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September 21, 2010

Abstract

We prove generalizations of Löwner’s results on matrix monotone
functions to several variables. We give a characterization of when a
function of d variables is locally monotone on d-tuples of commuting
self-adjoint n-by-n matrices. We prove a generalization to several
variables of Nevanlinna’s theorem describing analytic functions that
map the upper half-plane to itself and satisfy a growth condition. We
use this to characterize all rational functions of two variables that are
operator monotone.

1 Introduction

In 1934, K. Löwner published a very influential paper [19] studying
functions on an open interval E ⊆ R that are matrix monotone, i.e.
functions f with the property that whenever S and T are self-adjoint
matrices whose spectra are in E then

S ≤ T ⇒ f(S) ≤ f(T ). (1.1)

This property is equivalent (see Subsection 1.3) to being locally ma-
trix monotone, i.e. if S(t) is a C1 arc of self-adjoint matrices with
σ(S(t)) ⊂ E then

S′(t) ≥ 0 ⇒ d

dt
f(S(t)) ≥ 0. (1.2)

∗Partially supported by National Science Foundation Grant DMS 0801259
†Partially supported by National Science Foundation Grant DMS 0966845
‡Partially supported by London Mathematical Society Grant 4918

1

http://arxiv.org/abs/1009.3921v1


Roughly speaking, Löwner showed that if one fixes a dimension n
and wants (1.1) or (1.2) to hold for n-by-n self-adjoint matrices, then
certain matrices derived from the values of f must all be positive semi-
definite. As n increases, the conditions become more restrictive. In the
limit as n→ ∞ (equivalently, if one passes to self-adjoint operators on
an infinite dimensional Hilbert space), then a necessary and sufficient
condition is that the function f must have an analytic continuation
to a function F that maps the upper half-plane Π to itself.

The goal of this paper is to extend the above notions to several
variables. In particular, we want to study functions of d variables
applied to d-tuples of commuting self-adjoint operators. Given two
d-tuples S = (S1, . . . , Sd) and T = (T 1, . . . , T d), we shall say that
S ≤ T if and only if Sr ≤ T r for every 1 ≤ r ≤ d. We want to study
functions that satisfy (1.1) or (1.2) for d-tuples.

Before we can describe our results, we must first give a more de-
tailed description of the one-dimensional case. We recommend the
book [10] by W. Donoghue for a well-written modern account.

Note that there is another approach to extending Löwner’s results
to several variables where the operators S1, . . . , Sd act on different
spaces H1, . . . ,Hd, and f(S) is interpreted to act on H1 ⊗ · · · ⊗ Hd.
We refer the reader to the papers [12, 28, 17] and references therein.

Let us remark that we frequently make an a priori assumption
that the function f be C1. This is not always necessary; but it makes
the statements of theorems cleaner. The class of matrix monotone
functions is convex and closed under pointwise limits, so if f is in
the class, one can convolve it with a smooth bump function to get an
approximation that is matrix monotone on a slightly smaller set.

1.1 Dimension one

Let E be an open set in R, and let n ≥ 2 be a natural number. The
Löwner class L1

n(E) is the set of C1 functions f : E → R with the
property that, whenever {x1, . . . , xn} is a set of n distinct points in
E, then the matrix A, defined by

Aij =















f(xj)− f(xi)

xj − xi
if i 6= j

∂f

∂x

∣

∣

∣

∣

xi

if i = j,

is positive semi-definite.
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We shall let Mn denote the n-by-n complex matrices, SAMn the
self-adjoint n-by-n matrices, and SA the bounded self-adjoint opera-
tors on an infinite dimensional separable Hilbert space.

Definition 1.3. A function f is locally n-matrix monotone on the
open set E ⊂ R if, whenever S is in SAMn with σ(S) consisting of n
distinct points in E, and S(t) is a C1 curve in SAMn with S(0) = S

and
d

dt
S(t)|t=0 ≥ 0, then

d

dt
f(S(t))|t=0 ≥ 0.

Remark 1.4. This definition is slightly different from the one in the
first paragraph, where the eigenvalues were not required to be distinct.
We use this definition to be consistent with the multivariable Defini-

tion 1.9 below. However, using formula (6.6.31) in [13] for
d

dt
f(S(t)),

it is easy to show that in the one variable case the two different defi-
nitions are equivalent.

We shall say that f is n-matrix monotone on E, or Mn-monotone,
if, whenever S and T are in SAMn and all their eigenvalues lie in E,
then (1.1) holds. To emphasize the difference from locally monotone,
we shall also call n-matrix monotone functions globally Mn-monotone.
Replacing SAMn by SA, we get the definitions of locally operator
monotone and operator monotone.

Theorem 1.5 (Löwner). Let E ⊆ R be open, and let f ∈ C1(E).
Then f is locally n-matrix monotone on E if and only if f is in L1

n(E).

Definition 1.6. The Pick class on E, denoted P(E), is the set of real-
valued functions f on E for which there exists an analytic function
F : Π → Π such that F extends analytically across E and

lim
yց0

F (x+ iy) = f(x) ∀ x ∈ E.

Theorem 1.7 (Löwner). Let E ⊆ R be open, and let f ∈ C1(E). The
following are equivalent:

(i) The function f is locally operator monotone on E.
(ii) The function f is in L1

n(E) for all n.
(iii) The function f is in P(E).
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1.2 Dimension d ≥ 2 : Local results

We shall let CSAMd
n denote the set of d-tuples of commuting self-

adjoint n-by-nmatrices, and CSAd be the set of d-tuples of commuting
self-adjoint bounded operators. If S is a commuting d-tuple of self-
adjoint operators acting on the Hilbert space H, and f is a real-valued
continuous (indeed, measurable) function on the spectrum of S in Rd,
then f(S) is a well-defined self-adjoint operator on H.

Definition 1.8. Let E be an open set in Rd, and f be a real-valued C1

function on E. Say f is locally operator monotone on E if, whenever
S is in CSAd with σ(S) ⊂ E, and S(t) is a C1 curve in CSAd with

S(0) = S and
d

dt
S(t)|t=0 ≥ 0, then

d

dt
f(S(t))|t=0 exists and is ≥ 0.

We shall not concern ourselves in this paper on what conditions
on f guarantee that f(S(t)) is differentiable; for these see e.g. [22].

Definition 1.9. Let E be an open set in Rd, and f be a real-valued C1

function on E. We say f is locally Mn-monotone on E if, whenever
S is in CSAMd

n with σ(S) = {x1, . . . , xn} consisting of n distinct
points in E, and S(t) is a C1 curve in CSAMd

n with S(0) = S and
d

dt
S(t)|t=0 ≥ 0, then

d

dt
f(S(t))|t=0 exists and is ≥ 0.

We define the Löwner classes in d variables, Ld
n(E), by:

Definition 1.10. Let E be an open subset of Rd. The set Ld
n(E)

consists of all real-valued C1-functions on E that have the following
property: whenever {x1, . . . , xn} are n distinct points in E, there exist
positive semi-definite n-by-n matrices A1, . . . , Ad so that

Ar(i, i) =
∂f

∂xr

∣

∣

∣

∣

xi

and f(xj)− f(xi) =
d
∑

r=1

(xrj − xri )A
r(i, j) ∀ 1 ≤ i, j ≤ n.

Here is our d-variable version of Theorem 1.5.
Theorem 7.24 Let E be an open set in Rd, and f a real-valued

C1 function on E. Then f is locally Mn-monotone if and only if f is
in Ld

n(E).

In generalizations of Theorem 1.7, there turns out to be a difference
between the case d = 2 and d > 2.
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Definition 1.11. The Löwner class, Ld, is the set of functions F :
Πd → Π with the property that there exist d positive semi-definite
functions Ar, 1 ≤ r ≤ d, on Πd such that

F (z)− F (w) = (z1 − w̄1)A1(z, w) + . . . + (zd − w̄d)Ad(z, w).

When d = 1 or 2, the Löwner class coincides with the set of all
analytic functions from Πd to Π, but for d ≥ 3 it is a proper subset
(see Section 5).

Definition 1.12. Let E ⊆ Rd be open. The class L(E) is the set of
real-valued functions f on E for which there exists an analytic function
F in Ld such that F extends analytically across E and

lim
yց0

F (x1 + iy, . . . , xd + iy) = f(x1, . . . , xd) ∀ x ∈ E.

Theorem 8.1 Let E be an open set in Rd, and f a real-valued C1

function on E. The following are equivalent:
(i) The function f is locally operator monotone on E.
(ii) The function f is in Ld

n(E) for all n.
(iii) The function f is in L(E).

1.3 Local to Global

In one variable, provided E is an interval, local monotonicity implies
global monotonicity immediately. Indeed, suppose S ≤ T , and let
S(t) = (1− t)S + tT . Then S′(t) = T − S ≥ 0, so

f(T )− f(S) =

∫ 1

0

d

dt
f(S(t)) dt ≥ 0. (1.13)

If E is not convex, this argument fails. Indeed, the function −1/x
is locally n-matrix monotone on R\{0} for all n; but it is only globally
monotone on sets that lie entirely on one side of 0.

For intervals, (1.13) shows that the word “locally” can be dropped
in both Theorem 1.5 and 1.7. One problem in going to several variables
is that this simple argument no longer works, because one may not be
able to connect S and T by a path of commuting d-tuples. Indeed,
the following example shows that there need not be any commuting
tuples between two given ones.
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Example 1.14. Let S and T be pairs in CSAM2
2 given by

S =

((

0 0
0 5

)

,

(

1 0
0 0

))

T =

((

4 2
2 6

)

,

(

2 2
2 4

))

.

If R is in CSAM2
2 and S ≤ R ≤ T , then either R = S or R = T .

We have been unable to resolve the question of whether the n-
matrix monotone functions on a connected open set E are a proper
subset of the locally n-matrix monotone functions on E. However, as
n tends to infinity and we pass to locally operator monotone functions,
analyticity enters the picture, and makes the problem more tractable
— see Subsection 1.5.

1.4 The Nevanlinna Representation

To prove (iii) ⇒ (i) in Theorem 1.7, one must understand analytic
functions that map the upper half-plane to itself. A key fact is a
characterization due to R. Nevanlinna [20] which says that, provided
they have some regularity at infinity, they are all Cauchy transforms
of measures on the line.

Theorem 1.15 (Nevanlinna). If F : Π → Π is analytic and satisfies

lim sup
y→∞

y |F (iy)− C| <∞,

for some C ∈ R, then there exists a unique finite positive Borel mea-
sure ν on R so that

F (z) = C +

∫

dν(t)

t− z
. (1.16)

Nevanlinna’s theorem was used by M. Stone to prove the spec-
tral theorem [29], but one can adopt the reverse viewpoint, and write
(1.16) in terms of the resolvent of a self-adjoint. Indeed, let X be the
self-adjoint operator of multiplication by the independent variable on
L2(ν), and v the vector in L2(ν) that is 1 a.e. Then (1.16) can be
rewritten as

F (z) = C + 〈(X − z)−1v, v〉. (1.17)
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This representation turns out to be useful in studying operator mono-
tonicity, because then

F (S) = CI +R∗
v(I ⊗X − S ⊗ I)−1Rv, (1.18)

where Rv : H → H⊗M is given by Rv : ξ 7→ ξ ⊗ v
There is a several variable analogue of Theorem 1.15. It may re-

quire first perturbing F .

Definition 1.19. For each real number t, define

ρt(z) =
z + t

1− tz
.

For F ∈ Ld, define
Ft := ρt ◦ F ◦ ρt.

The following theorem follows from Theorem 6.33. We shall say
that a function F on Πd is analytic on a neighborhood of infinity if the
function F (1/z1, . . . , 1/zd) extends to be analytic on a neighborhood
of the origin. In Theorem 6.33, a weaker assumption is placed on F
than being analytic in a neighborhood of infinity.

Theorem 1.20. Let F be in Ld, and assume that F is analytic in
a neighborhood of infinity. Then for all sufficiently small t, except
for at most countably many exceptions, the function Ft has the fol-
lowing representation. There is a Hilbert space M, a densely defined
self-adjoint operator X on M, a vector v in M, and d orthogonal
projections P 1, . . . , P d with

∑d
r=1 P

r = IM so that

Ft(z) = C + 〈(X −
d
∑

r=1

zrP r)−1v, v〉. (1.21)

1.5 Dimension d ≥ 2 : Global operator mono-

tonicity

Using the representation (1.21), we can prove results on (global) oper-
ator monotonicity. With notation as in Theorem 1.20, let us say that
the µ-resolvent of X is the set of points

{(z1, . . . , zd) ∈ Cd : (X −
d
∑

r=1

zrP r) has a bounded inverse}.
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Theorem 9.2 Let X be a densely-defined self-adjoint operator on
a Hilbert space M, let v be a vector in M, and let P 1, . . . , P d be
projections with orthogonal ranges that sum to the identity. Let F be
given by

F (z) = C + 〈(X −
d
∑

r=1

zrP r)−1v, v〉.

Let E be an open rectangle in Rd that is in the µ-resolvent of X. Then
F is globally operator monotone on E.

As an application, we can give a complete characterization of the
rational functions of two variables that are operator monotone on
rectangles.

Theorem 9.6 Let F be a rational function of two variables. Let
Γ be the zero-set of the denominator of F . Assume F is real-valued
on R2 \ Γ. Let E be an open rectangle in R2 \ Γ. Then F is globally
operator monotone on E if and only if F is in L(E).

2 Some Notation

We shall let D denote the unit disk in the complex plane, Π the upper
half-plane {z : Im (z) > 0}, and H the right half-plane {z : Re (z) >
0}. We shall let

α(λ) = i
1 + λ

1− λ

be a linear fractional map that maps D to Π, and

β(z) =
z − i

z + i

be its inverse.
We shall let d denote the number of variables. If z is a point in

Πd, we shall use z1, . . . , zd to denote its components; likewise λ =
(λ1, . . . , λd) will be a point in Dd. We shall write S = (S1, . . . , Sd) for
a d-tuple of matrices or operators, and use ‖S‖ for max1≤r≤d ‖Sr‖.
We shall also use α and β to denote the maps from Dd to Πd and back
again that are defined by applying α and β coordinate-wise.

A kernel on a set E is a map K : E × E → C with the property
that for every finite set {λ1, . . . , λN} of distinct points in E, the matrix
[K(λj , λi)] is positive semi-definite.

Definition 2.1. The Pick class, Pd, is the set of analytic functions
F : Πd → Π.

8



Definition 2.2. The Schur class, Sd, is the set of analytic functions
ϕ : Dd → D.

Definition 2.3. The Carathéodory class, Cd, is the set of analytic
functions ψ : Dd → H.

Definition 2.4. The Löwner class, Ld, is the set of functions F :
Πd → Π with the property that there exist d kernel functions Ar, 1 ≤
r ≤ d on Πd such that

F (z)−F (w) = (z1− w̄1)A1(z, w) + . . . + (zd− w̄d)Ad(z, w). (2.5)

Definition 2.6. The Schur-Agler class, Ad, is the set of functions ϕ :
Dd → D with the property that there exist d kernel functions Br, 1 ≤
r ≤ d on Dd such that

1−ϕ(λ)ϕ(µ) = (1−λ1µ̄1)B1(λ, µ) + . . . + (1−λdµ̄d)Bd(λ, µ). (2.7)

When the dimension is clear, we shall drop the superscript d.

Remark 2.8. If we exclude the constant function 1 from S, we have
the identification

F ∈ P ⇐⇒ β ◦ F ◦ α ∈ S ⇐⇒ −iF ◦ α ∈ C. (2.9)

Moreover, we also have (again excluding the constant function 1)

F ∈ L ⇐⇒ β ◦ F ◦ α ∈ A, (2.10)

(see Lemma 2.11). As all our results are trivial for constant func-
tions, we shall use (2.9) and (2.10) without explicitly mentioning the
exclusion of the constant function 1.

Lemma 2.11. The function F : Πd → C is in the Löwner class if
and only if ϕ := β ◦ F ◦ α is in the Schur-Agler class Ad.

Proof: Define ϕ = β ◦F ◦ α. Then ϕ is in Ad if and only if there
are kernels Br on D such that

1− ϕ(λ)ϕ(µ) =

d
∑

r=1

(1− λrµ̄r)Br(λ, µ). (2.12)

When z = α(λ) and w = α(µ), (2.12) becomes

1−β◦F (z)β ◦ F (w) =

d
∑

r=1

(

1−
[

zr − i

zr + i

] [

wr − i

wr + i

]

)

Br(β(z), β(w)).

(2.13)
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Rearranging (2.13), we get

F (z)− F (w) =

d
∑

r=1

(zr − w̄r)
F (z) + i

zr + i

F (w) − i

wr − i
Br(β(z), β(w)).

(2.14)
If Ar is defined for r = 1, . . . , d by

Ar(z, w) =
F (z) + i

zr + i

F (w) − i

wr − i
Br(β(z), β(w))

(2.14) becomes

F (z)− F (w) =

d
∑

r=1

(zr − w̄r)Ar(z, w), (2.15)

which means F is in Ld. Reversing the argument gives the converse.
2

Remark 2.16. It is known that Ad = Sd for d = 1 or 2, and that for
d ≥ 3 Ad ( Sd [9, 30, 2]. It follows similarly that the Löwner class
equals the Pick class in dimensions 1 and 2, and is strictly contained
in it for d ≥ 3. Indeed, using Theorem 5.5.1 of [24], one can show that
for each d ≥ 3, there are rational functions that are real on Rd and
that are in Pd \ Ld.

3 Models, B-points and C-points

For a function ϕ in Ad, we can take the representation (2.7) and
decompose the Br’s as Grammians to get a Hilbert space model for
ϕ. That means we find a separable Hilbert space M, an orthogonal
decomposition of M,

M = M1 ⊕ · · · ⊕Md, (3.1)

and an analytic map u : Dd → M such that

1− ϕ(µ)ϕ(λ) =

d
∑

r=1

(1− µrλr)〈urλ, urµ〉Mr (3.2)

for all λ, µ ∈ Dd, where we write uλ for u(λ), P r for the projection
onto Mr, and urλ for P r[uλ].

10



We shall view (3.1) interchangeably as a graded Hilbert space (i.e.
one with a given orthogonal decomposition) or as a single Hilbert space
with d given projections P 1, . . . , P d that are orthogonal and add up
to the identity.

In general, if η ∈ M, we set ηr = P r[η]. If λ ∈ Cd, we may regard
λ as an operator on M by letting

λη = λ1η1 + · · · + λdηd. (3.3)

Equation (3.2) can then be rewritten as

1− ϕ(µ)ϕ(λ) = 〈(1 − µ∗λ)uλ, uµ〉. (3.4)

A lurking isometry argument yields the following result [2].

Theorem 3.5. If (M, u) is a model of ϕ ∈ Ad, then there exist a ∈ C,
vectors β, γ ∈ M and a linear operator D : M → M such that the
operator

[

a 1⊗ β
γ ⊗ 1 D

]

is a contraction on C⊕M and, for all λ ∈ Dd,

(1−Dλ)uλ = γ, (3.5)

ϕ(λ) = a+ 〈λuλ, β〉. (3.6)

With notation as in Theorem 3.5, we shall call (a, β, γ,D) a real-
ization of (M, u).

If we start instead with the representation (2.5) of a function F
in Ld, we can decompose the kernels Ar as the Grammians of some
vectors vr, in auxiliary separable Hilbert spaces N r. Then we get, in
the analogous notation to above,

F (z)− F (w) =

d
∑

r=1

(zr − w̄r)Ar(z, w)

=

d
∑

r=1

(zr − w̄r)〈vrz , vrw〉N r

= 〈(z − w∗)vz, vw〉N . (3.7)

This decomposition leads to a lurking self-adjoint argument, which we
shall discuss in Section 6.
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In [4], we introduced the concept of a B-point for S. Let us give
a unified definition for each of the classes S,P and C; notice that it
depends on the codomain of the function.

Definition 3.8. Let U and V be fixed domains, and f : U → V an
analytic function. A point τ in ∂U is called a B-point of f if there
is a sequence λn of points in U that converge to τ and such that

dist(f(λn), ∂V )

dist(λn, ∂U)
(3.9)

is bounded.

So, for example, a point τ in ∂Πd is a B-point for a function F
in Pd if there exists some sequence zn in Πd that tends to τ and such
that the quantity

ImF (zn)

minr∈{1,...,d}(Im zrn)

is bounded.
For a function in Ld (respectively, Ad) we shall call a point τ a

B-point if it is a B-point for the function thought of as an element
of Pd (resp. Sd).

For each of the three classes S,P, and C, it follows from results of
F. Jafari [14] and M. Abate [1] that if τ is a B-point, then the ratio
(3.9) remains bounded for every sequence λn that tends to τ non-
tangentially. Moreover, the function f will then have a non-tangential
limit at τ . (A sequence λn in U tends to the point τ non-tangentially
if λn tends to τ and

dist(λn, τ)

dist(λn, ∂U)

is bounded.)
The following result was proved in [4] for d = 2, but the proof

generalizes to any d. We shall need it in the proof of Theorem 6.26.

Lemma 3.10. Let ϕ ∈ Ad and τ ∈ Td. Let (M, u) be a model for ϕ,
and (a, β, γ,D) be a realization. The following are equivalent.

(i) τ is a B-point for ϕ.
(ii) For some sequence λn converging to τ non-tangentially, the

sequence ‖uλn
‖ is bounded.

(iii) For any sequence λn converging to τ non-tangentially, the
sequence ‖uλn

‖ is bounded.
(iv) The vector γ is in the range of (I −Dτ).

12



Moreover, if uλn
converges to a vector weakly as λn tends to τ non-

tangentially, then uλn
converges in norm. The vector uτ := limrր1 urτ

exists for every B-point τ .

A stronger condition than being a B-point is being a C-point.

Definition 3.11. A point x ∈ Rd is a C-point for F ∈ L if there
are complex numbers η1, . . . , ηd and a real number c so that

F (z)− c−
d
∑

r=1

ηr(zr − xr) = o(‖z − x‖)

as z tends to x non-tangentially.

In particular, if F is differentiable at x and F (x) is real, then x is
a C-point for F .

The following result was proved in [4].

Proposition 3.12. Suppose F ∈ L has a model as in (3.7). If x is
a C-point for F , then as z converges to x non-tangentially from Πd,
the vectors vz converge in norm, to some vector vx in N .

4 Analytically continuing Pick func-

tions

Suppose F is analytic on Πd, and E is an open set in Rd. What condi-
tions on F guarantee that it can be analytically continued across E?
The edge-of-the-wedge theorem (see Theorem 4.11 below) is a com-
mon tool to give such extensions. Checking the hypotheses, however,
requires knowledge of the values of F as one approaches points of E
not just non-tangentially but also tangentially. If F is in the Pick class
Pd, Theorem 4.8 says that it suffices to know that every point of E is
in a B-point (which can be checked by looking at the values of F on
the inward-pointing normal).

As we are using bars to denote closure, we shall use stars for the
complex conjugate of a set, and write Π∗ for the lower half-plane.

4.1 One dimension

To understand the situtation, let us first consider the one dimensional
case. Let ψ : D → H be non-constant. Then ψ has a Herglotz repre-
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sentation; if we assume ψ(0) is positive, then

ψ(z) =

∫ 2π

0

eiθ + z

eiθ − z
dµ(θ) (4.1)

for some positive measure µ. There is an elegant analysis of when ψ
has B-points in the paper [27] by D. Sarason, where the following two
propositions are proved. Proposition 4.2 is originally due to M. Riesz
[23], and Proposition 4.4 to R. Nevanlinna [21].

Proposition 4.2. Let ψ be given by (4.1), and let τ be a point in T.
Then ψ has a B-point at τ if and only if

∫

1

|eiθ − τ |2 dµ(θ) < ∞. (4.3)

If ϕ = β ◦ (iψ) is the Cayley transform of ψ, there is a distinction
between B-points where ϕ(τ) equals 1, corresponding to ψ(τ) = ∞,
and all other cases.

Proposition 4.4. Let ϕ =
ψ − 1

ψ + 1
, where ψ is given by (4.1), and let

τ be a point in T. Then ϕ has a B-point at τ with ϕ(τ) 6= 1 if and
only if (4.3) holds. The function ϕ has a B-point at τ with ϕ(τ) = 1
if and only if τ is a mass point of µ.

Suppose now that ϕ : D → D has an open arc I of B-points. Can ϕ
be extended analytically across I? If we know that ϕ omits a value on
I, then the answer is yes. Indeed, after a Möbius map, we can assume
that ϕ is the Cayley transform of some ψ as (4.1). If condition (4.3)
holds on an open arc I, then µ must vanish on I by Lemma 4.5 below.
But then the formula (4.1) gives an analytic function on the extended
plane less T \ I.

However, without the assumption that ϕ omits a value, the answer
may be no, as Example 4.6 shows.

Lemma 4.5. Suppose µ is a measure on [−π, π) and (4.3) holds for
τ = eix for every x in an open arc I ⊂ [−π, π). Then µ(I) = 0.

Proof: For µ a.e. point x in I, there is a constant c > 0 such
that

µ[x− 1

k
, x+

1

k
] ≥ c

2

k
,
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by the Lebesgue differentiation theorem [26, Chap. 8]. For such an x,
we have

∫ π

−π

1

|eiθ − τ |2 dµ(θ) ≥
∫ x+1/k

x−1/k

1

|eiθ − τ |2 dµ(θ)

≥ 1

|1− ei/k|2 µ[x− 1

k
, x+

1

k
]

≥ ck.

Letting k tend to infinity, the integral would be infinite; so µ must
put no mass on I. 2

Example 4.6. Here is an example of a function in the Schur class of
one variable that has B-points at every point of T but that cannot be
analytically continued across every arc.

Let τn = eixn be a sequence in T that converges to 1. Let cn =

2−n|1− τn|2. Then for every λ ∈ T, the quantity

∣

∣

∣

∣

1− τn
λ− τn

∣

∣

∣

∣

is less than

or equal to 1 for all but finitely many values of n. Therefore

∑

2−n

∣

∣

∣

∣

1− τn
λ− τn

∣

∣

∣

∣

2

< ∞ (4.7)

for every λ.

Let µ =
∑

2−nδxn , let F be the Herglotz transform of µ, and let

ϕ =
F − 1

F + 1
. By Proposition 4.4, we have that ϕ has every point of T

as a B-point, but ϕ cannot be analytically continued across any arc
containing 1, as it takes the value 1 infinitely often on any such arc.

4.2 d dimensions

Our goal is to prove the following analytic continuation theorem:

Theorem 4.8. Let E be an open subset of Rd. Then there is an open
set U in Cd that contains Πd ∪ E ∪ Π∗d with the following property:
whenever F is in the Pick class, and every point of E is a B-point
for F , then there is an analytic function G on U that agrees with F
on Πd.

This theorem immediately implies the omit-a-value theorem. Let
us say that a subset E′ of Td is a B-set for ϕ in Sd if every point of
E′ is a B-point for ϕ.
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Theorem 4.9. Let E′ be an open subset of Td. Then there is an open
set U in Cd containing Dd ∪E′ ∪ {C \ D̄}d such that the following two
statements are equivalent for any ϕ in the Schur class:

(1) there is an analytic function ψ on U that agrees with ϕ on Dd;

(2) the set E′ is a B-set for ϕ and for every point τ in E′ there
exists a neighborhood V of τ in Td and a point ω in T such that
no nontangential limit of ϕ at any point of V is equal to ω.

Condition (2) says that every point of E has a neighborhood where
the non-tangential limits of ϕ omit some value in T.

We start with the following proposition.

Proposition 4.10. Let E be an open subset of Rd. Then there is
an open set U in Cd that contains Πd ∪ E ∪ Π∗d with the following
property: if J is a non-empty interval in R, F is in the Pick class, F
has non-tangential limits at almost every point of E, and these limits
are all in R \ J , then there is an analytic function G on U that agrees
with F on Πd.

Proof: Precomposing F with a Möbius transformation of Π if
necessary, we can assume that J is an interval about infinity, so the
non-tangential limits are in some compact set [−M,M ] a.e.

Let H(z) = log(1 +M + F (z)). Then H maps Πd into {z ∈ C :
0 < Im z < π}, and

lim
y→0

H(x+ iy) ∈ [0, log(2M + 1)] a.e. x ∈ E.

We want to apply the edge-of-the-wedge theorem (Theorem 4.11 be-
low) to H, and this will give the desired open set U to which H, and
hence F , extends.

As H has bounded imaginary part, we can pass the limit inside the
integral on the left-hand side of (4.12), and as H has real boundary
values, we get that the limit is 0. Therefore by Theorem 4.11 we get
an analytic extension of H to U . 2

Here is the version of the edge-of-the-wedge theorem we want (The-
orem C from [25]). We write R+ for the interval (0,∞).

Theorem 4.11. [Edge-of-the-wedge] Let E be an open subset of Rd.
Then there is an open set U in Cd that contains Πd ∪ E ∪Π∗d and is
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such that whenever H is an analytic function on Πd with the property
that for every g in C∞

c (E),

lim
Rd
+
∋y→0

∫

E
g(x)ImH(x+ iy)dx = 0, (4.12)

then there is an analytic function G on U that agrees with H on Πd.

Proof of Theorem 4.8: We can extend F to Π∗d by letting
F (z) = F (z̄) on Π∗d. The difficulty is in showing that the definitions
of F on the two disjoint domains Πd and Π∗d are analytic continuations
of each other across E. This is a local property. If we can show that
every point of E has a neighborhood on which the boundary values
of F take values in a bounded set, we can apply Proposition 4.10
to conclude that the reflection of F is an analytic continuation of F
across this neighborhood in E. Since this is true at every point, the
conclusion of the theorem will follow.

For convenience, we will change variables and consider the function
ϕ(λ) = (−i)F ◦ α, which is in Cd.

We can normalize to assume that ϕ(0, . . . , 0) = 1 and that the
point of interest for ϕ is β(0, . . . , 0) = (−1, . . . ,−1). So for some
0 < c < π

5 , the set

{(eiθ1 , . . . , eiθd) : ∀ 1 ≤ r ≤ d, |θr| ≥ π − 5c} (4.13)

consists of B-points for ϕ. In what follows, we shall choose arg to take
values in [−π, π).

For each τ in the set

{τ ∈ Td−1 : | arg(τ j)| < 2c, ∀ 1 ≤ j ≤ d− 1},

define gτ in C1 by

gτ (z) = g(z, τ1z, τ2z, . . . , τd−1z).

Then for each τ , the set

I3c = {σ ∈ T : | arg(σ)| > π − 3c}

is a set of B-points for gτ , and gτ (0) = 1. Each gτ has a Herglotz
representation, and by the results of subsection 4.1 the corresponding
measure is supported off the set I3c. So

gτ (z) =

∫ π−3c

−π+3c

eiθ + z

eiθ − z
dµτ (θ)
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for some probability measure µτ . Therefore if σ is in the arc Ic = {σ ∈
T : | arg(σ)| > π − c},

|gτ (σ)| ≤
∫ π−3c

−π+3c

∣

∣

∣

∣

eiθ + σ

eiθ − σ

∣

∣

∣

∣

dµτ (θ)

≤ sec c‖µτ‖
= sec c.

Therefore on the set (Ic)
d we conclude that the non-tangential limits

of ϕ take values in the bounded set [− sec c, sec c].
Notice that c does not depend on F : we have shown that for any

F , normalized to have F (i, . . . , i) = i, if F has B-points on the set
α((I5c)

d), then F is bounded on α((Ic)
d). By Proposition 4.10, this

latter set now has a neighborhood to which F can be analytically
extended, and this neighborhood can be chosen independently of F .
So every point x in E has a neighborhood Ux to which all functions
F in the Pick class with B-points on E can be extended; let U be the
union of all the Ux as x ranges over E. 2

5 The Löwner classes

We shall single out functions that have a representation on subsets of
Rd as in (2.5).

Definition 5.1. Let E ⊆ Rd be a non-empty open set, and let n
be a positive integer. We define Ln(E) to be the set of real val-
ued differentiable functions that have the following property: when-
ever {x1, . . . , xn} are n distinct points in E, there exist positive semi-
definite n-by-n matrices A1, . . . , Ad so that

Ar(i, i) =
∂f

∂xr

∣

∣

∣

∣

xi

(5.2)

and f(xj)− f(xi) =

d
∑

r=1

(xrj − xri )A
r(i, j) ∀ 1 ≤ i, j ≤ n.(5.3)

We shall give an alternative description of L(E). We shall tem-
porarily call it L∂(E), but we shall show in Proposition 5.11 that it
coincides with the set L(E) from Definition 1.12.

Definition 5.4. Let E ⊆ Rd be a non-empty open set. We shall let
L∂(E) denote the set of differentiable real valued functions f on E for
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which there exist positive semi-definite functions A1, . . . , Ad : E×E →
C so that

Ar(z, z) =
∂f

∂xr

∣

∣

∣

∣

z

(5.5)

and f(z)− f(w) =

d
∑

r=1

(zr −wr)Ar(z, w). (5.6)

If E ⊆ Rd, a function f in L∂(E) can be extended to a function F
in L that has f as its non-tangential boundary values on E.

Proposition 5.7. Let E ⊆ Rd be open, and let f ∈ L∂(E). Then
there exists F ∈ Ld such that every point of E is a B-point for F ,
and such that

lim
z
nt→t

F (z) = f(t) ∀ t ∈ E. (5.8)

Proposition 5.7 follows immediately from the corresponding result
on the polydisk, Theorem 5.9, which was proved by J.A. Ball and V.
Bolotnikov [6] (we are changing their language slightly; they did not
explicitly use the notion of B-point).

Theorem 5.9 (Ball-Bolotnikov). Let E′ ⊆ Td and let ψ : E′ → C.
Suppose there are positive semi-definite functions B1, . . . , Bd : E′ ×
E′ → C such that, for all λ, µ in E′,

1− ψ(λ)ψ(µ) = (1− λ1µ̄1)B1(λ, µ) + . . . + (1− λdµ̄d)Bd(λ, µ).
(5.10)

Then there is a function ϕ in A such that every point of E′ is a B-point
for ϕ and

lim
λ
nt→τ

ϕ(λ) = ψ(τ) ∀ τ ∈ E′.

Moreover, if ϕ is defined to equal ψ on E′, the kernels Br can be
extended to E′ ∪ Dd so that, for all λ, µ in E′ ∪ Dd,

1− ϕ(λ)ϕ(µ) = (1− λ1µ̄1)B1(λ, µ) + . . . + (1− λdµ̄d)Bd(λ, µ).

We can pass back and forth between regarding functions in L(E)
as functions in the Löwner class Ld that have B-points on E (and so
can be analytically extended across E), and as functions that are char-
acterized by their values on E by (5.4) and can then be analytically
extended into Πd.
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Proposition 5.11. Let E ⊆ Rd be a non-empty open set. The fol-
lowing four sets coincide.

(i) ∩∞
n=1Ln(E).

(ii) The set L∂(E) defined by Definition 5.4.
(iii) The set L(E) defined by Definition 1.12.
(iv) The functions f on E for which there exists a function F in Ld

such that every point x of E is a B-point of F and the non-tangential
limit of F at x is f(x).

Proof: It is immediate that (ii) ⊆ (i). Theorem 4.8 asserts that
(iii) = (iv). Proposition 5.7 says that (ii) ⊆ (iv).

To show (iii) ⊆ (ii), choose a model for F so that (3.7) holds on
Πd ×Πd:

F (Z)− F (W ) = 〈(Z −W ∗)vZ , vW 〉 ∀ Z,W ∈ Πd.

As every point in E is a C-point for F , we can let Z and W tend
to points in E non-tangentially, z and w respectively. By Proposi-
tion 3.12, the vectors vZ and vW converge to vz and vw. Let

Ar(z, w) = 〈vrz , vrw〉

and one gets (5.6). To get (5.5), let z be in E and let W in Πd tend
to z non-tangentially. As F is analytic at z, we have

F (W )− F (z) =
∑

(W r − zr)
∂f

∂xr

∣

∣

∣

∣

z

+ o(‖z −W‖). (5.12)

From the model,

F (W )− F (z) = 〈(W − z)vW , vz〉
= 〈(W − z)vz, vz〉 + 〈(W − z)(vW − vz), vz〉(5.13)

The second term on the right of (5.13) is o(‖z −W‖), so comparing
with (5.12) we conclude that

∂f

∂xr

∣

∣

∣

∣

z

= 〈vrz , vrz〉,

and hence (5.5) holds.

To prove (i) ⊆ (ii), we need to show that if (5.5) and (5.6) hold
on every finite set, with perhaps a different choice of Ar’s each time,
then we can make one choice for the Ar’s that works everywhere.
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Let f ∈ ∩∞
n=1Ln(E). Consider any finite set {z1, . . . , zn} of distinct

points in E. By Definition 5.1 there exist kernels A1, . . . , Ad on E such
that equations (5.2), (5.3) hold, and we have

Ar(i, i) ≤ ∂f

∂xr
(zi), i = 1, . . . , n, r = 1, . . . , d.

Since the matrices Ar are positive we also obtain bounds on the
off-diagonal entries of all the Ar. Hence the set K of all d-tuples
(A1, . . . , Ad) for which equations (5.2), (5.3) hold is a compact non-
empty subset of Md

n.
Moreover, if (B1, . . . , Bd) is a d-tuple of kernels on any finite su-

perset Z of {z1, . . . , zn} for which the analogs of equations (5.2), (5.3)
hold, then the choice of Ar to be the principal submatrix of Br corre-
sponding to {z1, . . . , zn} gives a d-tuple that belongs to K. There-
fore by Kurosh’s theorem [5, p.74] or [3, p.30], there is a d-tuple
(A1, . . . , Ad) of kernels on E such that equations (5.2) and (5.3) hold
for all points zi, zj ∈ E. 2

6 The µ-spectral theorem

A function in the Pick class of one variable, i.e. an analytic function
from Π to Π, has an integral representation which can be obtained
from the Herglotz representation (4.1) of functions from D to H by a
change of variables.

Theorem 6.1. [Herglotz] An analytic function F : Π → Π has a
unique representation of the form

F (z) = c + dz +

∫

1 + zt

t− z
dµ(t) (6.2)

where Im c ≥ 0 and d ≥ 0, and µ is a finite positive Borel measure on
R. Conversely any function of this form is in the Pick class of one
variable.

If in addition F decays up the imaginary axis, one gets that F
is the Cauchy transform of a finite measure on R. This is called the
Nevanlinna representation, and was proved by R. Nevanlinna [20].

Theorem 6.3. [Nevanlinna] If F : Π → Π is analytic and satisfies

lim sup
y→∞

|yF (iy)| <∞,
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then there exists a unique finite positive Borel measure ν on R so that

F (z) =

∫

dν(t)

t− z
.

Remark 6.4. If one considers ψ = −iF ◦ α : D → H, then d in
Theorem 6.1 is the mass assigned to the point 1 in the Herglotz repre-
sentation of ψ. Nevanlinna’s condition in Theorem 6.3 is equivalent to
saying that ϕ = β ◦F ◦α : D → D has a B-point at 1 with ϕ(1) = −1.

One can prove the spectral theorem for a (possibly unbounded)
self-adjoint operator by showing that that, if Rz is the resolvent, then
for any vector u the function 〈Rzu, u〉 is in the one variable Pick class,
and satisfies Nevanlinna’s growth condition. Then Theorem 6.3 gives
the scalar spectral measure. See [10] or [18]. Conversely, if X is the
operator of multiplication by the independent variable on L2(µ), and
v is the constant function 1, then (6.2) becomes

F (z) = c + dz + 〈(1 + zX)(X − z)−1v, v〉. (6.5)

In several variables, there is also a connection between Pick func-
tions and self-adjoint operators, which could be called a µ-spectral
theorem.

Definition 6.6. Let M be a Hilbert space, with a fixed decomposition
as M = M1 ⊕ · · · ⊕ Md. Let T be a densely defined linear operator
on M. For z = (z1, . . . , zd) in Cd, define the µ-resolvent of T at z to
be

(T − z)−1 = (T − [z1IM1 ⊕ · · · ⊕ zdIMd ] )−1.

The µ-spectrum of T is the complement of the set of points in Cd for
which the µ-resolvent is bounded.

The expressions “µ-resolvent” and “µ-spectrum” are not standard,
but they are suggested by usage in control engineering. The notion of
µ-analysis provides an approach to robust stabilization in the presence
of “structured uncertainty” [11]. Corresponding to the projections
P 1, . . . , P d one defines the “cost function” µ(X) by

1

µ(X)
= inf{‖T‖ : T ∈ B(M),

each P rM reduces T and 1− TX is singular }.

In what follows, we shall write z for z1IM1 ⊕ · · · ⊕ z2IMd and z∗

for z̄1IM1 ⊕ · · · ⊕ z̄dIMd . Let us recall Definition 1.19.
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Definition 6.7. For each real number t, define

ρt(z) =
z + t

1− tz
. (6.8)

For F ∈ Ld, define
Ft := ρt ◦ F ◦ ρt.

Note that, similarly to the maps α and β, we use ρt on Cd to mean
the component-wise action.

Theorem 6.9. Let F be in Ld, and z0 a point in Πd. For all except
at most a countable number of real numbers t, there is a Hilbert space
M = M1 ⊕ · · · ⊕Md, a self-adjoint operator X on M, a vector v in
M, and a real number c so that

Ft(z) = c + 〈zv, v〉 + 〈(z − z∗0)(X − z)−1(z − z0)v, v〉. (6.10)

Conversely, if z0 is a point in Πd, c is a real number, X is a densely
defined self-adjoint operator on a Hilbert space M = M1 ⊕ · · · ⊕Md,
and v is a vector in M, then the function of z given by the right-hand
side of (6.10) is in Ld.

Proof: (⇒) Let ϕ = β ◦ F ◦ α in Ad. Choose a model for ϕ so
that (3.2) holds:

1− ϕ(µ)ϕ(λ) =
d
∑

r=1

(1− µrλr)〈urλ, urµ〉Mr

= 〈(1− µ∗λ)uλ, uµ〉M. (6.11)

Define a linear operator V by

V :

(

1
λuλ

)

7→
(

ϕ(λ)
uλ

)

,

and extend it by linearity to finite linear combinations of vectors of
the form

(

1
λiuλi

)

where the points λi range over Dd.
V is defined on a subspace of C⊕M, and by (6.11) it is isometric

on its domain. If the codimensions of the closures of the domain and
range of V are the same, V can be extended to a unitary U . If they
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are different, after the addition of a separable infinite dimensional
summand to one of the spaces Mr, the codimensions become equal,
and one can then extend V to a unitary U . So we can assume that
we have a unitary U : C⊕M → C⊕M such that

U :

(

1
λuλ

)

7→
(

ϕ(λ)
uλ

)

. (6.12)

Now, let τ be a point in the unit circle that is not in the point spectrum
of U , and let

t = −i1− τ

1 + τ
.

As C ⊕M is separable, the point spectrum of U is countable, so all
but countably many real numbers t will arise in this way.

Let

Y = −i(U − τ)−1(U + τ) : (U − τ)η 7→ −i(U + τ)η.

Then Y is densely defined and self-adjoint. Its domain D is ran (U−τ).
Moreover, by definition

Y :

(

ϕ(λ)− τ
(1− τλ)uλ

)

7→
(

− i(ϕ(λ) + τ)
− i(1 + τλ)uλ

)

.

Therefore

Y :









1

1− τλ

ϕ(λ) − τ
uλ









7→













− i
ϕ(λ) + τ

ϕ(λ) − τ

− i
1 + τλ

ϕ(λ)− τ
uλ













. (6.13)

Let

ṽz =
1− τβ(z)

β ◦ F (z) − τ
uβ(z).

Then one can rewrite (6.13) as

Y :

(

1
ṽz

)

7→
(

ρt ◦ F (z)
−ρ−t(z)ṽz

)

. (6.14)

Now let
vz = ṽρt(z).
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Then (6.14) becomes

Y :

(

1
vz

)

7→
(

Ft(z)
−zvz

)

. (6.15)

As Y is self-adjoint, (6.15) implies that

Ft(z)− Ft(w)
∗ = 〈(z − w∗)vz, vw〉. (6.16)

Let X be the compression of −Y to M. By Lemma 6.24, X is
self-adjoint with dense domain equal to D ∩M.

If γ is in D ∩M, then

Y

(

0
γ

)

=

(

L(γ)
−Xγ

)

.

for some linear functional L.
Define v = vz0 , and let a = Ft(z0). Then

Y

(

1
v

)

=

(

a
−z0v

)

.

For z ∈ Πd let

Y

(

1
vz

)

= Y

(

1
v

)

+ Y

(

0
vz − v

)

=

(

a
−z0v

)

+

(

L(vz − v)
−X(vz − v)

)

.

By (6.15), we get the equations

Ft(z) = a+ L(vz − v) (6.17)

zvz = z0v +X(vz − v). (6.18)

For γ ∈ D ∩M,

〈
(

0
γ

)

,

(

a
−z0v

)

〉 = 〈
(

0
γ

)

, Y

(

1
v

)

〉

= 〈Y
(

0
γ

)

,

(

1
v

)

〉

= 〈
(

L(γ)
−Xγ

)

,

(

1
v

)

〉.
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Therefore
L(γ) = −〈γ, z0v〉+ 〈Xγ, v〉. (6.19)

If z is in Πd, then by Lemma 6.25, X−z is invertible, so (6.18) yields

vz − v = (X − z)−1(z − z0)v. (6.20)

Combining equations (6.17) to (6.20), we get

Ft(z) = a− 〈vz − v, z0v〉+ 〈zvz − z0v, v〉
= a− 〈vz − v, z0v − z∗v〉+ 〈(z − z0)v, v〉
= a+ 〈(X − z)−1(z − z0)v, (z

∗ − z0)v〉 + 〈(z − z0)v, v〉.(6.21)

By (6.16),

a− ā = Ft(z0)− Ft(z0) = 〈(z0 − z∗0)v, v〉,
so c := a− 〈z0v, v〉 is real. Then (6.21) becomes (6.10), as desired.

(⇐) To prove the converse, suppose X is a self-adjoint operator on
M with dense domain D′. Let F (z) be given by the right-hand side
of (6.10). Define vz by (6.20), i.e.

vz = v + (X − z)−1(z − z0)v. (6.22)

Define a linear functional L on D′ by

L(γ) = −〈γ, z0v〉+ 〈Xγ, v〉.

Let D be the linear span in C⊕M of the vector

(

1
v

)

and the vector

space 0⊕D′. Let a = c+ 〈z0v, v〉. Finally, define Y on D by

Y

(

t
γ + tv

)

= t

(

a
−z0v

)

+

(

L(γ)
−X(γ)

)

for t in C. It is routine to verify that Y is symmetric. Moreover, by
(6.22), (vz − v) is in the domain of X − z, and therefore in D′. So
(

1
vz

)

is in D for every z in Π, and therefore

〈Y
(

1
vz

)

,

(

1
vw

)

〉 = 〈
(

1
vz

)

, Y

(

1
vw

)

〉. (6.23)

Expanding (6.23) and rearranging, one gets

F (z)− F (w) = 〈(z − w∗)uz, uw〉,
and hence F is in Ld. 2
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Lemma 6.24. With notation as in the proof of the forward direction
of Theorem 6.9, the domain of X is D ∩ M. This domain is dense,
and the operator X is self-adjoint.

Proof: Since D is dense in C⊕M, there are vectors ξn in M that

converge to zero and such that

(

1
ξn

)

are in D. If γ is any vector in

M, there are vectors

(

an
ηn

)

in D that converge to

(

0
γ

)

, hence so

do the vectors
(

an
ηn

)

− an

(

1
ξn

)

=

(

0
ηn − anξn

)

.

Therefore D ∩M is dense in M.
Let P be the projection from C ⊕M onto M. Let X = −PY |M

with domain D′ = D ∩M. Then for γ, η in D′, we have

〈Xγ, η〉 = −〈PY γ, η〉
= −〈Y γ, η〉
= −〈γ, Y η〉
= 〈γ,Xη〉.

So X is symmetric.
To prove X is self-adjoint, assume that there is some vector η in

M such that
|〈Xγ, η〉| ≤ C‖γ‖

for all γ ∈ D′. Then for every vector

(

c
δ

)

in D of norm at most

one, we have

|〈Y
(

c
δ

)

,

(

0
η

)

〉| = |〈Y
[(

0
δ − cξ1

)

+ c

(

1
ξ1

)]

,

(

0
η

)

〉|

≤ C‖δ − ξ1‖+ |c| ‖Y
(

1
ξ1

)

‖ ‖η‖ ≤ C ′.

So

(

0
η

)

is in D, and therefore η is in D′. 2

Lemma 6.25. Let X be a densely defined self-adjoint operator on M.
The µ-spectrum of X is disjoint from Πd ∪Πd∗. Moreover,

‖(X − z)−1‖ ≤ 1/ min
1≤r≤d

(|Im zr|) ∀ z ∈ Πd ∪Πd∗.
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Proof: Let X be self-adjoint on M = M1 ⊕ · · · ⊕ Md, and let
z = (x1 + iy1, . . . , xd + iyd) be a point in Πd ∪ Πd∗. Then for any
v = v1 ⊕ · · · ⊕ vd in M,

〈(X − z)v, v〉 = 〈(X − x)v, v〉 − i(y1‖v1‖2 + · · · + yd‖vd‖2).

The first summand on the right is real, so X − z is bounded below
by min(|yr|), and therefore has a left inverse. Applying the same
argument to z∗, we get that X − z∗ has a left inverse, and taking
adjoints we get that X − z has a right inverse also. 2

When F decays at infinity, we can sharpen Theorem 6.9 to get a
theorem like Nevanlinna’s in 6.3.

Let us write 1 for (1, 1, . . . , 1), and s1 for (s, s, . . . , s), etc.

Theorem 6.26. Let F be in Ld, and assume F has a representation
as in (6.10) with t = 0. Then the following are equivalent.

(i)
lim inf
y→∞

y|F (iy1)| < ∞.

(ii) There exists a vector v1 in M so that

F (z) = 〈(X − z)−1v1, v1〉 z ∈ Πd. (6.27)

(iii) The function ϕ = β ◦ F ◦ α in S has a B-point at 1 and
ϕ(1) = −1.

(iv) limy→∞ F (iy1) = 0 and

lim inf
y→∞

y‖v(iy1)‖ < ∞.

(v) The vector v is in the domain of X and limy→∞ F (iy1) = 0.

Proof: (i) ⇒ (iii) Let ϕ = β ◦ F ◦ α. Condition (i) becomes

lim inf
s→1

1 + s

1− s

∣

∣

∣

∣

1 + ϕ(s1)
1− ϕ(s1) ∣∣∣∣ < ∞. (6.28)

The left-hand side of (6.28) dominates

1− |ϕ(s1)|
1− s

,

so 1 is a B-point. In order for (6.28) to hold, we must have ϕ(1) = −1.
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(iii) ⇔ (iv) As the proof of Proposition 2.11 shows, one can pass
between a model (M, u) for ϕ and a model (M, v) for F by letting

vrz =

(

F (z) + i

zr + i

)

urβ(z) (6.29)

urλ =

(

1− ϕ(λ)

1− λr

)

vrα(λ) r = 1, . . . , d.

By Lemma 3.10, ϕ having a B-point at 1 is equivalent to u(r1)
being bounded as r → 1−. Moreover, ϕ(r1) tending to −1 is the same
as F (iy1) tending to 0 as y → ∞. And as long as F (iy1) has a finite
limit, (6.29) says that u(r1) is bounded iff [y v(iy1)] is.

(iv) ⇒ (v) As X is densely defined and self-adjoint, it is closed.
By (6.18), the vectors vz − v all lie in D′, the domain of X. Let
z = (iy1) and let y → ∞. Then v − v(iy1) tends to v. Moreover,
X(v− v(iy1)) = z0v− iyv(iy1) contains a bounded sequence as y → ∞,
and therefore a subsequence that converges weakly to some vector, w
say. So (v,w) is in the weak closure of the graph of X, therefore in
the graph of X, and hence v is in D′.

Therefore yn vzn also converges in norm, and hence
(v) ⇒ (ii) If v ∈ D′, then (6.19) becomes

L(γ) = 〈γ,Xv − z0v〉. (6.30)

Let v1 = (X − z0)v. Then (6.18) says

(X − z)vz = v1. (6.31)

Combining (6.17), (6.30) and (6.31), we get

Ft(z) = a− 〈v, v1〉+ 〈(X − z)−1v1, v1〉. (6.32)

Now let z = (iy1) in (6.32) and let y → ∞. By Lemma 6.25, the last
term on the right tends to zero, so we must have a− 〈v, v1〉 = 0.

(ii) ⇒ (i) Lemma 6.25 implies that

‖F (z)‖ ≤ ‖v1‖2/min(|Im zr|),

and so (i) follows. 2

For later use, let us record a slight variant of Theorem 6.26; it is
proved in the same way.
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Theorem 6.33. Let F be in Ld, and assume F has a representation
as in (6.10) with t = 0. Then the following are equivalent.

(i) There exists a constant C ∈ R so that

lim inf
y→∞

y|F (iy1) − C| < ∞.

(ii) There exists a vector v1 in M and a constant C in R so that

F (z) = C + 〈(X − z)−1v1, v1〉 z ∈ Πd.

(iii) The function ϕ = β ◦ F ◦ α in S has a B-point at 1 and
ϕ(1) 6= 1.

(iv) limy→∞ F (iy1) = C ∈ R and

lim inf
y→∞

y‖v(iy1)‖ < ∞.

(v) The vector v is in the domain of X.

7 Locally matrix monotone functions

Recall the definition of locally n-matrix monotone.
Definition 1.9 Let E be an open set in Rd, and f be a real-valued

C1 function on E. Say f is locally Mn-monotone on E if, whenever
S is in CSAMd

n with σ(S) = {x1, . . . , xn} consisting of n distinct
points in E, and S(t) is a C1 curve in CSAMd

n with S(0) = S and
d

dt
S(t)|t=0 ≥ 0, then

d

dt
f(S(t))|t=0 exists and is ≥ 0.

If S is in CSAMd
n, we can choose an orthonormal basis of eigen-

vectors that diagonalize all the Sr’s simultaneously, so

Sr =







xr1
. . .

xrn






∀ 1 ≤ r ≤ d. (7.1)

If S(t) is a C1 curve of commuting self-adjoints, then S(0)+t d
dtf(S(t))|t=0

commutes to first order.
For any X ∈Mn we define diag X to be the diagonal matrix inMn

with diagonal entries Xii, and for any ∆ ∈ SAMd
n we define diag ∆

to be (diag ∆1, . . . ,diag ∆d).
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Definition 7.2. We shall say that S in CSAMd
n is generic if its

spectrum consists of n distinct points.

Lemma 7.3. Let S be in CSAMd
n and ∆ be in SAMd

n, with S generic.
Then there exists a C1 curve S(t) of commuting self-adjoints with
S(0) = S and S′(0) = ∆ if and only if

[Sr,∆s] = [Ss,∆r] ∀ 1 ≤ r 6= s ≤ d. (7.4)

Proof: (⇒): If S(t) = S + t∆+ o(t) is commutative, calculate

[Sr(t), Ss(t)] = t ([Sr,∆s]− [Ss,∆r]) + o(t).

The coefficient of t must vanish, giving (7.4).
(⇐): Suppose S is as in (7.1), and (7.4) holds. This means

∆s
ij(x

r
j − xri ) = ∆r

ij(x
s
j − xsi ) ∀ r 6= s, (7.5)

so

∆r
ij

1

xrj − xri
= ∆s

ij
1

xsj − xsi
if xrj − xri 6= 0 6= xsj − xsi . (7.6)

Define a skew-symmetric matrix Y by

Yij = ∆r
ij

1

xrj − xri
for any r such that xrj − xri 6= 0. (7.7)

For any i 6= j, there is some r with xrj−xri 6= 0, so (7.7) defines Yij; and
(7.6) says it doesn’t matter which r we choose. Let all the diagonal
terms of Y be 0.

Define
Sr(t) = etY (Sr + t diag ∆r)e−tY . (7.8)

Since etY is a unitary matrix and Sr + t diag ∆r is diagonal, S(t) ∈
CSAMd

n and

d

dt
Sr(t)|t=0 = [Y, Sr] + diag ∆r = ∆r.

2

If S and ∆ satisfy (7.4) and S is generic then for any function f that
is C1 on a neighborhood of σ(S) we define the directional derivative
of f at S in direction ∆ by

D∆f(S) =
d

dt
f(S(t))|t=0 (7.9)
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where S(t) is the curve given by equations (7.8) and (7.7). We shall
show in Proposition 7.18 that (7.9) is actually unchanged if S(t) is
replaced by any other curve that agrees with it to first order. First,
let us show that the right-hand side of (7.9) exists. Indeed,

f(S(t)) = etY f(S + t diag ∆)e−tY . (7.10)

Since S + t diag ∆ is diagonal, f(S + t diag ∆) is diagonal, with ith
entry

f(xi + t∆ii) = f(xi) + t

d
∑

r=1

∆r
ii

∂f

∂xr
(xi) + o(t).

In other words,

f(S + t diag ∆) = f(S) + t

d
∑

r=1

(diag ∆r)
∂f

∂xr
(S) + o(t).

Hence, on differentiating equation (7.10) at 0 we obtain

d

dt
f(S(t))|t=0 = [Y, f(S)] +

d
∑

r=1

(diag ∆r)
∂f

∂xr
(S).

We have shown the following.

Proposition 7.11. Let S be a generic d-tuple of commuting self-
adjoint matrices in Mn. Fix an orthonormal basis of eigenvectors, so
every Sr is diagonal:

Sr =







xr1
. . .

xrn






.

Let ∆ be a d-tuple of self-adjoints satisfying (7.4). Let f be C1 on
a neighborhood of {x1, . . . , xn} in Rd, where each xj is the d-tuple
(x1j , . . . , x

d
j ). Then

[D∆f(S)]ij =











∆r
ij

f(xj)−f(xi)
xr
j−xr

i
if i 6= j, where xrj 6= xri

∑d
r=1∆

r
ii

∂f
∂xr |xi

if i = j.

(7.12)

Corollary 7.13. For S,∆ as in Proposition 7.11, if f, g are C1 func-
tions that agree to first order on σ(S), then D∆f(S) = D∆g(S).
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Lemma 7.14. Let R and S be in CSAMd
n. For every point µ in the

joint spectrum of R there is an xp in the joint spectrum of S with

‖µ− xp‖ ≤
√
dn‖R− S‖. (7.15)

Proof. Choose an orthonormal basis that diagonalizes S, so that S
is as in (7.1). Let ∆ = R − S. Let µ be a joint eigenvalue of R
with corresponding eigenvector ξ = (ξ1, . . . , ξn)

t. Choose p so that
|ξp| ≥ |ξj| for all 1 ≤ j ≤ n.

Then for each 1 ≤ r ≤ d, we have

Rrξ = µrξ = (Sr +∆r)ξ.

So in particular,
n
∑

j=1

Rr
pjξj = µrξp.

Therefore

(µr − xrp)ξp =

n
∑

j=1

∆r
pjξj.

So

|µr − xrp| ≤
n
∑

j=1

|∆r
pj|

≤ √
n

√

∑

j

|∆r
pj|2

≤ √
n‖∆r‖,

and hence
d
∑

r=1

|µr − xrp|2 ≤ dn‖∆‖2.

Lemma 7.16. If R(t) is a Lipschitz path in CSAMd
n, 0 ≤ t < 1,

with R(0) = S generic then there exists ε > 0 and Lipschitz maps
X1, . . . ,Xn : [0, ε) → Rd such that σ(R(t)) = {Xj(t) : j = 1, . . . , n}.

Proof. Choose an orthonormal basis that diagonalizes S, so S is as
in (7.1). The joint eigenvalues of S are the points xi = (x1i , . . . , x

d
i ),
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and genericity means ‖xi − xj‖ > 0 if i 6= j. Choose ε so that for all
0 ≤ t ≤ ε, √

dn‖R(t)− S‖ ≤ 1

3
min
i 6=j

‖xi − xj‖. (7.17)

By Lemma 7.14, for every joint eigenvalue x of S there is a joint
eigenvalue µ of R(t) within

√
dn‖R(t) − S‖ of it. By (7.17), this

means that R(t) is also generic, and it makes sense to talk of the
joint eigenvalue of R(t) that is closest to xj . Let us call these joint
eigenvalues Xj(t). We have proved that

‖Xj(t)− xj‖ ≤
√
dn‖R(t)− S‖ ∀ 0 ≤ t ≤ ε.

Repeating the argument with R(t1) in place of S, we get

‖Xj(t2)−Xj(t1)‖ ≤
√
dn‖R(t2)−R(t1)‖ ∀ 0 ≤ t1, t2 ≤ ε.

As R is assumed to be Lipschitz, we get that each Xj is Lipschitz
also.

Proposition 7.18. If S is generic in CSAMd
n, ∆ is in SAMn

d , and
they satisfy the commutation relations (7.4), then for any C1 path
R(t) ∈ CSAMd

n such that R(0) = S, R′(0) = ∆ and any f ∈ C1,

d

dt
f(R(t))|t=0 = D∆f(S). (7.19)

Proof. If g is a monomial then a simple calculation shows that

d

dt
g(R(t))|t=0

exists and depends only on g, S and ∆. It follows that, for any poly-
nomial g,

d

dt
g(R(t))|t=0 =

d

dt
g(S(t))|t=0 = D∆g(S). (7.20)

Consider any f ∈ C1 and pick a polynomial g that agrees with f
to first order on σ(S). By Corollary 7.13,

D∆f(S) = D∆g(S). (7.21)

We claim that
d

dt
g(R(t))|t=0 =

d

dt
f(R(t))|t=0. (7.22)

34



For by Lemma 7.16 there exist Lipschitz functionsX1, . . . ,Xn : [0, ε) →
Rd such that σ(R(t)) = {X1(t), . . . ,Xn(t)} for all t. Then f(S) = g(S)
and

‖(f − g)(R(t))‖ = max
i

|(f − g)(Xi(t))|
= o(max

i
|Xi(t)−Xi(0)|)

= o(t).

Hence
∥

∥

∥

∥

f(R(t))− f(S)

t
− g(R(t)) − g(S)

t

∥

∥

∥

∥

→ 0 as t→ 0.

In view of equation (7.20),

f(R(t))− f(S)

t
→ d

dt
g(R(t))|t=0 = D∆g(S) as t→ 0.

On combining this relation with equation (7.21) we obtain equation
(7.19).

Corollary 7.23. A real-valued C1 function f on an open set E ⊆ Rd

is locally Mn-monotone if and only if

D∆f(S) ≥ 0

for every generic S in CSAMd
n with spectrum in E and every ∆ in

SAMd
n such that ∆ ≥ 0 and

[Sr,∆s] = [Ss,∆r] ∀ 1 ≤ r 6= s ≤ d.

The statement follows immediately from Definition 1.9 and Propo-
sition 7.18.

We can now characterize locally matrix monotone functions.

Theorem 7.24. Let E be an open set in Rd, and f a real-valued C1

function on E. Then f is locally Mn-monotone if and only if f is in
Ln(E).

Proof: (⇐) We must show: if S is generic with σ(S) ⊂ E, if ∆ is
a positive d-tuple and [Sr,∆s] = [Ss,∆r] for all r, s, thenD∆f(S) ≥ 0.
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Let σ(S) = {x1, . . . , xn}. Choose Ar as in Definition 5.1. For
i 6= j, assume without loss of generality that x1j 6= x1i . Then

[D∆f(S)]ij = ∆1
ij

f(xj)− f(xi)

x1j − x1i

=
∆1

ij

x1j − x1i

(

d
∑

r=1

(xrj − xri )A
r(i, j)

)

=
d
∑

r=1

∆r
ij A

r(i, j).

(We get the last line by using (7.6)). By (7.12) the same formula
holds for [D∆f(S)]ij when i = j, so D∆f(S) is the sum of the Schur
products of ∆r with Ar, so is positive.

(⇒) Let f be locally Mn-monotone, and fix {x1, . . . , xn} distinct
points in E. Let S be given by (7.1). We wish to find positive matrices
Ar such that (5.3) and (5.2) hold.

Let G be the set of all skew-symmetric real n-by-n matrices Γ with
the property that there exists a d-tuple A of real positive semi-definite
matrices satisfying

Ar(i, i) =
∂f

∂xr

∣

∣

∣

∣

xi

1 ≤ i ≤ n, 1 ≤ r ≤ d(7.25)

d
∑

r=1

(xrj − xri )A
r(i, j) = Γij 1 ≤ i 6= j ≤ n. (7.26)

Let Λ be the matrix Λij = f(xi)− f(xj). We wish to show Λ is in G.
Notice that G is a closed convex set. Moreover, it is non-empty,

because
∂f

∂xr

∣

∣

∣

∣

xi

is always greater than or equal to 0. (This last asser-

tion can be seen by letting ∆ be 0 except in the rth slot, where it is
I, and calculating D∆f(S)).

So if Λ is not in G, by the Hahn-Banach theorem there is a real
linear functional L : Mn → R that is non-negative on G and negative
on Λ. Any such linear functional is of the form L(T ) = tr(TK) for
some matrix K. Replacing K by K −Kt will not change the value of
L on skew-symmetric real matrices, so we can assume that there is a
real skew-symmetric matrix K such that tr(ΓK) ≥ 0 for all Γ in G,
and tr(ΛK) < 0.
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Define ∆ by
∆r

ij = (xrj − xri )Kji.

Then ∆ is in SAMd
n, and

[∆s, Sr]ij = (xsj − xsi )Kji(x
r
j − xri ) = [∆r, Ss],

so ∆ satisfies (7.4).
Moreover ∆ ≥ 0. Indeed, fix s between 1 and d, and let c1, . . . , cn

be complex numbers. We want to show that

n
∑

i,j=1

cic̄j∆
s
ij ≥ 0. (7.27)

For r 6= s, let Ar be the diagonal matrix with entries given by (7.25).
Define As to be the sum of the diagonal matrix from (7.25) with the
rank one matrix [cic̄j ]. Define Γ by (7.26). Then Γ is in G, and since
K and ∆s both vanish on the diagonal,

tr(ΓK) =
n
∑

i,j=1

(xsj − xsi )A
s(i, j)Kji

=
∑

i,j

∆s
ijcic̄j

≥ 0,

yielding (7.27).
As f is locallyMn monotone, we must have then that D∆f(S) ≥ 0.
But

0 > tr(ΛK) =
∑

1≤i 6=j≤n

[f(xj)− f(xi)]Kji

=
∑

1≤i,j≤n

f(xj)− f(xi)

xrj − xri
∆r

ij

=
∑

1≤i,j≤n

[D∆f(s)]ij,

which is a contradiction. 2

As the dimension of the matrices increases, the condition that a
function f be locally monotone becomes more stringent. On an infinite
dimensional Hilbert space, the requirement becomes that f be in the
Loewner class, as we shall see in the next section.
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8 Locally operator monotone functions

We defined locally operator monotone functions in Definition 1.8. We
shall show that being locally operator monotone is the same as being
locally Mn-monotone for all n, which in turn is the same as being in
the Löwner class L(E).

Theorem 8.1. Let E be an open set in Rd, and f a real-valued C1

function on E. The following are equivalent.
(i) The function f is locally Mn-monotone on E for all n ≥ 1.
(ii) The function f is in L(E).
(iii) The function f is locally operator monotone on E.

The equivalence of (i) and (ii) follows from Theorem 7.24 and
Proposition 5.11. The implication (iii) ⇒ (i) is obvious. We need to
prove that (ii) ⇒ (iii). First we need some preliminary results.

Proposition 8.2. Let E be an open set in Rd, and let f ∈ L(E).
Then there is a model (M, v) for f such that vz is locally Lipschitz on
E.

Proof: By Proposition 5.11 we can extend f to a function F in
L that extends analytically across E and agrees with f on E. For this
F we have a model (M, v) so that

F (z)− F (w) = 〈(z − w∗)vz , vw〉M ∀ z, w ∈ E ∪Πd, (8.3)

and by Proposition 3.12, if w is in E, then vw is the limit of vz as z
tends to w non-tangentially from inside Πd.

Fix w in E (so F (w) is real). Then, by analyticity, we have for z
close to w :

F (z)−F (w) =
d
∑

r=1

∂f

∂xr

∣

∣

∣

∣

w

(zr −wr) +
∑

|α|≥2

∂αf

∂xα

∣

∣

∣

∣

w

(z − w)α

α!
. (8.4)

From (8.3), we get

F (z)− F (w) = 〈(z − w)vz, vw〉

=

d
∑

r=1

(zr − wr)〈vrw, vrw〉 +

d
∑

r=1

(zr −wr)〈vrz − vrw, v
r
w〉.
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As z tends to w non-tangentially, the second term is o(‖z − w‖), so
comparing with (8.4) we see that

‖vrw‖2 =
∂f

∂xr

∣

∣

∣

∣

w

∀ 1 ≤ r ≤ d. (8.5)

Now let z and w both be in E. Comparing (8.3) and (8.4), we get

〈(z −w)vz , vw〉 − 〈(z − w)vw, vw〉 =
∑

|α|≥2

∂αf

∂xα

∣

∣

∣

∣

w

(z − w)α

α!
. (8.6)

Swapping z and w, we get

〈(w − z)(vw − vz), vz〉 =
∑

|α|≥2

∂αf

∂xα

∣

∣

∣

∣

z

(w − z)α

α!
. (8.7)

Subtracting (8.6) from (8.7), we get

〈(z−w)(vz−vw), (vz−vw)〉 =
∑

|α|≥2

(

(−1)|α|
∂αf

∂xα

∣

∣

∣

∣

z

− ∂αf

∂xα

∣

∣

∣

∣

w

)

(z − w)α

α!
.

(8.8)
But since f is analytic,

(

∂αf

∂xα

∣

∣

∣

∣

z

− ∂αf

∂xα

∣

∣

∣

∣

w

)

= O(‖z − w‖),

and so the right-hand side of (8.8) is O(‖z − w‖3). Therefore
〈(z − w)(vz − vw), (vz − vw)〉 = O(‖z − w‖3). (8.9)

If all the differences |zr − wr| were comparable, we could conclude
immediately that ‖vz − vw‖ = O(‖z−w‖). If they are not, we can get
round this difficulty by connecting z to w by two line segments.

Indeed, suppose max1≤r≤d |zr − wr| = ε. Choose numbers ar and
br with modulus between 1/2 and 2 so that

zr − wr = (ar − br)ε ∀ 1 ≤ r ≤ d.

Let
xr = wr + arε = zr + brε.

Then applying (8.9) to the pairs (z, x) and (x, z), we get

‖vz − vw‖ ≤ ‖vz − vx‖+ ‖vx − vw‖
= O(‖z − x‖+ ‖x− w‖)
= O(‖z − w‖),
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as desired. 2

Suppose now E, f and (M, v) are as in Proposition 8.2. So v : z 7→
vz is a map from E to M. Let S be a d-tuple of bounded commuting
self-adjoint operators on a Hilbert space H, with σ(S) ⊂ E. We want
to define an operator ṽ(S) ∈ B(H,H⊗M).

We do this by choosing an orthonormal basis for M, and writing

v(z) := vz =







v1(z)
v2(z)
...






.

Then

ṽ(S) :=







v1(S)
v2(S)

...






: H → H⊗M. (8.10)

The operator ṽ(S) is bounded, because if S has spectral measure Λ
and ξ is a unit vector in H, then

‖ṽ(S)ξ‖2 =
∑

j

∫

σ(S)
|vj |2d〈Λξ, ξ〉 (8.11)

=

∫

σ(S)

d
∑

r=1

∂f

∂xr
d〈Λξ, ξ〉

≤ sup
z ∈σ(S)

d
∑

r=1

∂f

∂xr

∣

∣

∣

∣

∣

z

, (8.12)

and the last sum is finite because σ(S) is compact and f is C1.
The operator ṽ(S) does not depend on the choice of orthonormal

basis in M. A simple calculation shows that, for any h ∈ H and
m ∈ M,

ṽ(S)∗(h⊗m) = 〈m, v(.)〉(S)h.
This gives a coordinate-free expression for ṽ(S)∗, hence also for ṽ(S).

Lemma 8.13. Let E, f and (M, v) be as in Proposition 8.2, and S
be a d-tuple of bounded commuting self-adjoint operators on a Hilbert
space H, with σ(S) ⊂ E. Then

‖ṽ(S)‖ ≤
(

sup
σ(S)

div f

)

1
2

. (8.14)
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Moreover, ṽ is continuous.

Proof: Inequality (8.14) has been proved in (8.12). To prove
continuity of ṽ, let K be a compact subset of E with σ(S) ⊂ int(K) ⊂
E. Let ε > 0.

As v is continuous onK andK is compact, there exists N such that
∑∞

j=N+1 |vj(z)|2 ≤ ε2/9 on K. For 1 ≤ j ≤ N , there is a polynomial
pj such that ‖pj − vj‖∞ ≤ ε/9N on K. There exists δ > 0 so that if
‖T r − Sr‖ ≤ δ, then σ(T ) ⊆ K and ‖pj(T )− pj(S)‖ ≤ ε/9N for each
1 ≤ j ≤ N .

Let ṽN (S) be the operator
















v1(S)
...

vN (S)
0
...

















.

Then ‖ṽN (S)− ṽ(S)‖ ≤ ε/3 by (8.11), and similarly ‖ṽN (T )− ṽ(T )‖ ≤
ε/3. As

‖vj(T )−vj(S)‖ ≤ ‖vj(T )−pj(T )‖+‖pj(T )−pj(S)‖+‖pj(S)−vj(S)‖,
and each entry is at most ε/9N ,

‖ṽN (S)− ṽN (T )‖ ≤ N
( ε

9N
+

ε

9N
+

ε

9N

)

=
ε

3
,

and hence
‖ṽ(T )− ṽ(S)‖ ≤ ε.

2

We assume that M is decomposed as M = M1 ⊕ · · · ⊕Md, and
P r is the orthogonal projection from M onto Mr. If S = (S1, . . . , Sd)
is a d-tuple of operators on H, we shall write

S ⊙ I := S1 ⊗ P 1 ⊕ · · · ⊕ Sd ⊗ P d (8.15)

for the operator on H⊗M.

Proposition 8.16. Let E be open in Rd, let f ∈ L(E), and assume
(M, v) is a model of f for which v is continuous. Let S and T be d-
tuples of commuting self-adjoint operators on a Hilbert space H with
spectrum in E. Then

f(T )− f(S) = ṽ(S)∗ [T ⊙ I − S ⊙ I] ṽ(T ). (8.17)
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Proof: First assume that S and T are (separately) diagonalizable.
Let ξ be an eigenvector of S, and η an eigenvector of T , so for some
numbers zr, wr we have

Srξ = wrξ

T rη = zrη ∀ 1 ≤ r ≤ d.

Then
〈[f(T )− f(S)] η, ξ〉H = 〈[f(z)− f(w)∗] η, ξ〉H.

Also,

〈ṽ(S)∗ [T ⊙ I − S ⊙ I] ṽ(T )η, ξ〉H
= 〈[T ⊙ I − S ⊙ I] η ⊗ v(z), ξ ⊗ v(w)〉H⊗M

=
d
∑

r=1

〈η, ξ〉H 〈(zr − w̄r)vr(z), vr(w)〉Mr

= (f(z)− f(w))〈η, ξ〉H.

So both sides of (8.17) agree if you apply them to an eigenvector of T
and then take the inner product with an eigenvector of S. By linearity,
this is true also for linear combinations of eigenvectors, and as these
are assumed dense, we get that (8.17) holds.

If S and T are not diagonalizable, by the spectral theorem we can
approximate them in norm by operators that are, and as ṽ and f are
both continuous, one gets (8.17) in the limit. 2

Proof of Theorem 8.1: Assume f is in L(E), and S(t) is a
curve of commuting self-adjoint d-tuples with S(0) = S and S′(0) =
∆ ≥ 0. Choose a model (M, v) with v locally Lipschitz. Then by
Proposition 8.16,

f(S(t))− f(S) = ṽ(S)∗ [(S(t) − S)⊙ I] ṽ(S(t)).

As
S(t) = S + t∆+ o(t),

we get

d

dt
f(S(t))

∣

∣

∣

∣

0

= lim
t→0

ṽ(S)∗ [∆⊙ I] ṽ(S(t)) + lim
t→0

ṽ(S)∗ [o(1)] ṽ(S(t))

= ṽ(S)∗ [∆⊙ I] ṽ(S).

Hence f(S(t)) is differentiable at 0, and its derivative is a positive
operator. 2
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9 Globally Operator Monotone Func-

tions

Definition 9.1. Let E be an open set in Rd, and f be a real-valued C1

function on E. Say f is globally operator monotone on E if, whenever
S and T are d-tuples of commuting bounded self-adjoint operators on
a Hilbert space with σ(S) ∪ σ(T ) ⊂ E, and S ≤ T , then f(S) ≤ f(T ).

If F has the form in Theorem 6.26, then it is globally monotone
on rectangles in the µ-resolvent of X.

Theorem 9.2. Let X be a densely-defined self-adjoint operator on a
graded Hilbert space M = M1 ⊕ · · · ⊕Md, let v ∈ M, and let F be
given by

F (z) = 〈(X − z)−1v, v〉.
Let E be an open rectangle in Rd that is in the µ-resolvent of X. Then
F is globally operator monotone on E.

Proof: First observe that if S is a commuting d-tuple of self-
adjoint operators on H and σ(S) ⊂ E, then

F (S) = R∗
v(IH − S ⊙ I)−1Rv (9.3)

where ⊙ is as in equation (8.15) and

Rv : H → H⊗M
h 7→ h⊗ v.

Thus equation (9.3) means that for any vectors ξ and η in H,

〈F (S)η, ξ〉H = 〈(IH ⊗X −
d
∑

r=1

Sr ⊗ P r)−1 η ⊗ v, ξ ⊗ v〉H⊗M. (9.4)

Indeed, if η is an eigenvector of S with eigenvalues ar, then F (S)η =
F (a)η, so the left-hand side of (9.4) is F (a)〈η, ξ〉. But we have

(IH ⊗X −
d
∑

r=1

Sr ⊗ P r)−1 η ⊗ v = η ⊗ (X − a)−1v,

as one can verify by applying (IH ⊗X −∑d
r=1 S

r ⊗P r) to both sides.
So the right-hand side of (9.4) is

〈η, ξ〉〈(X − a)−1v, v〉,
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which is the same. If S has a spanning set of eigenvectors, our claim
is proved. If it does not, one can approximate it in norm by a d-tuple
that does, and the claim follows by continuity.

Now let S and T be d-tuples of commuting self-adjoint operators
with σ(S) ∪ σ(T ) ⊂ E and ∆ := T − S ≥ 0. Let

Rr(t) = (1− t)Sr + tT r, 1 ≤ r ≤ d.

Then for t in the range (0, 1), the d-tuple R(t) will consist of self-
adjoint operators that need not commute with each other. Nonethe-
less, letting

Y (t) = (IH ⊗X −R(t)⊙ I)

then R∗
vY (t)−1Rv still makes sense by Lemma 9.5. Moreover,

d

dt
Y (t)−1 = Y (t)−1(∆⊙ I) Y (t)−1,

and so is positive. Therefore

F (T )− F (S) = R∗
vY (1)−1Rv −R∗

vY (0)−1Rv

= R∗
v

∫ 1

0

d

dt
Y (t)−1dtRv

=

∫ 1

0
R∗

vY (t)−1(∆ ⊙ I)Y (t)−1Rvdt

≥ 0.

2

Lemma 9.5. Let ar < br, 1 ≤ r ≤ d, and let X be a densely defined
self-adjoint operator on a graded Hilbert space M = ⊕d

r=1Mr. Sup-
pose that for every t in (0, 1), the point λt = (1 − t)a + tb is not in
the µ-spectrum of X. Let S = (S1, . . . , Sd) be a d-tuple of bounded
self-adjoint operators on a Hilbert space H, with σ(Sr) ⊂ (ar, br) for
each r. Then I ⊗X −∑d

r=1 S
r ⊗ P r has a bounded inverse.

Proof: First, suppose ar = −1 and br = 1 for each r. Then
(−1, 1)∩σ(X) is empty, and so is (−1, 1)∩σ(I ⊗X). So ‖IH⊗Xξ‖ ≥
‖ξ‖ for every ξ in H ⊗ M. But if σ(Sr) ⊂ (−1, 1) for each r, the
operator

∑

Sr ⊗ P r has norm less than one. Therefore I ⊗ X −
∑d

r=1 S
r ⊗ P r is invertible.
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In the general case, let mr be the midpoint and cr half the length
of the interval (ar, br), so ar = mr − cr, br = mr + cr. Let

Y =

(

d
∑

r=1

1√
cr
I ⊗ P r

)(

I ⊗X −
d
∑

r=1

mrIH ⊗ P r

)(

d
∑

r=1

1√
cr
I ⊗ P r

)

.

If σµ denotes the µ-spectrum,

σµ(Y ) = c−1(σµ(X)−m),

and hence the point (1 − t)(−1) + t1 lies in the µ-resolvent set of Y
for 0 < t < 1. Let T r = (1/cr)(Sr − mrIH). Then T r is a strict
contraction, and so, by the previous case, Y −∑T r⊗P r is invertible.
As

Y −
d
∑

r=1

T r ⊗ P r

=
(

∑ 1√
cr
I ⊗ P r

)

(I ⊗X −∑Sr ⊗ P r)
(

∑ 1√
cr
I ⊗ P r

)

,

we get the desired result. 2

We can now prove a global result for rational functions of two
variables.

Theorem 9.6. Let F be a rational function of two variables. Let Γ
be the zero-set of the denominator of F . Assume F is real-valued on
R2 \ Γ. Let E be an open rectangle in R2 \ Γ. Then F is globally
operator monotone on E if and only if F is in L(E).

Proof: Necessity follows from Theorem 8.1.
For sufficiency, by Lemma 9.7 it is sufficient to prove the theorem

for Ftn with tn ց 0. Suppose the degree of F is n1 in z1 and n2 in z2.
Let ϕ = β ◦F ◦α. By a result of G. Knese [16], there is a model for ϕ
in a Hilbert space M = M1 ⊕M2 with dim(Mr) = nr for r = 1 and
2; see also the paper [7] by J.A. Ball, C. Sadosky and V. Vinnikov.

Accordingly, in Theorem 6.9, we obtain a realization of Ft onM1⊕
M2 of the form (6.10); since M is finite-dimensional, the vector v is
in the domain of X. By Theorem 6.33 (v)⇒(ii), for some v1 ∈ M

Ft(z) = C + 〈(X − z)−1v1, v1〉M,

where dim(Mr) = nr for r = 1 and 2, and Ft(∞,∞) = C <∞. Then
the pole-set Γt of Ft is contained in the zero-set of det(X − z) which
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is a rational function of degree (dim(M1),dim(M2)). As these two
algebraic sets have the same degree, they must be equal. So the µ-
resolvent of X is R2\Γt, and now the result follows from Theorem 9.2.
2

Let ρt be as in (6.8). The following lemma is elementary.

Lemma 9.7. Let t > 0. Let U be an open set in Rd. Then:
(i) The function F is globally operator monotone on U∩(−1/t,∞)d

if and only if F◦ρt is globally operator monotone on ρ−1
t (U)∩(−∞, 1/t)d.

(ii) The function F is globally operator monotone on U∩F−1(−1/t, 1/t)
if and only if ρt ◦ F is globally operator monotone on the same set.

What happens to Theorem 9.6 in d ≥ 3 variables? It is still true
that rational Löwner functions have finite-dimensional models [8, 7].
However, a recent example of Knese [15] shows that the minimal di-
mension nr needed may be strictly greater than the degree of F in
zr. So we cannot rule out the possibility that the µ-spectrum of X
contains some other algebraic sets in Rd than just the zero set of the
denominator of F .

Example 9.8. For 0 ≤ s ≤ 1/2, the function (z1z2)s is operator
monotone on (0,∞) × (0,∞).

Indeed, if (0, 0) < (A1, A2) ≤ (B1, B2) and s is between 0 and 1/2,
then

‖(Ar)s(Br)−s‖ ≤ 1 for r = 1, 2.

Therefore the norm of

(B1)−s(A1)s(A2)s(B2)−s

is less than or equal to 1, so the largest eigenvalue is less than or equal
to 1, and therefore the largest eigenvalue of

(B2)−s/2(B1)−s/2(A1)s(A2)s(B1)−s/2(B2)−s/2 (9.9)

is also less than or equal to 1. But (9.9) is self-adjoint, so less than or
equal to the identity. Therefore

(A1A2)s ≤ (B1B2)s.

We do not know if (z1z2)s can be approximated by rational func-
tions in the Löwner class.
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Let us close with some questions.
• Is Theorem 9.6 true for rational functions of more than 2 vari-

ables?
• Can E be an arbitrary open set in Theorem 9.2?
• Is every function in L(E) globally operator monotone on E?
• Is every function in Ln(E) Mn-monotone on E?
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[5] A.V. Arkhangel’skĭı and L.S. Pontryagin (eds.). General Topology
I. Springer, Berlin, 1990.

[6] J.A. Ball and V. Bolotnikov. A tangential interpolation problem
on the distinguished boundary of the polydisk for the Schur-Agler
class. J. Math. Anal. Appl., 273:328–348, 2002.

[7] J.A. Ball, C. Sadosky, and V. Vinnikov. Scattering systems with
several evolutions and multidimensional input/state/output sys-
tems. Integral Equations and Operator Theory, 52:323–393, 2005.

[8] B.J. Cole and J. Wermer. Andô’s theorem and sums of squares.
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