a step
towards this goal.

1.2. RC-graphs and the subword complex. RC-graphs (for ‘re-
duced word compatible sequence graphs’, see [1], also known as ‘pipe
dreams’ see [7]) were introduced by Sergey Fomin and Anatol Kir-
illov [3] to prove various properties of Schubert polynomials. Namely,
for a given permutation w, the Schubert polynomial Sw can be re-
garded as the generating function of rc-graphs, see Remark 4.
A different point of view is to consider them as facets of a certain sim-

plicial complex. Let w0 be the long permutation n · · · 21, and consider
its reduced factorisation

Q = sn−1 · · · s2s1 sn−1 · · · s3s2 · · · · · · sn−1sn−2 sn−1.

Then the subword complex associated to Q and w introduced by Allen
Knutson and Ezra Miller [7, 6] has as facets those subwords of Q that
are reduced factorisations of w. Subword complexes enjoy beautiful
topological properties, which are transferred by the main theorem of
this article to the simplicial complex of 0-1-fillings, as observed by
Christian Stump [16], see also the article by Luis Serrano and Christian
Stump [14].
The intimate connection between maximal fillings and rc-graphs

demonstrated by the main theorem of this article, Theorem 3.2, should
not have come as a surprise. Indeed, Sergey Fomin and Anatol Kirillov
[4] established a connection between reduced words and reverse plane
partitions already thirteen years ago, which is not much less than the
case of Ferrers shapes in Theorem 4.3. They even pointed towards the
possibility of a bijective proof using the Edelman-Greene correspon-
dence.
More recently, the connection between Schubert polynomials and

triangulations was noticed by Alexander Woo [17]. Vincent Pilaud
and Michel Pocchiola [11] discovered rc-graphs (under the name ‘beam
arrangements’) more generally for multitriangulations, however, they
were unaware of the theory of Schubert polynomials. In particular,
Theorem 3.18 of Vincent Pilaud’s thesis [10] (see also Theorem 21
of [11]) is a variant of our Theorem 3.2 for multitriangulations.
Finally, Christian Stump and the author of the present article be-

came aware of an article by Vincent Pilaud and Francisco Santos [12]
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that describes the structure of multitriangulations in terms of so-called
k-stars (introduced by Harold Coxeter). We then decided to translate
this concept to the language of fillings, and discovered pipe dreams yet
again.

2. Definitions

Figure 1. a moon-polyomino, a stack-polyomino and a
Ferrers diagram

2.1. Polyominoes.

Definition 2.1. A polyomino is a finite subset of the quarter plane
N

2, where we regard an element of the subset as a cell. A column of a
polyomino is the set of cells along a vertical line, a row is the set of cells
along a horizontal line. We are using ‘English’ (or matrix) conventions
for the indexing of the rows and columns of polyominoes: the top row
and the left-most column have index 1.
The polyomino is convex, if for any two cells in a column (rsp. row),

the elements of N2 in between are also cells of the polyomino. It is
intersection-free, if any two columns are comparable, i.e., the set of
row coordinates of cells in one column is contained in the set of row
coordinates of cells in the other. Equivalently, it is intersection-free, if
any two rows are comparable.
For example, the polyomino

is convex, but not intersection-free, since the first and the last columns
are incomparable.
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Definition 2.2. A moon polyomino (or L-convex polyomino) is a con-
vex, intersection-free polyomino. Equivalently we can require that any
two cells of the polyomino can be connected by a path consisting of
neighbouring cells in the polyomino, that changes direction at most
once. A stack polyomino is a moon-polyomino where all columns start
at the same level. A Ferrers diagram is a stack-polyomino with weakly
decreasing row widths λ1, λ2, . . . , λn, reading rows from top to bottom.
Because a moon-polyomino is intersection free, the set of rows of

maximal length in a moon polyomino must be consecutive. We call
the set of rows including these and the rows above the top half of the
polyomino. Similarly, the set of columns of maximal length, and all
columns to the right of these, is the right half of the polyomino. The
intersection of the top and the right half is the top right quarter of M .

2.2. Fillings and Chains.

Definition 2.3. A 0-1-filling of a polyomino is an assignment of the
numbers 0 and 1 to the cells of the polyomino. Cells containing 0 are
also called empty.
A north-east chain is a sequence of non-zero entries in a filling such

that the smallest rectangle containing all its elements is completely
contained in the moon polyomino, and such that for any two of its
elements, one is strictly to the right and strictly above the other.

As it turns out, it is more convenient to draw dots instead of ones
and leave cells filled with zeros empty.

Definition 2.4. Fne
01 (M, k) is the set of maximal 0-1-fillings of the

moon polyomino M having length of the longest north-east chain equal
to k. Fne

01 (M, k, r) is the subset of Fne
01 (M, k) consisting of those fillings

that have exactly ri zero entries in row i.
For any filling in Fne

01 (M, k), and an empty cell ǫ, there must be a
chain C such that replacing the 0 with 1 in ǫ, and adding ǫ to C, would
make C into a (k + 1)-chain. In this situation, we say that C is a
maximal chain for ǫ.

Remark 1. Note that extending the first k rows and columns of a Ferrers
diagram does not affect the set Fne

01 , which is why we choose to fix the
number of zero entries instead of entries equal to one, which might
seem more natural at first glance.

Remark 2. For the staircase shape λ0 = (n−1, . . . , 1), the set Fne
01 (λ0, k)

has a particularly beautiful interpretation, namely as the set of k-
triangulations of the n-gon. More precisely, label the vertices of the
n-gon clockwise from 1 to n, and identify a cell of the shape in row i
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1 2 3 4 5 6

1 �� �� �� �

5 �� �

4 �� �� �

3 �� �

6 �� �

2 �

1 2 3 4 5 6

1 • + + • • •

5 + + + • •

4 • + • •

3 • + •

6 • •

2 •

1 2 3 4 5 6

1 • 2 3 • • •

5 2 3 4 • •

4 • 4 • •

3 • 5 •

6 • •

2 •

Figure 2. a reduced pipe dream associated to the re-
duced factorisation s3s2s4s3s2s4s5 of 1, 5, 4, 3, 6, 2.

and column j with the pair (n− i+ 1, j) of vertices. Thus, the entries
in the filling equal to one define a set of diagonals of the n-gon. It
is not hard to check that a north-east chain of length k in the filling
corresponds to a set of k mutually crossing diagonals in the n-gon.

2.3. Pipe dreams.

Definition 2.5. A pipe dream for a permutation w is a filling of a the
quarter plane N

2, regarding each element of N2 as a cell, elbow joints
�� and a finite number of crosses , such that a pipe entering from
above in column i exits to the left from row w(i). A pipe dream is
reduced if each pair of pipes crosses at most once, it is then also called
rc-graph. RC(w) is the set of reduced pipe dreams for w, and RC(w, r)
is the subset of RC(w) having precisely ri crosses in row i.

Remark 3. Every pipe dream in RC(w) is associated to a reduced
factorisation of w as follows: replace each cross appearing in row i

and column j of the pipe dream with the elementary transposition
(i + j − 1, i + j). Then the reduced factorisation of w is given by the
sequence of transpositions obtained by reading each row of the pipe
dream from right to left, and the rows from top to bottom. An exam-
ple can be found in Figure 2.
Usually it will be more convenient to draw dots instead of elbow

joints and sometimes to omit crosses. We will do so without further
notice.

Remark 4. Using reduced pipe dreams, it is possible to define the Schu-
bert polynomial Sw for the permutation w in a very concrete way. For
a reduced pipe dream D ∈ RC(w), define xD =

∏

(i,j)∈D xi, where the
product runs over all crosses in the pipe dream. Then the Schubert
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polynomial is just the generating function for pipe dreams:

Sw =
∑

R∈RC(w)

xD

The following operation on pipe dreams, in a slightly less general
form, was introduced by Nantel Bergeron and Sara Billey [1]. It will
be the main tool in the proof of Theorem 3.2.

Definition 2.6. Let D ∈ RC(w) be a pipe dream. Then a chute move

is a modification of D of the following form:

. . .

• + · · · + +
+ + · · · + +

...
+ + · · · + +
• + · · · + •

. . .

chute
 

. . .

• + · · · + •
+ + · · · + +

...
+ + · · · + +
+ + · · · + •

. . .

More formally, a chutable rectangle is a connected rectangle r inside
a pipe dream D, with at least two columns and two rows, such that
all but the following three locations of r are crosses: the north-west,
south-west, and south-east corners. Applying a chute move to D is
accomplished by placing a ‘+’ in the south-west corner of a chutable
rectangle r and removing the ‘+’ from the north-east corner of r. We
call the inverse operation inverse chute move.

Lemma 2.7 ([1], Lemma 3.5). The set RC(w) of reduced pipe dreams

for w is closed under chute moves.

Proof. The pictorial description of chute moves immediately implies
that the permutation associated to the pipe dream remains unchanged.
For example, here is the picture associated with a two rowed chute
move:

��

�� ��

chute
 �� ��

��

�

Remark 5. It follows that chute moves define a partial order on RC(w),
where D is covered by E if there is a chute move transforming E into
D. Nantel Bergeron and Sara Billey restricted their attention to two
rowed chute moves. For this case, their main theorem states that the
poset defined by chute moves has a unique maximal element, namely

Dtop(w) =
{

(c, j) : c ≤ #{i : i < w−1
j , wi > j}

}

.
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It is easy to see that considering general chute moves, the poset has
also a unique minimal element, namely

Dbot(w) = {(i, c) : c ≤ #{j : j > i, wj < wi}} .

In the next section, we will show a statement similar in spirit to the
main theorem of Nantel Bergeron and Sara Billey for the more general
chute moves defined above.

3. Maximal Fillings of Moon Polyominoes and Pipe

Dreams

Consider a filling in Fne
01 (M, k). Replacing zeros with crosses, and

all cells containing ones as well as all cells not in M with elbow joints,
we clearly obtain a pipe dream. We will see in this section that it is in
fact reduced.
Even without that knowledge, we can speak of chute moves applied

to fillings in Fne
01 (M, k). However, a priori it is not clear under which

condititions the result of such a move is again a filling in Fne
01 (M, k). In

particular, we have to deal with the fact that under this identification
all cells outside M are also filled with elbow joints, corresponding to
ones. Of course, to determine the set of north-east chains, we have
to consider the original filling and the boundary of M , and disregard
elbow joints outside.
Similar to the article of Nantel Bergeron and Sara Billey, we will also

consider two special fillings Dbot(M, k) and Dtop(M, k). These will turn
out to be the minimal and the maximal element in the poset having
elements Fne

01 (M, k), where one filling is smaller than another if it can
be obtained by applying chute moves to the latter.

Definition 3.1. Let M be a moon polyomino and k ≥ 0. Then
Dtop(M, k) ∈ Fne

01 (M, k) is obtained by putting ones into all cells that
can be covered by any rectangle of size at most k × k, which is com-
pletely contained in the moon polyomino, and that touches the bound-
ary of M with its lower-left corner.
Similarly, Dbot(M, k) ∈ Fne

01 (M, k) is obtained by putting ones into
all cells that can be covered by any rectangle of size at most k×k, which
is completely contained in the moon polyomino, and that touches the
boundary of M with its upper-right corner.

We can now state the main theorem of this article:

Theorem 3.2. Let M be a moon polyomino and k ≥ 0. The set

Fne
01 (M, k, r) can be identified with the set of reduced pipe dreamsRC

(

w(M, k), r
)

having all crosses inside of M , for some permutation depending only on
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• • • •
• • • • •
• • •

• • • • •
• • • • •

• •
• •

• •

• •
• •
• •

• • •
• • •

• • • • •
• • • • • • •

• • • •

Figure 3. The special fillings Dbot(M, k) and
Dtop(M, k) for k = 2 of a moon polyomino.

M and k, as follows: replace zeros with crosses, and all cells containing

ones as well as all cells not in M with elbow joints.

More precisely, the set Fne
01 (M, k) is an interval in the poset of re-

duced pipe dreams RC
(

w(M, k)
)

, with minimal element Dbot(M, k) and
maximal element Dtop(M, k).

As already remarked in the introduction, various versions of this the-
orem were independently proved by various authors, by various meth-
ods. Certainly the most general of these is Theorem 2.6 in the article
by Luis Serrano and Christian Stump [14]. However, we are not aware
of another proof for the property that Fne

01 (M, k) is in fact an interval
in the bigger set of reduced pipe dreams.
Let us first state a very basic property of chute moves as applied to

fillings:

Lemma 3.3. Let M be a moon polyomino. Chute moves and their

inverses applied to a filling in Fne
01 (M, k) produce another filling in

Fne
01 (M, k), whenever all zero entries remain in M .

Proof. We only have to check that chain lengths are preserved, which
is not hard. �

Most of what remains of this section is devoted to prove that there
is precisely one filling in Fne

01 (M, k), that does not admit a chute move
such that the result is again in Fne

01 (M, k), namely Dbot(M, k), and
precisely one filling that does not admit an inverse chute move with
the same property, namely Dtop(M, k).
Although the strategy itself is actually very simple, this appears to be

relatively delicate, so we split the proof into a few auxiliary lemmas. Let
us fix k, a moon polyomino M , and a maximal filling D ∈ Fne

01 (M, k)
different from Dbot(M, k). We will then explicitely locate a chutable
rectangle. Note that maximality of the filling will play a crucial role
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throughout. The first lemma is used to show that certain cells of the
polyomino must be empty, because otherwise the filling would contain
a chain of length k + 1:

Lemma 3.4 (Chain induction). Consider a maximal filling of a moon

polyomino. Let ǫ be an empty cell such that all cells below ǫ in the

same column are empty too, except possibly those that are below the

lowest cell of the column left of ǫ. Assume that for each cell δ of these,

there is a maximal chain for δ strictly north-east of δ. Then there is a

maximal chain for ǫ strictly north-east of ǫ.

Similarly, let ǫ be an empty cell such that all cells left of ǫ in the same

row are empty too, except possibly those that are left of the left-most

cell of the row below ǫ. Assume that for each cell δ of these, there is a

maximal chain for δ strictly north-east of δ. Then there is a maximal

chain for ǫ strictly north-east of ǫ.

Remark 6. Note that for the conclusion of Lemma 3.4 to hold, it is
important that there is a maximal chain north-east of all cells below ǫ:

• •
• •

• •
ǫ •
δ

• γ

Although in the (for clarity non-maximal) filling above there is a 4-
chain north-east of δ, there is no such chain north-east of ǫ - and indeed
no such chain north-east of γ. In particular, we really have to assume
that all cells below ǫ are empty. As the following example for k = 1
demonstrates, it is equally necessary, that the filling is maximal:

•
•
•
•

Proof. Assume on the contrary that there is no maximal chain for ǫ

north-east of ǫ. Consider a maximal chain Cǫ for ǫ that has as many
elements north-east of ǫ as possible. Let δ be the cell in the same
column as ǫ, below ǫ, in the same row as the top entry of Cǫ which
is south-east of ǫ. By assumption, there is a maximal chain Cδ for δ

north-east of δ. We have to consider two cases:
If the widest rectangle containing Cǫ is not as wide as the smallest

rectangle containing Cδ, then the entry of Cǫ to the left of δ would
extend Cδ to a (k + 1)-chain, which is not allowed:
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Cǫ

Cδ

δ

ǫ

•

•
.. .

•
•
.. .

•
.. .

•

If the smallest rectangle containing Cǫ is at least as wide as the widest
rectangle containing Cδ, then we obtain a maximal chain for ǫ north-
east of ǫ by induction. Let c1ǫ , c

2
ǫ , . . . be the sequence of elements of Cǫ

north-east of ǫ, and c1δ , c
2
δ, . . . the sequence of elements of Cδ north-east

of δ. We will show that ciǫ must be strictly north and weakly west of
ciδ, for all i. Thus, the elements c1ǫ , c

2
ǫ , . . . together with the elements of

Cδ outside the smallest rectangle containing Cǫ form a maximal chain
for ǫ north-east of ǫ.
c1ǫ is strictly north of c1δ, since otherwise Cδ would be a maximal chain

for ǫ. c1ǫ cannot be strictly east of c1δ, since in this case c1δ together with
Cǫ would be a (k + 1)-chain.
Suppose now that ci−1

ǫ is strictly north and weakly west of ci−1
δ . ciδ

cannot be strictly north-east of ci−1
ǫ , since this would yield a k-chain

north-east of ǫ. ciδ must be strictly east of ci−1
ǫ , since ciδ is strictly east

of ci−1
δ , which in turn is weakly east of ci−1

ǫ by the induction hypothesis.
Thus, ci−1

ǫ is weakly north and strictly west of ciδ.
ciǫ cannot be strictly north-east of ciδ, since then the elements of Cǫ

south-west of ǫ together with the elements c1δ, . . . , c
i
δ and ciǫ, c

i+1
ǫ , . . .

would form a (k + 1)-chain. Finally, ciǫ must be strictly north of ciδ,
since ciǫ is strictly north of ci−1

ǫ , which in turn is weakly north of ciδ. �

Lemma 3.5. Consider a maximal filling of a moon polyomino. Sup-

pose that there is a rectangle with at least two columns and two rows

completely contained in the polyomino, with all cells empty except the

north-west, south-east and possibly the south-west corners. Then the

south-west corner is indeed non-empty, i.e., the rectangle is chutable.

Remark 7. Note that we must insist that the south-west corner of the
rectangle is part of the polyomino. Here is a maximal filling with k = 1,
where the three cells in the south-west do not form a chutable rectangle,
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since the south-west corner is missing:

• •
•
• •

• •

Proof. Suppose on the contrary that the cell in the south-west corner
is empty, too. Then, the situation is as in the following picture:

δ •

ǫ•

Since the filling is maximal, but the cells δ and ǫ are empty, there
must be maximal chains for these cells. The corresponding rectangles
must not cover any of the two cells containing ones, since that would
imply the existence of a (k + 1)-chain. Thus, any maximal chain for δ
must be strictly north-east of δ, and any maximal chain for ǫ must be
strictly south-west of ǫ. Since the polyomino is intersection free, the
top row of the rectangle containing the maximal chain for ǫ is either
contained in the bottom row of the rectangle containing the maximal
chain for δ, or vice versa. In both cases, we have a contradiction. �

The next lemma parallels the main Lemma 3.6 in the article by
Nantel Bergeron and Sara Billey [1]:

Lemma 3.6. Consider a maximal filling of a moon polyomino. Sup-

pose that there is a cell γ containing a 1 with an empty cell ǫ in the

neighbouring cell to its right, such that there are at least as many cells

above γ as above ǫ. Then the filling contains a chutable rectangle.

Similarly, suppose that there is a cell γ containing a 1 with an empty

cell ǫ in the neighbouring cell below it, such that there are at least as

many cells right of γ as right of ǫ. Then the filling contains a chutable

rectangle.

Proof. Suppose that all of the cells in the column containing ǫ are
empty, which are below ǫ and weakly above the bottom cell of the
column containing γ. There must then be a maximal chain for the
lowest cell in this region, that is north-east of it. By Lemma 3.4,
we conclude that there is also a maximal chain for ǫ north-east of ǫ.
However, then the 1 in the cell left of ǫ together with this chain yields
a (k+ 1)-chain, since the rectangle containing the maximal chain for ǫ
extends by hypothesis to the column above the cell left of ǫ.
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We can thus apply Lemma 3.5 to the following rectangle: the south-
east corner being the top non-empty cell below ǫ, and the north-west
corner being the lowest cell containing a 1 in the column of γ, strictly
above the chosen south-east corner. �

Finally, the main statement follows from a careful analysis of fillings
different from Dbot(M, k), repeatedly applying the previous lemmas to
exclude obstructions to the existence of a chutable rectangle:

Theorem 3.7. Any maximal filling other than Dbot(M, k) admits a

chute move, and any maximal filling other than Dtop(M, k) admits an

inverse chute move.

Proof. Suppose that all cells in the top-right quarter of M that contain
a 1 in Dbot(M, k) also contain a 1 in the filling F at hand. It follows,
that all cells that are empty in Dbot(M, k) are empty in F , too, because
there is a maximal chain for each of them. Thus, in this case F =
Dbot(M, k).
Otherwise, consider the set of left-most cells in the top-right quarter,

that contain a 1 in Dbot(M, k) but are empty in F , and among those
the top cell, ǫ. If its left or lower neighbour contains a 1, we can apply
Lemma 3.6 and are done. Otherwise, we have to find a rectangle as in
the hypothesis of Lemma 3.5. The difficulty in this undertaking is to
prove that the lower left corner is indeed part of the polyomino. To
ease the understanding of the argument, we will frequently refer to the
following sketch:

r...

•α ǫ

k × k

•

•

•

•

•β

•α
′

•β
′ω

δ

X

•

•

•

•

• •

• •

By construction, there is a k × k square filled with ones just above
ǫ, and there cannot be any k-chain north-east of ǫ. This implies in
particular that the top cell in the left-most column of the polyomino
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must be lower than the top row of the k× k square, because otherwise
there could not be any maximal chain for ǫ.
By Lemma 3.4, there must therefore be a non-empty cell left of ǫ,

which we label α, and a non-empty cell below ǫ, which we label β.
Note that there may be entries to the right of ǫ, in the same column,
which are non-empty. However, we can assume that to the right of the
first such entry all other cells in this row are non-empty, too, because
otherwise we could apply Lemma 3.6.
We can now construct a chutable rectangle: let β ′ be the top cell

containing a 1 below an empty cell weakly to the right of ǫ, and if
there are several, the left-most. Also, let α′ be the lowest cell among
the right-most containing a 1, which are weakly below α, but strictly
above β ′. Let δ be the cell in the same row as α′ and the same column
as β ′. Let ω be the cell in the same column as α′ and the same row
as β ′ – we have to show that ω is in fact part of the polyomino. We
can then apply Lemma 3.5 to the rectangle defined by δ′ and the first
non-empty cell to the right of ω, in the same row.
To achieve our goal, we show that there cannot be a maximal chain

for δ north-east of δ. Suppose on the contrary that there is such a
chain. At least its top-right element must be in a row (denoted r in
the sketch) above the top cell of the column containing α′: otherwise,
α′ together with this chain would form a (k + 1)-chain. In the sketch,
the non-empty cells that are implied are indicated by the rectangle
denoted X .
Consider the bottom-left element of a maximal chain for ǫ. It cannot

be strictly north of ω: in this case, it would also have to be strictly west
of ω, since there are by construction no non-empty cells to the east.
Therefore, the chain for ǫ has to be below the top row of the column
containing ω and α′, which in turn implies that it can be extended to
a (k + 1)-chain using the cells in X .
Suppose therefore, that the bottom-left element of a maximal chain

for ǫ is weakly below ω. Since our sole goal is to show that ω is inside
the polyomino, we only have to consider the case that the element is
strictly right of ω. However, then we know that there is a maximal
chain for the right neighbour of α which is not completely north-east
of that cell. Since the rectangle enclosing this chain certainly starts
left of the row r, and the polyomino is intersection free, it extends
to the right border of the rectangle denoted X , and thus contains a
(k + 1)-chain.
We have shown that a maximal chain for δ must have some elements

south-east of δ. It is now easy to see similarly as in the proof of
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Lemma 3.5, that this implies that ω is indeed part of the polyomino,
and in fact contains a 1. �

Proof of Theorem 3.2. All pipe dreams in RC(w) contained in M are
maximal 0-1 fillings of M , since they can be generated by applying
sequences of chute moves to Dtop(M, k).
Since we can apply chute moves to any maximal 0-1-filling of M

except Dbot(M, k), all such fillings arise in this fashion. (We have to
remark here, that in case the pipe dream associated to some filling
would not be reduced, applying chute moves eventually exhibits that
the filling was not maximal.) Together with Lemma 3.3, this implies
that all fillings F ne

01 (M, k) have the same associated permutation.
We remark that, additionally, this procedure implies that all max-

imal 0-1-fillings of M have the same number of entries equal to zero,
i.e., the simplicial complex of fillings is pure. �

4. Applying the Edelman-Greene correspondence

Using the identification described in the previous section, we can ap-
ply a correspondence due to Paul Edelman and Curtis Greene [2], that
associates pairs of tableaux to reduced factorisations of permutations.
This in turn will yield the desired bijective proof of Jakob Jonsson’s
result at least for stack polyominoes.
We remark that the main result of this section was obtained for

Ferrers shapes earlier by Luis Serrano and Christian Stump [14], us-
ing a relatively similar proof strategy. However, since the details are
different, we believe it is useful to repeat it here.

Theorem 4.1 (Paul Edelman and Curtis Greene [2], Richard Stan-
ley [15], Alain Lascoux and Marcel-Paul Schützenberger [9]). There is

a bijection between pairs of words reduced factorisations of a permuta-

tion w and pairs (P,Q) of Young tableaux of the same shape, such that

P is column strict with reading word reduced equivalent to w, and Q is

standard. Moreover, if w is vexillary, i.e., 2143-avoiding, the tableau

P is the same for all reduced factorisations of w.

It turns out that the permutations associated to moon polyominoes
are indeed vexillary:

Proposition 4.2. For any moon-polyomino M and any k, the permu-

tation w(M, k) is vexillary.

Remark 8. There are vexillary permutations which do not correspond
to moon polyominoes. For example, the only two reduced pipe dreams
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for the permutation 4, 2, 5, 1, 3 are as follows:

1 2 3 4 5

4 + + + • •

2 + • + •

5 + • •

1 • •

3 •

and

1 2 3 4 5

4 + + + • •

2 + • • •

5 + + •

1 • •

3 •

Proof. It is sufficient to prove the claim for k = 0, since the empty cells
in the filling Dtop(M, k) for any k again form a moon polyomino. Thus,
suppose that the permutation associated to M is not vexillary. Then
we have indices i < j < k < ℓ such that w(j) < w(i) < w(ℓ) < w(k). It
follows that the pipes entering in columns i and j from above cross, and
so do the two pipes entering in columns k and ℓ, and thus correspond to
cells of the moon polyomino. Since any two cells in the moon polyomino
can be connected by a path of neighbouring cells changing direction at
most once, there is a third cell where either the pipes entering from i

and ℓ or from j and k cross, which is impossible. �

Theorem 4.3 (for Ferrers shapes, Luis Serrano and Christian Stump
[14]). Consider the set Fne

01 (S, k, r), where S is a stack polyomino. Let

µi be the number of cells the ith row of S is indented to the right, and

suppose that µ1 = · · · = µk = µk+1 = 0.
Let u be the word 1r1, 2r2, . . . and let v be the reduced factorisation of

w associated to a given pipe dream. Then the Edelman-Greene corre-

spondence applied to the pair of words (u, v) induces a bijection between

F ne
01 (S, k, r) and the set of pairs (P,Q) of Young tableaux satisfying the

following conditions:

• the common shape of P and Q is the multiset of column heights

of the empty cells in Dtop(S, k),
• the first row of P equals (k+1, k+2+ µk+2, k+3+ µk+3, . . . ),
and the entries in columns are consecutive,

• Q has type {1r1, 2r2, . . . ), and entries in column i are at most

i+ k.

Thus, the common shape of P and Q encodes the row lengths of S,

the entries of the first column of P encode the left border of S, and the

entries of Q encode the filling.

Remark 9. In particular, this theorem implies an explicit bijection be-
tween the sets Fne

01 (S1, k, r) and Fne
01 (S2, k, r), given that the multisets

of column heights of S1 and S2 coincide.
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Curiously, the most natural generalisation of the above theorem to
moon polyominoes is not true. Namely, one may be tempted to replace
the condition on Q by requiring that the entries of Q are between Qtop

and Qbot component-wise. However, this fails already for k = 1 and
the shape

,

with P = 3 4 5
5

, Qtop = 1 2 3
3

and Qbot =
2 3 4
4

. In this case,

the tableau Q = 1 2 4
3

has preimage

•
• •

• •
• • .

Proof. In view of Proposition 4.2, to obtain the tableau P it is enough
to insert the reduced word given by the filling Dtop(S, k) using the
Edelman-Greene correspondence, which is not hard for stack polyomi-
noes.
It remains to prove that the entries in column i of Q are at most i+k

precisely if (u, v) comes from a filling in Fne
01 (S, k). To this end, observe

that the shape of the first i columns of P equals the shape of the tableau
obtained after inserting the pair of words ((u1, u2, . . . , uℓ), (v1, v2, . . . , vℓ)),
where ℓ is such that uℓ ≤ k + i and uℓ+1 > k + i.
Namely, this is the case if and only if the first i + k + µi+k+1 posi-

tions of the permutation corresponding to (v1, v2, . . . , vℓ) coincide with
those of the permutation w corresponding to v itself, as can be seen by
considering Dtop(w), whose empty cells form again a stack polyomino.
This in turn is equivalent to all letters vm being at least k + i+ 1 +

µk+i+1 for m > ℓ, i.e., whenever the corresponding empty cell of the
filling occurs in a row below the (i + k)th of S, and thus, when it is
inside S. �
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