ON HADAMARD-TYPE INEQUALITIES FOR CO-ORDINATED r-CONVEX FUNCTIONS

■ AHMET OCAK AKDEMIR AND * M. EMIN ÖZDEMIR

Abstract

In this paper we defined r-convexity on the coordinates and we established some Hadamard-Type Inequalities.

1. INTRODUCTION

Let $f: I \subseteq \mathbb{R} \rightarrow \mathbb{R}$ be a convex function defined on the interval I of real numbers and $a, b \in I$ with $a<b$. Then the following inequality holds:

$$
f\left(\frac{a+b}{2}\right) \leq \frac{1}{b-a} \int_{a}^{b} f(x) d x \leq \frac{f(a)+f(b)}{2}
$$

This inequality is well known in the literature as Hadamard's inequality.
In [1, C.E.M. Pearce, J. Pecaric and V. Simic generalized this inequality to r-convex positive function f which is defined on an interval $[a, b]$, for all $x, y \in[a, b]$ and $\lambda \in[0,1]$;

$$
f(\lambda x+(1-\lambda) y) \leq \begin{cases}\left(\lambda[f(x)]^{r}+(1-\lambda)[f(y)]^{r}\right)^{\frac{1}{r}}, & \text { if } r \neq 0 \\ {[f(x)]^{\lambda}[f(y)]^{1-\lambda}} & \text { if } r=0\end{cases}
$$

We have that 0 -convex functions are simply log-convex functions and 1 -convex functions are ordinary convex functions.

In [3], N.P.G. Ngoc, N.V. Vinh and P.T.T. Hien established following theorems for r-convex functions:

Theorem 1. Let $f:[a, b] \rightarrow(0, \infty)$ be r-convex function on $[a, b]$ with $a<b$. Then the following inequality holds for $0<r \leq 1$:

$$
\begin{equation*}
\frac{1}{b-a} \int_{a}^{b} f(x) d x \leq\left(\frac{r}{r+1}\right)^{\frac{1}{r}}\left([f(a)]^{r}+[f(b)]^{r}\right)^{\frac{1}{r}} \tag{1.1}
\end{equation*}
$$

Theorem 2. Let $f, g:[a, b] \rightarrow(0, \infty)$ be r-convex and s-convex functions respectively on $[a, b]$ with $a<b$. Then the following inequality holds for $0<r, s \leq 2$:

$$
\begin{align*}
\frac{1}{b-a} \int_{a}^{b} f(x) g(x) d x \leq & \frac{1}{2}\left(\frac{r}{r+2}\right)^{\frac{2}{r}}\left([f(a)]^{r}+[f(b)]^{r}\right)^{\frac{2}{r}} \tag{1.2}\\
& +\frac{1}{2}\left(\frac{s}{s+2}\right)^{\frac{2}{s}}\left([g(a)]^{s}+[g(b)]^{s}\right)^{\frac{2}{s}}
\end{align*}
$$

Theorem 3. Let $f, g:[a, b] \rightarrow(0, \infty)$ be r-convex and s-convex functions respectively on $[a, b]$ with $a<b$. Then the following inequality holds if $r>1$, and $\frac{1}{r}+\frac{1}{s}=1$:

$$
\begin{equation*}
\frac{1}{b-a} \int_{a}^{b} f(x) g(x) d x \leq\left(\frac{[f(a)]^{r}+[f(b)]^{r}}{2}\right)^{\frac{1}{r}}\left(\frac{[g(a)]^{s}+[g(b)]^{s}}{2}\right)^{\frac{1}{s}} \tag{1.3}
\end{equation*}
$$

Similar results can be found for several kind of convexity, in [8, 9], [10] and [12]. In [5], a convex function on the co-ordinates defined by S.S. Dragomir as follow:

Definition 1. A function $f: \Delta \rightarrow \mathbb{R}$ which is convex on Δ is called co-ordinated convex on Δ if the partial mappings $f_{y}:[a, b] \rightarrow \mathbb{R}, f_{y}(u)=f(u, y)$ and $f_{x}:[c, d] \rightarrow$ $\mathbb{R}, f_{x}(v)=f(x, v)$ are convex for all $y \in[c, d]$ and $x \in[a, b]$.

Again in [5], Dragomir gave the following inequalities related to definition given above.

Theorem 4. Suppose that $f: \Delta \rightarrow \mathbb{R}$ is co-ordinated convex on Δ. Then one has the inequalities:

$$
\begin{align*}
& f\left(\frac{a+b}{2}, \frac{c+d}{2}\right) \tag{1.4}\\
\leq & \frac{1}{2}\left[\frac{1}{b-a} \int_{a}^{b} f\left(x, \frac{c+d}{2}\right) d x+\frac{1}{d-c} \int_{c}^{d} f\left(\frac{a+b}{2}, y\right) d y\right] \\
\leq & \frac{1}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} f(x, y) d x d y \\
\leq & \frac{1}{4}\left[\frac{1}{b-a} \int_{a}^{b} f(x, c) d x+\frac{1}{b-a} \int_{a}^{b} f(x, d) d x\right. \\
& \left.+\frac{1}{d-c} \int_{c}^{d} f(a, y) d y+\frac{1}{d-c} \int_{c}^{d} f(b, y) d y\right] \\
\leq & \frac{f(a, c)+f(a, d)+f(b, c)+f(b, d)}{4}
\end{align*}
$$

The above inequalities are sharp.
In [6, M. Alomari and M. Darus proved some inequalities of the Hadamard and Jensen types for co-ordinated log-convex functions. In [7, M.K. Bakula and J.

Pecaric improved several inequalities of Jensen's type for convex functions on the coordinates. In [11, M.E. Özdemir, E. Set and M.Z. Sarıkaya established Hadamard's type inequalities for co-ordinated m-convex and (α, m)-convex functions. Similar results can be found in [8, [9, [10] and [12].

The main purpose of this present note is to give definition of r-convexity on the coordinates and to prove some Hadamard-type inequalities for co-ordinated r-convex functions.

2. MAIN RESULTS

We can define r-convex functions on the coordinates as follow:
Definition 2. A function $f: \Delta=[a, b] \times[c, d] \rightarrow \mathbb{R}_{+}$will be called $r-$ convex on Δ, for all $t, \lambda \in[0,1]$ and $(x, y),(u, v) \in \Delta$, if the following inequalities hold:

$$
\begin{aligned}
& f(t x+(1-t) y, \lambda u+(1-\lambda) v) \\
\leq & \left\{\begin{array}{l}
\left(t\left[f(x, u]^{r}+(1-t)[f(y, v)]^{r}\right)^{\frac{1}{r}}\right. \\
f^{t \lambda}(x, u) f^{t(1-\lambda)}(x, v) f^{(1-t) \lambda}(y, u) f^{(1-t)(1-\lambda)}(y, v),
\end{array}, \text { if } r=0\right.
\end{aligned}
$$

It is simply to see that if we choose $r=0$, we have co-ordinated log-convex functions and if we choose $r=1$, we have co-ordinated convex functions. A function $f: \Delta \rightarrow \mathbb{R}_{+}$is r-convex on Δ is called co-ordinated r-convex on Δ if the partial mappings

$$
f_{y}:[a, b] \rightarrow \mathbb{R}_{+}, \quad f_{y}(u)=f(u, y)
$$

and

$$
f_{x}:[c, d] \rightarrow \mathbb{R}_{+}, f_{x}(v)=f(x, v)
$$

are r-convex for all $y \in[c, d]$ and $x \in[a, b]$.
We need the foolowing lemma for our main results.
Lemma 1. Every r-convex mapping $f: \Delta=[a, b] \times[c, d] \rightarrow \mathbb{R}_{+}$is r-convex on the co-ordinates, where $t \in[0,1]$.
Proof. Suppose that $f: \Delta=[a, b] \times[c, d] \rightarrow \mathbb{R}_{+}$is r-convex on Δ. Consider the mapping

$$
f_{y}:[a, b] \rightarrow \mathbb{R}_{+}, f_{y}(u)=f(u, y)
$$

Case 1: For $r=0$ and $u_{1}, u_{2} \in[a, b]$, then we have:

$$
\begin{aligned}
f_{y}\left(t u_{1}+(1-t) u_{2}\right) & =f\left(t u_{1}+(1-t) u_{2}, y\right) \\
& =f\left(t u_{1}+(1-t) u_{2}, t y+(1-t) y\right) \\
& \leq t f\left(u_{1}, y\right)+(1-t) f\left(u_{2}, y\right) \\
& =t f_{y}\left(u_{1}\right)+(1-t) f_{y}\left(u_{2}\right)
\end{aligned}
$$

Case 2: For $r \neq 0$ and $u_{1}, u_{2} \in[a, b]$, then we have:

$$
\begin{aligned}
f_{y}\left(t u_{1}+(1-t) u_{2}\right) & =f\left(t u_{1}+(1-t) u_{2}, y\right) \\
& =f\left(t u_{1}+(1-t) u_{2}, t y+(1-t) y\right) \\
& \leq\left(t\left[f\left(u_{1}, y\right)\right]^{r}+(1-t)\left[f\left(u_{2}, y\right)\right]^{r}\right)^{\frac{1}{r}} \\
& =\left(t\left[f_{y}\left(u_{1}\right)\right]^{r}+(1-t)\left[f_{y}\left(u_{2}\right)\right]^{r}\right)^{\frac{1}{r}}
\end{aligned}
$$

Therefore $f_{y}(u)=f(u, y)$ is r-convex on $[a, b]$. By a similar argument one can see $f_{x}(v)=f(x, v)$ is r-convex on $[c, d]$.

Theorem 5. Suppose that $f: \Delta \rightarrow \mathbb{R}_{+}$be a positive co-ordinated r-convex function on Δ. If $t, \lambda \in[0,1]$ and $(x, y),(u, v) \in \Delta$, then one has the inequality:

$$
\begin{align*}
& \frac{1}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} f(x, y) d x d y \tag{2.1}\\
\leq & \frac{1}{2}\left(\frac{r}{r+1}\right)^{\frac{1}{r}}\left[\left(\frac{1}{b-a} \int_{a}^{b}[f(x, c)]^{r} d x+\frac{1}{b-a} \int_{a}^{b}[f(x, d)]^{r} d x\right)^{\frac{1}{r}}\right. \\
& \left.+\left(\frac{1}{d-c} \int_{c}^{d}[f(a, y)]^{r} d y+\frac{1}{d-c} \int_{c}^{d}[f(b, y)]^{r} d y\right)^{\frac{1}{r}}\right]
\end{align*}
$$

where $0<r \leq 1$.
Proof. Since $f: \Delta=[a, b] \times[c, d] \rightarrow \mathbb{R}_{+}$is co-ordinated r-convex on Δ, then the partial mappings

$$
f_{x}:[c, d] \rightarrow \mathbb{R}_{+}, f_{x}(v)=f(x, v)
$$

and

$$
f_{y}:[a, b] \rightarrow \mathbb{R}_{+}, f_{y}(u)=f(u, y)
$$

are r-convex, by inequality (1.1), we can write:

$$
\frac{1}{d-c} \int_{c}^{d} f_{x}(y) d y \leq\left(\frac{r}{r+1}\right)^{\frac{1}{r}}\left(\left[f_{x}(c)\right]^{r}+\left[f_{x}(d)\right]^{r}\right)^{\frac{1}{r}}
$$

or

$$
\frac{1}{d-c} \int_{c}^{d} f(x, y) d y \leq\left(\frac{r}{r+1}\right)^{\frac{1}{r}}\left([f(x, c)]^{r}+[f(x, d)]^{r}\right)^{\frac{1}{r}}
$$

Dividing both side of inequality $(b-a)$ and integrating respect to x on $[a, b]$, we get

$$
\begin{align*}
& \frac{1}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} f(x, y) d x d y \tag{2.2}\\
\leq & \left(\frac{r}{r+1}\right)^{\frac{1}{r}}\left[\frac{1}{b-a} \int_{a}^{b}[f(x, c)]^{r} d x+\frac{1}{b-a} \int_{a}^{b}[f(x, d)]^{r} d x\right]^{\frac{1}{r}}
\end{align*}
$$

By a similar argument for the mapping, we have

$$
f_{y}:[a, b] \rightarrow \mathbb{R}_{+}, f_{y}(u)=f(u, y)
$$

$$
\begin{align*}
& \frac{1}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} f(x, y) d x d y \tag{2.3}\\
\leq & \left(\frac{r}{r+1}\right)^{\frac{1}{r}}\left[\frac{1}{d-c} \int_{c}^{d}[f(a, y)]^{r} d y+\frac{1}{d-c} \int_{c}^{d}[f(b, y)]^{r} d y\right]^{\frac{1}{r}}
\end{align*}
$$

By addition (2.2) and (2.3), (2.1) is proved.

Corollary 1. In (2.1), if we choose $r=1$ we have the mid inequality of (1.4).
Theorem 6. Suppose that $f, g: \Delta \rightarrow \mathbb{R}_{+}$be co-ordinated r_{1}-convex function and co-ordinated r_{2}-convex function on Δ. Then one has the inequality:

$$
\begin{align*}
& \frac{1}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} f(x, y) g(x, y) d y d x \tag{2.4}\\
\leq & \frac{1}{4}\left(\frac{r_{1}}{r_{1}+2}\right)^{\frac{2}{r_{1}}}\left(\frac{1}{(b-a)} \int_{a}^{b}[f(x, c)]^{r_{1}} d x+\frac{1}{(b-a)} \int_{a}^{b}[f(x, d)]^{r_{1}} d x\right)^{\frac{2}{r_{1}}} \\
& +\frac{1}{4}\left(\frac{r_{2}}{r_{2}+2}\right)^{\frac{2}{r_{2}}}\left(\frac{1}{(b-a)} \int_{a}^{b}[g(x, c)]^{r_{2}} d x+\frac{1}{(b-a)} \int_{a}^{b}[g(x, d)]^{r_{2}} d x\right)^{\frac{2}{r_{2}}} \\
& +\frac{1}{4}\left(\frac{r_{1}}{r_{1}+2}\right)^{\frac{2}{r_{1}}}\left(\frac{1}{(d-c)} \int_{c}^{d}[f(a, y)]^{r_{1}} d y+\frac{1}{(d-c)} \int_{c}^{d}[f(b, y)]^{r_{1}} d y\right)^{\frac{2}{r_{1}}} \\
+ & \frac{1}{4}\left(\frac{r_{2}}{r_{2}+2}\right)^{\frac{2}{r_{2}}}\left(\frac{1}{(d-c)} \int_{c}^{d}[g(a, y)]^{r_{2}} d y+\frac{1}{(d-c)} \int_{c}^{d}[g(b, y)]^{r_{2}} d y\right)^{\frac{2}{r_{2}}}
\end{align*}
$$

where $r_{1}>0, r_{2} \leq 2$.
Proof. Since $f, g: \Delta=[a, b] \times[c, d] \rightarrow \mathbb{R}_{+}$is co-ordinated r_{1}-convex and r_{2}-convex on Δ. Then the partial mappings

$$
f_{x}:[c, d] \rightarrow \mathbb{R}_{+}, f_{x}(v)=f(x, v)
$$

and

$$
f_{y}:[a, b] \rightarrow \mathbb{R}_{+}, f_{y}(u)=f(u, y)
$$

are r_{1}-convex on Δ. On the other hand the partial mappings

$$
g_{x}:[c, d] \rightarrow \mathbb{R}_{+}, g_{x}(v)=g(x, v)
$$

and

$$
g_{y}:[a, b] \rightarrow \mathbb{R}_{+}, g_{y}(u)=g(u, y)
$$

are r_{2}-convex on Δ. From (1.2), we get

$$
\begin{aligned}
\frac{1}{d-c} \int_{c}^{d} f_{x}(y) g_{x}(y) d y \leq & \frac{1}{2}\left(\frac{r_{1}}{r_{1}+2}\right)^{\frac{2}{r_{1}}}\left(\left[f_{x}(c)\right]^{r_{1}}+\left[f_{x}(d)\right]^{r_{1}}\right)^{\frac{2}{r_{1}}} \\
& +\frac{1}{2}\left(\frac{r_{2}}{r_{2}+2}\right)^{\frac{2}{r_{2}}}\left(\left[g_{x}(c)\right]^{r_{2}}+\left[g_{x}(d)\right]^{r_{2}}\right)^{\frac{2}{r_{2}}}
\end{aligned}
$$

or

$$
\begin{aligned}
\frac{1}{d-c} \int_{c}^{d} f(x, y) g(x, y) d y \leq & \frac{1}{2}\left(\frac{r_{1}}{r_{1}+2}\right)^{\frac{2}{r_{1}}}\left([f(x, c)]^{r_{1}}+[f(x, d)]^{r_{1}}\right)^{\frac{2}{r_{1}}} \\
& +\frac{1}{2}\left(\frac{r_{2}}{r_{2}+2}\right)^{\frac{2}{r_{2}}}\left([g(x, c)]^{r_{2}}+[g(x, d)]^{r_{2}}\right)^{\frac{2}{r_{2}}}
\end{aligned}
$$

Dividing both side of inequality $(b-a)$ and integrating respect to x on $[a, b]$, we have

$$
\begin{align*}
& \frac{1}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} f(x, y) g(x, y) d y d x \tag{2.5}\\
\leq & \frac{1}{2}\left(\frac{r_{1}}{r_{1}+2}\right)^{\frac{2}{r_{1}}}\left(\frac{1}{(b-a)} \int_{a}^{b}[f(x, c)]^{r_{1}} d x+\frac{1}{(b-a)} \int_{a}^{b}[f(x, d)]^{r_{1}} d x\right)^{\frac{2}{r_{1}}} \\
& +\frac{1}{2}\left(\frac{r_{2}}{r_{2}+2}\right)^{\frac{2}{r_{2}}}\left(\frac{1}{(b-a)} \int_{a}^{b}[g(x, c)]^{r_{2}} d x+\frac{1}{(b-a)} \int_{a}^{b}[g(x, d)]^{r_{2}} d x\right)^{\frac{2}{r_{2}}}
\end{align*}
$$

By a similar argument, we have

$$
\begin{align*}
& \frac{1}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} f(x, y) g(x, y) d y d x \tag{2.6}\\
\leq & \frac{1}{2}\left(\frac{r_{1}}{r_{1}+2}\right)^{\frac{2}{r_{1}}}\left(\frac{1}{(d-c)} \int_{c}^{d}[f(a, y)]^{r_{1}} d y+\frac{1}{(d-c)} \int_{c}^{d}[f(b, y)]^{r_{1}} d y\right)^{\frac{2}{r_{1}}} \\
& +\frac{1}{2}\left(\frac{r_{2}}{r_{2}+2}\right)^{\frac{2}{r_{2}}}\left(\frac{1}{(d-c)} \int_{c}^{d}[g(a, y)]^{r_{2}} d y+\frac{1}{(d-c)} \int_{c}^{d}[g(b, y)]^{r_{2}} d y\right)^{\frac{2}{r_{2}}}
\end{align*}
$$

Addition (2.5) and (2.6), we can write

$$
\begin{aligned}
& \frac{1}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} f(x, y) g(x, y) d y d x \\
\leq & \frac{1}{4}\left(\frac{r_{1}}{r_{1}+2}\right)^{\frac{2}{r_{1}}}\left(\frac{1}{(b-a)} \int_{a}^{b}[f(x, c)]^{r_{1}} d x+\frac{1}{(b-a)} \int_{a}^{b}[f(x, d)]^{r_{1}} d x\right)^{\frac{2}{r_{1}}} \\
& +\frac{1}{4}\left(\frac{r_{2}}{r_{2}+2}\right)^{\frac{2}{r_{2}}}\left(\frac{1}{(b-a)} \int_{a}^{b}[g(x, c)]^{r_{2}} d x+\frac{1}{(b-a)} \int_{a}^{b}[g(x, d)]^{r_{2}} d x\right)^{\frac{2}{r_{2}}} \\
& +\frac{1}{4}\left(\frac{r_{1}}{r_{1}+2}\right)^{\frac{2}{r_{1}}}\left(\frac{1}{(d-c)} \int_{c}^{d}[f(a, y)]^{r_{1}} d y+\frac{1}{(d-c)} \int_{c}^{d}[f(b, y)]^{r_{1}} d y\right)^{\frac{2}{r_{1}}} \\
+ & \frac{1}{4}\left(\frac{r_{2}}{r_{2}+2}\right)^{\frac{2}{r_{2}}}\left(\frac{1}{(d-c)} \int_{c}^{d}[g(a, y)]^{r_{2}} d y+\frac{1}{(d-c)} \int_{c}^{d}[g(b, y)]^{r_{2}} d y\right)^{\frac{2}{r_{2}}}
\end{aligned}
$$

which completes the proof.

Corollary 2. In 2.4, if we choose $r_{1}=r_{2}=2$, we have

$$
\begin{aligned}
& \frac{1}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} f(x, y) g(x, y) d y d x \\
\leq & \frac{1}{8(b-a)}\left(\int_{a}^{b}[f(x, c)]^{2} d x+\int_{a}^{b}[f(x, d)]^{2} d x+\int_{a}^{b}[g(x, c)]^{2} d x+\int_{a}^{b}[g(x, d)]^{2} d x\right) \\
& +\frac{1}{8(d-c)}\left(\int_{c}^{d}[f(a, y)]^{2} d y+\int_{c}^{d}[f(b, y)]^{2} d y+\int_{c}^{d}[g(a, y)]^{2} d y+\int_{c}^{d}[g(b, y)]^{2} d y\right)
\end{aligned}
$$

Corollary 3. In 2.4), if we choose $r_{1}=r_{2}=2$, and $f(x, y)=g(x, y)$, we have

$$
\begin{aligned}
& \frac{1}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} f(x, y)^{2} d y d x \\
\leq & \frac{1}{4(b-a)}\left(\int_{a}^{b}[f(x, c)]^{2} d x+\int_{a}^{b}[f(x, d)]^{2} d x\right)+\frac{1}{4(d-c)}\left(\int_{c}^{d}[f(a, y)]^{2} d y+\int_{c}^{d}[f(b, y)]^{2} d y\right)
\end{aligned}
$$

Theorem 7. Suppose that $f, g: \Delta \rightarrow \mathbb{R}_{+}$be co-ordinated r_{1}-convex function and co-ordinated r_{2}-convex function on Δ. Then one has the inequality:

$$
\begin{align*}
& \frac{1}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} f(x, y) g(x, y) d y d x \tag{2.7}\\
\leq & \frac{1}{2}\left(\frac{1}{2(b-a)} \int_{a}^{b}[f(x, c)]^{r_{1}} d x+\frac{1}{2(b-a)} \int_{a}^{b}[f(x, d)]^{r_{1}} d x\right)^{\frac{1}{r_{1}}} \\
& \times\left(\frac{1}{2(b-a)} \int_{a}^{b}[g(x, c)]^{r_{2}} d x+\frac{1}{2(b-a)} \int_{a}^{b}[g(x, d)]^{r_{2}} d x\right)^{\frac{1}{r_{2}}} \\
& +\frac{1}{2}\left(\frac{1}{2(d-c)} \int_{c}^{d}[f(a, y)]^{r_{1}} d y+\frac{1}{2(d-c)} \int_{c}^{d}[f(b, y)]^{r_{1}} d y\right)^{\frac{1}{r_{1}}} \\
& \times\left(\frac{1}{2(d-c)} \int_{c}^{d}[g(a, y)]^{r_{2}} d y+\frac{1}{2(d-c)} \int_{c}^{d}[g(b, y)]^{r_{2}} d y\right)^{\frac{1}{r_{2}}}
\end{align*}
$$

where $r_{1}>1$ and $\frac{1}{r_{1}}+\frac{1}{r_{2}}=1$.
Proof. Since $f, g: \Delta=[a, b] \times[c, d] \rightarrow \mathbb{R}_{+}$is co-ordinated $r_{1}-$ convex and $r_{2}-$ convex on Δ. Then the partial mappings

$$
f_{x}:[c, d] \rightarrow \mathbb{R}_{+}, f_{x}(v)=f(x, v)
$$

and

$$
f_{y}:[a, b] \rightarrow \mathbb{R}_{+}, f_{y}(u)=f(u, y)
$$

are r_{1}-convex on Δ. On the other hand the partial mappings

$$
g_{x}:[c, d] \rightarrow \mathbb{R}_{+}, g_{x}(v)=g(x, v)
$$

and

$$
g_{y}:[a, b] \rightarrow \mathbb{R}_{+}, g_{y}(u)=g(u, y)
$$

are $r_{2}-$ convex on Δ. From (1.3), we can write

$$
\begin{aligned}
& \frac{1}{d-c} \int_{c}^{d} f(x, y) g(x, y) d y \\
\leq & \left(\frac{[f(x, a)]^{r_{1}}+[f(x, b)]^{r_{1}}}{2}\right)^{\frac{1}{r_{1}}}\left(\frac{[g(x, a)]^{r_{2}}+[g(x, b)]^{r_{2}}}{2}\right)^{\frac{1}{r_{2}}}
\end{aligned}
$$

Integrating this inequality respect to x on $[a, b]$, we get

$$
\begin{align*}
& \frac{1}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} f(x, y) g(x, y) d y d x \tag{2.8}\\
\leq & \left(\frac{1}{2(b-a)} \int_{a}^{b}[f(x, c)]^{r_{1}} d x+\frac{1}{2(b-a)} \int_{a}^{b}[f(x, d)]^{r_{1}} d x\right)^{\frac{1}{r_{1}}} \\
& \times\left(\frac{1}{2(b-a)} \int_{a}^{b}[g(x, c)]^{r_{2}} d x+\frac{1}{2(b-a)} \int_{a}^{b}[g(x, d)]^{r_{2}} d x\right)^{\frac{1}{r_{2}}}
\end{align*}
$$

Similarly, we can write

$$
\begin{align*}
& \frac{1}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} f(x, y) g(x, y) d y d x \tag{2.9}\\
\leq & \left(\frac{1}{2(d-c)} \int_{c}^{d}[f(a, y)]^{r_{1}} d y+\frac{1}{2(d-c)} \int_{c}^{d}[f(b, y)]^{r_{1}} d y\right)^{\frac{1}{r_{1}}} \\
& \times\left(\frac{1}{2(d-c)} \int_{c}^{d}[g(a, y)]^{r_{2}} d y+\frac{1}{2(d-c)} \int_{c}^{d}[g(b, y)]^{r_{2}} d y\right)^{\frac{1}{r_{2}}}
\end{align*}
$$

Adding (2.8) and (2.9), (2.7) is proved.
Corollary 4. In (2.7), if we choose $r_{1}=r_{2}=2$, we have

$$
\begin{align*}
& \frac{1}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} f(x, y) g(x, y) d y d x \tag{2.10}\\
& \leq \frac{1}{2} \sqrt{\frac{1}{2(b-a)} \int_{a}^{b}[f(x, c)]^{2} d x+\frac{1}{2(b-a)} \int_{a}^{b}[f(x, d)]^{2} d x} \\
& \quad \times \sqrt{\frac{1}{2(b-a)} \int_{a}^{b}[g(x, c)]^{2} d x+\frac{1}{2(b-a)} \int_{a}^{b}[g(x, d)]^{2} d x} \\
& \quad+\frac{1}{2} \sqrt{\frac{1}{2(d-c)} \int_{c}^{d}[f(a, y)]^{2} d y+\frac{1}{2(d-c)} \int_{c}^{d}[f(b, y)] d y} \\
& \quad \times \sqrt{\frac{1}{2(d-c)} \int_{c}^{d}[g(a, y)]^{2} d y+\frac{1}{2(d-c)} \int_{c}^{d}[g(b, y)]^{2} d y}
\end{align*}
$$

Corollary 5. In 2.7), if we choose $r_{1}=r_{2}=2$, and $f(x, y)=g(x, y)$, we have

$$
\begin{align*}
& \frac{1}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} f(x, y)^{2} d y d x \tag{2.11}\\
\leq & \frac{1}{4(b-a)}\left[\int_{a}^{b}[f(x, c)]^{2} d x+\int_{a}^{b}[f(x, d)]^{2} d x\right] \\
& +\frac{1}{4(d-c)}\left[\int_{c}^{d}[f(a, y)]^{2} d y+\int_{c}^{d}[f(b, y)]^{2} d y\right]
\end{align*}
$$

References

[1] C.E.M. Pearce, J. Pecaric, V. Simic, Stolarsky Means and Hadamard's Inequality, Journal Math. Analysis Appl., 220, 1998, 99-109.
[2] G.S. Yang, D.Y. Hwang, Refinements of Hadamard's inequality for r-convex functions, Indian Journal Pure Appl. Math., 32 (10), 2001, 1571-1579.
[3] N.P.G. Ngoc, N.V. Vinh and P.T.T. Hien, Integral inequalities of Hadamard-type for r-convex functions, International Mathematical Forum, 4, 2009, 1723-1728.
[4] P.M. Gill, C.E.M. Pearce and J. Pecaric, Hadamard's inequality for r-convex functions, Journal of Math. Analysis and Appl., 215, 1997, 461-470.
[5] S.S. Dragomir, On Hadamard's inequality for convex functions on the co-ordinates in a rectangle from the plane, Taiwanese Journal of Math., 5, 2001, 775-788.
[6] M. Alomari, M. Darus, On the Hadamard's inequality for Log-convex functions on the coordinates, Journal of Inequalities and Appl., 2009, article ID 283147.
[7] M.K. Bakula, J. Pecaric, On the Jensen's inequality for convex functions on the co-ordinates in a rectangle from the plane, Taiwanese Journal of Math., 5, 2006, 1271-1292.
[8] M.A. Latif, M. Alomari, On Hadamard-type ineaqualities for h-convex functions on the coordinates, Int. Journal of Math. Analysis, 33, 2009, 1645-1656.
[9] M. Alomari, M. Darus, Co-ordinated s-convex functions in the first sense with some Hadamard-type inequalities, Int. Journal Contemp. Math. Sci., 32, 2008.
[10] M. Alomari, M. Darus, The Hadamard's inequality for s-convex functions of 2 -variables, Int. Journal of Math. Analysis, 2(13), 2008, 629-638.
[11] M.E. Özdemir, E. Set, M.Z. Sarıkaya, Some new Hadamard's type inequalities for coordinated m-convex and (α, m)-convex functions, Submitted.
[12] M.A. Latif, M. Alomari, Hadamard-type inequualities for product two convex functions on the co-ordinates, Int. Math. Forum, 4, 2009, 2327-2338.

■ Ağri İbrahim Çeçen University, Department of Science and Arts, 04100, Ağri, Turkey
E-mail address: ahmetakdemir@agri.edu.tr
^ Atatürk University, K. K. Education Faculty, Department of Mathematics, 25240, Campus, Erzurum, Turkey

