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Abstract

In this paper we present a complete description of a stochastic
semigroup of finite-dimensional projections in Hilbert space. The
geometry of such semigroups is characterized by the asymptotic be-
havior of the widths of compact subsets with respect to the subspaces
generated by the semigroup operators.
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1 Introduction.

This paper is devoted to a very special type of stochastic operator-valued semi-
groups, namely to semigroups of finite-dimensional projections. The study of
stochastic operator-valued semigroups was originated from the works of A.V.
Skorokhod [1,2], where he gave a representation of such a semigroup as a so-
lution to a stochastic differential equation with an operator-valued martingale
or with a process with independent increments. Skorokhod treated stochastic
operator-valued semigroup as the Dolean exponent for some operator-valued
martingale. This approach requires that the mean operators have continuous
inverse. Semigroups of finite-dimensional projections, which we study in this
paper, do not satisfy this condition. Moreover, the nature of semigroups of
finite-dimensional projections is different from those studied in [1,2]. They arose
as operators describing shifts of functions or measures along a stochastic flow.
In [2] A.V.Skorokhod briefly noted that in the case when a stochastic flow is
generated by a stochastic differential equation, such semigroups must satisfy a
stochastic differential equation with unbounded operators in coefficients, but
detail investigation was not provided.

Stochastic flows with coalescence in general can not be represented as a so-
lution to a stochastic differential equation. An example of such flows is the
Arratia flow of Brownian particles [4]. It is a partial case of so-called Harris
flows [5], which consist of Brownian particles with spatial correlation depending

1

http://arxiv.org/abs/1009.4096v1


on the difference between the positions of the particles. In contrast to the flows
generated by stochastic differential equations such flows can lose the gomeo-
morphic property [5]. Moreover, the Arratia flow maps every bounded interval
into a finite number of points. Consequently, for the investigation of coaleshing
stochastic flows we can not apply the tools from differential geometry used for
smooth stochastic flows (about smooth stochastic flows see [6]).

One of the possible approaches to the understanding of the geometry of
stochastic flows with coalescence is the investigation of random operators de-
scribing shifts of functions or measures along a flow. It will be shown in the next
section that such random operators can have a finite-dimensional image almost
surely and be unbounded. The corresponding semigroup can have a compli-
cated structure. So in this article we propose to consider a stochastic semigroup
consisting from finite-dimensional projections. It occurs that such a semigroup
in Hilbert space can be described in terms of a certain random Poisson measure
on the product of the positive half-line and some orthonormal basis (Theorem
3.1). The geometry of such semigroup can be characterized in terms of widths
of compact sets with respect to it. The asymptotic behavior of such widths for
two types of compacts we establish in Section 4. The study of the semigroup
related to a stochastic flow with coalescence in the general case is the subject
to the ongoing work.

2 Random projections in Hilbert space.

Let us recall the definition of the random operator. Let H be a real separable
Hilbert space with an inner product (., .) and L2(Ω, P,H) be the space of square-
integrable random elements in H .

Definition 2.1. Strong random operator in H is a continuous linear map
from H to L2(Ω, P,H) .

In this section we will consider a special case of the strong random opera-
tors. Namely we will consider finite-dimensional random projections. They are
bounded random operators.

Definition 2.2. A strong random operator A is a bounded random
operator if there exists a family {Aω, ω ∈ Ω} of deterministic bounded linear
operators in H such, that

∀x ∈ H : (Ax)ω = Aωx a.s.

Note that boundedness of a strong random operator and finiteness of its image
dimension are not connected, as it is demonstrated in the next example.

Example 2.1. Suppose that H = L2([0; 1]), θ is a random variable
uniformly distributed on [0; 1]. Define a random linear functional on H as follows

H ∋ f 7−→ Φ(f) = f(θ).

Then

EΦ(f)2 =

ˆ 1

0

f(s)2ds.
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Consequently, Φ is continuous in the square-mean. Let us check that Φ is not a
random bounded functional. Suppose, that it is and denote by Φω, ω ∈ Ω the
corresponding family of continuous linear functionals on H . Let us identify the
functional Φω with the function from H for every ω ∈ Ω . Let {fn ∈ H , n ≥ 1}
be a sequence of i.i.d. random variables with a finite second moment when
considered on the standard probability space [0; 1] with the Lebesgue measure.
Suppose also that

ˆ 1

0

f1(s)
2ds = 1,

ˆ 1

0

f1(s)ds = 0.

Then the sequence {Φ(fn), n ≥ 1} is the sequence of i.i.d. random variables.
From the other side

Φ(fn)ω = (fn,Φω) → 0, n → ∞.

This contradiction proves our statement.
In what follows we say that A is a random Hilbert-Schmidt or nuclear or

finite-dimensional operator if the corresponding family {Aω, ω ∈ Ω} consists of
Hilbert-Schmidt, nuclear or finite-dimensional operators. Let us start with a
characterization of random Hilbert-Schmidt operators.

Theorem 2.1. A strong random operator A is a random Hilbert-Schmidt
operator if and only if for some orthonormal basis {en;n ≥ 1} in H

∞
∑

n=1

||Aen||2 < ∞. (1)

Proof. If A is a random Hilbert-Schmidt operator, then the condition of
the theorem holds obviously. Suppose that strong random operator A satisfies
(1). Define a subset Ω0 of the probability space as follows

∀ω ∈ Ω0, α1, ..., αn ∈ R :

n
∑

k=1

αkAek(ω) = A(

n
∑

k=1

αkek)(ω),

∞
∑

n=1

||Aen||2(ω) < ∞.

Now for every ω ∈ Ω0 define a Hilbert-Schmidt operator Aω as follows

Aωx =

∞
∑

n=1

(x, en)(Aen)(ω).

For ω /∈ Ω0 put Aω = 0. Then A satisfies Definition 2.2 with the family
{Aω, ω ∈ Ω}. 0

The previous statement allows us to characterize random finite-dimensional
projections.

Theorem 2.2. Suppose that a strong random operator A satisfies the
condition of Theorem 2.1 and the following conditions hold:

• for all x, y ∈ H (Ax, y) = (Ay, x), (Ax, x) ≥ 0,
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• A = A2.

Then A is a random finite-dimensional projection.
Proof. The proof follows immediately from the well-known characteriza-

tion of projections in a Hilbert space and the fact that any Hilbert-Schmidt
projection is finite-dimensional. 0

Let us consider some examples of random finite-dimensional projections.
Example 2.2. Let n(t), t ∈ [0; 1] be a Poisson process. Denote by

τ1, ..., τν the subsequent jumps of n. The intervals [0; τ1), . . . , [τν ; 1] generate a
finite σ−field A. Define a random operator A in L2([0; 1]) as a conditional ex-
pectation with respect to the σ−field A. Then A is a random finite-dimensional
projection.

Example 2.3. Let (X , ρ) be a Polish space and µ be a probability mea-
sure on the Borel σ−field in X . Consider a measurable map φ : X × Ω 7→ X

such, that for every ω ∈ Ω the image φ(X , ω) contains a finite number of ele-
ments. Define a random operator A in L2(X , µ) as a conditional expectation
with respect to the σ−field generated by φ. Then A is a finite-dimensional
random projection related to φ.

Remark. If the map φ has not the finite image the operator A still will
be well-defined random projection but not finite-dimensional.

3 Semigroups of projections.

In this section we introduce the notion of semigroups of random projections
which is the main object of investigation in the article.

Definition 3.1. A family of random bounded operators {Gs,t, 0 ≤ s ≤
t < ∞} is referred to as a semigroup if the following conditions hold:

1. For any s, t, r ≥ 0 : Gs,t and Gs+r,t+r are equidistributed.

2. For any x ∈ H : E||G0,tx− x||2 7→ 0, n 7→ ∞.

3. For any 0 ≤ s1 ≤ · · · ≤ sn < ∞ : Gs1,s2 ,. . . ,Gsn−1,sn are independent.

4. For any r ≤ s ≤ t : Gr,sGs,t = Gr,t, Gr,r = I, where I is an identity
operator.

To illustrate a connection of the stochastic semigroup with stochastic flows
consider the following example. Suppose, that X is a Polish space. Denote by
M the space of all finite signed measures on the Borel σ−field in X equipped
with the topology of weak convergence. M is a linear topological space.

Definition 3.2. A family of measurable mappings φs,t : X × Ω 7→ X ,
0 ≤ s ≤ t < ∞ is referred to as a random flow on X if the following conditions
hold:

• For any 0 ≤ s1 ≤ s2 ≤ . . . sn < ∞ : φs1,s2 ,. . . ,φsn−1,sn are independent.

• For any s, t, r ≥ 0 : φs,t and φs+r,t+r are equidistributed.
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• For any r ≤ s ≤ t and u ∈ X : φr,sφs,t(u) = φr,t(u), φr,r is an identity
map.

• For any u ∈ X : φ0,t(u) 7→ u in probability when t 7→ 0.

Example 3.1. Suppose that the random flow {φs,t, 0 ≤ s ≤ t < ∞} on X
has the following additional property. For any t the function φ0,t is continuous
with probability one. Define the operator Gs,t in M by the formula

Gs,t(µ) = µφ−1
s,t .

It can be easily checked that the family {Gs,t, 0 ≤ s ≤ t < ∞} satisfies the
analog of Definition 3.1 for a linear topological space.

In the next example we consider a semigroup of random finite-dimensional
projections in Hilbert space.

Example 3.2. Let H be Hilbert space with an orthonormal basis {ek, k ≥
1}. Consider the sequence {nk, k ≥ 1} of independent Poisson processes with
intensities {λk, k ≥ 1}. Suppose that

∀ρ > 0 :

∞
∑

k=1

exp(−ρλk) < +∞ (2)

Define for every k ≥ 1 and 0 ≤ s ≤ t

νks,t =

{

0, nk(t)− nk(s) > 0,

1, nk(t)− nk(s) = 0.

Finally define the projection Gs,t as follows

Gs,t(u) =

∞
∑

k=1

(u, ek)ν
k
s,tek.

Condition (2) implies that Gs,t is a finite-dimensional projection with prob-
ability one. The conditions of Definition 3.1 trivially hold.

The next lemma shows that deterministic semigroup of finite-dimensional
projections does not exist.

Lemma 3.1. Suppose that {Gt, 0 ≤ t < ∞} is a strongly continuous
semigroup of bounded operators in separable Banach space B. Assume that
dimGt(B) < ∞ for every t > 0. Then dimB < ∞.

Proof. Define the function ν(t) = dimGt(B), t > 0. It is clear that this
function is decreasing, takes integer values and

lim
t→0

ν(t) = +∞.

Let t0 be a positive point of jump for the function ν. Then there exists a nonzero
element x ∈ Gt0(B) such that x /∈ Gt(B) for all t > t0. Since {Gt, 0 ≤ t < ∞} is
a semigroup, then for arbitrary s > 0 Gs(x) = 0. This contradicts to the strong

continuity of G. 0
5



Actually Example 3.2 describes the unique possibility of the construction of
the semigroup of random finite-dimensional projections in Hilbert space.

Theorem 3.1. Let {Gs,t, 0 ≤ s ≤ t < ∞} be a semigroup of random
finite-dimensional projections in separable Hilbert space H. Then there exists
an orthonormal basis {ek, k ≥ 1} in H and Poisson processes {nk, k ≥ 1} which
have jointly independent increments, such that

Gs,t(u) =

∞
∑

k=1

(u, ek)ν
k
s,tek,

where for every k νks,t is built from nk exactly in the same way as in Example
3.2.

Proof. Consider two projections R1, R2 in H such that their product
Q = R1R2 is a projection. Then R2R1 = R1R2. To check this relation introduce
the notations Ri(H) = Li, i = 1, 2. Suppose, that u ∈ H is such that ||u|| =
||R1R2u||. Then ||u|| = ||R2u||, ||u|| = ||R1u|| i.e. u ∈ L1 ∩ L2. This means
that Q is a projection on L1 ∩ L2. Since the subspace L2 can be represented
as L2 = L

′

2 ⊕ L1 ∩ L2, then R1(L
′

2) = {0}. This imply that R2R1 = R1R2.
Now consider the semigroup {Gs,t, 0 ≤ s ≤ t < ∞}. From the definition of
the semigroup and the previous considerations one can conclude that for every
s1 ≤ s2 ≤ s3 the operators Gs1,s2 and Gs2,s3 commute with probability one.
Since the space H is separable, then there exists a sequence {△kn; k, n ≥ 1} of
increasing partitions of the probability space which generates σ(Gs1,s2) . The
following integrals define bounded operators in H

Qkn
s1,s2

u =
1

P (△kn)

ˆ

△kn

Gs1,s2uP (dω), u ∈ H.

The norm of Qkn
s1,s2

is less or equal to one. Consider the following random
operators

Gn
s1,s2

=

∞
∑

k=1

Qkn
s1,s2

1△kn
, n ≥ 1.

It can be easily checked that for every u ∈ H with probability one

Gn
s1,s2

u → Gs1,s2u, n → ∞.

The random operators Gn
s1,s2

take commuting values. Namely, for the arbitrary
k, n, s1, s2 and l, m, t1, t2 we have

Qkn
s1,s2

Qlm
t1,t2

= Qlm
t1,t2

Qkn
s1,s2

.

To prove this relation note that the values of Qkn
s1,s2

depend only from the
distribution of Gs1,s2 . Consequently, it is enough to consider the case, when
0 = s1 < s2 = t1 < t2 = s2 − s1 + t2 − t1. Now the subsets which we use in the
definition of Qkn

s1,s2
and Qlm

t1,t2
are independent. Hence

ˆ

△kn

Gs1,s2P (dω)

ˆ

△lm

Gt1,t2P (dω) =
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=

ˆ

Ω

Gs1,s2Gt1,t21△kn
1△lm

P (dω)Gs1,s2P (dω) =

=

ˆ

Ω

Gt1,t2Gs1,s21△lm
1△kn

P (dω) =

ˆ

△lm

Gt1,t2P (dω)

ˆ

△kn

Gs1,s2P (dω).

Also note that the operators Qkn
s1,s2

are self-adjoint and non-negative. Con-
sequently, one can build a countable family Γ of commuting self-adjoint non-
negative operators such that random projections Gs1,s2 can be approximated
by random operators with the values from Γ. Let us verify that we can choose
the family Γ in such a way that it consists of the nuclear operators. Since our
projections are finite-dimensional, then for arbitrary s1 ≤ s2

trGs1,s2 < +∞.

Then truncating the sets △kn to their intersections with the sets {trGs1,s2 <
R} one can achieve that the family Γ will consist of the nuclear operators.
Finally denote by {en; n ≥ 1} the orthonormal basis in H which is a common
eighenbasis for all operators from Γ . Denote by Γ̌ the family of all projections
onto subspaces generated by a finite number of the vectors from {en; n ≥ 1}.
Then every operator Gs1,s2takes values in Γ̌.

Now describe a random structure of Gs1,s2 . For the fixed n consider a random
process in H

ξn(t) = G0,ten, t ≥ 0.

By the definition of a random semigroup ξn is a homogeneous Markov process.
From the other side there exists a random moment τn such that

ξn(t) = en, t < τn, ξn(t) = 0, t ≥ τn.

The random moment τn has an exponential distribution with parameter λn.
Define the random measure ν on the product [0; +∞)×N as follows

ν((s; t]× A) =
∑

n∈A

1{Gs,ten=0}.

Note that the measure ν has independent values on the sets which have disjoint
projections on [0; +∞). For arbitrary n ≥ 1 the process {ν((0; t]× n); t ≥ 0} is
Poissonian with the parameter λn. Also note that for arbitrary t > 0

P{∃n0 ∀n ≥ n0 : ξn(t) = 0} = 1.

The theorem is proved. 0
4 Widths of compact sets defined with respect to the semigroups

of projections.

The last statement of the previous section gives us a description of the semi-
groups of random finite-dimensional projections in terms of integer-valued ran-
dom measure. To understand the relationships between this measure and ge-
ometrical properties of the semigroup consider the asymptotic of widths of
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compact sets with respect to the images of the semigroup projections. Let
{Gs,t, 0 ≤ s ≤ t < ∞} be a random semigroup of finite-dimensional projections
and K be a compact subset of H . We will investigate the behavior of the value

ςK(t) = max
x∈K

||x−G0,tx||

as t → 0. The value ςK(t) is exactly the width of K with respect to the lin-
ear subspace G0,t(H) [3]. Theorem 3.1 implies that with probability one G0,t

strongly converges to identity when t → 0. Consequently, with probability one
ςK(t) → 0, t → 0. We will investigate the rate of the convergence. Let us con-
sider the case, when the processes {ξn; n ≥ 1} which arose in the description
of the structure of the semigroup are independent and the compact K has a
simple description in the basis {en; n ≥ 1}.

Example 4.1. Suppose that λn = n, n ≥ 1 and

K = {x : (x, en)
2 ≤ 1

n2
, n ≥ 1}.

Now

ςK(t)2 =

∞
∑

n=1

ξn(t)

n2
.

One can check that

E ςK(t)2 =

∞
∑

n=1

1

n2
(1− exp(−nt)) =

∞
∑

n=1

ˆ t

0

ˆ +∞

s

exp(−nr)drds =

ˆ t

0

ˆ +∞

s

∞
∑

n=1

exp(−nr)drds =

ˆ t

0

ˆ +∞

s

exp(−r)

1− exp(−r)
drds.

Consequently,

E ςK(t)2 =

ˆ t

0

ln(1− exp(−s))ds ∼ tlnt, t → 0.

In the similar way the forth moment can be estimated

E ςK(t)4 = E

∞
∑

i,j=1

ξi(t)ξj(t)

i2j2
=

∞
∑

i=1

1

i4
(1 − exp(−it))+

+

∞
∑

i6=j

1

i2j2
(1−exp(−it))(1−exp(−jt)) = (E ςK(t)2)2+

∞
∑

i=1

1

i4
(1−exp(−it)) exp(−it).

Note that

∞
∑

i=1

1

i4
(1− exp(−it)) exp(−it) ≤

∞
∑

i=1

1

i4
(1− exp(−it)) ≤

∞
∑

i=1

t

i3
= ct.
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Hence
V ςK(t)2 = o(tlnt), t → 0.

Finally, one can conclude that

P − lim
t→0

ςK(t)√
tlnt

= 1.

In the next example we consider another type of compact and the same
semigroup.

Example 4.2. Consider the following compact set

K = {x :

∞
∑

n=1

n2(x, en)
2 ≤ 1}.

For the same semigroup {Gs,t, 0 ≤ s ≤ t < ∞} as in the previous example let
us study the behavior of ςK(t). Now

ςK(t)2 = max
n: ξn(t)=0

1

n2
.

Let us find the expectation

E ςK(t)2 =

∞
∑

n=1

1

n2

n−1
∏

i=1

exp(−it)(1− exp(−nt)) =

∞
∑

n=2

1

n2
exp(−n(n− 1)

2
t)×

×(1− exp(−nt)) + 1− exp(−t).

The asymptotic behavior when t → 0 of the last summand is trivial. To obtain
the estimation from belaw let us rewrite the sum as follows

∞
∑

n=2

1

n2
exp(−n(n− 1)

2
t)(1−exp(−nt)) =

∞
∑

n=2

1

n
exp(−n(n− 1)

2
t)

ˆ t

0

exp(−ns)ds ≥

≥
∞
∑

n=2

1

n
exp(−n(n− 1)

2
t)t exp(−nt) ≥ t

ˆ +∞

2

1

x
exp(−x(x− 1)

2
t− xt)dx.

For arbitrary sufficiently small positive α there exists such positive c that

ˆ +∞

c

1

x
exp(−x(x − 1)

2
t− xt)dx ≥

ˆ +∞

c

1

x
exp(−(

1

2
+ α)x2t)dx =

=

ˆ +∞

c
√

( 1

2
+α)t

1

x
exp(−x2)dx ∼

1

2
ln t, t → 0.

For the upper estimate let us proceed in the same way

∞
∑

n=2

1

n2
exp(−n(n− 1)

2
t)(1−exp(−nt)) =

∞
∑

n=2

1

n
exp(−n(n− 1)

2
t)

ˆ t

0

exp(−ns)ds ≤

9



≤
∞
∑

n=2

1

n
exp(−n(n− 1)

2
t)t ≤ t

ˆ +∞

1

1

x
exp(−x(x− 1)

2
t)dx ≤

≤ t

ˆ c

1

1

x
exp(−x(x− 1)

2
t)dx+ t

ˆ +∞

c

1

x
exp(−(

1

2
− α)x2t)dx =

= t

ˆ c

1

1

x
exp(−x(x − 1)

2
t)dx+ t

ˆ +∞

c
√

( 1

2
−α)t

1

x
exp(−x2)dx ∼

1

2
t ln t, t → 0.

To understand a piecewise behavior of ςK(t) when t → 0 let us introduce a fam-
ily {τn; n ≥ 1} of independent exponentially distributed random variables with
intensities n. Then the sequence of random processes {ξn(t); n ≥ 1} is equidis-
tributed with the sequence {1[0; t](τn); n ≥ 1}. Consequently, for a continuous
strictly decreasing positive function a and a constant c > 0

P{lim inf
t→0

1

ςK(t)a(t)
> c} = P{∃N ∀n ≥ N : min

j=1,...,n
τj > a−1(

n

c
)} =

P{∃N ∀n ≥ N : τn > a−1(
n

c
)}.

The last probability equals to one if and only if the infinite product

∞
∏

n=1

P{τn > a−1(
n

c
)}

converges. This condition is equivalent to the convergence of the series

∞
∑

n=1

P{τn < a−1(
n

c
)} =

∞
∑

n=1

(1− exp(−n)a−1(
n

c
)).

This series converges if and only if

∞
∑

n=1

na−1(
n

c
) < +∞.

This inequality holds simultaneously for all positive c, which means that

lim
t→0

ςK(t)a(t) = 0.

For example, this condition is true for the function

a−1(n) =
1

n2 ln2 n
.

The upper bound can be obtained using the equality

P{ 1

ςK(t)
≥ n} = exp(−n(n− 1)

2
t), n ≥ 2.
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Define a function ϕ by the formula

ϕ(t) =

√

2

t
llnt

for sufficiently small positive t with the usual agreement for lln. Then, taking
tn = qn for some 0 < q < 1 one can get

∞
∑

n=1

P{ 1

ςK(tn)
≥ (1 + ε)ϕ(tn)} < +∞

for any positive ε. Consequently,

lim sup
n→∞

1

ςK(tn)ϕ(tn)
≤ 1.

Since the function ςK is increasing, then for tn+1 < t ≤ tn

1

ςK(t)ϕ(t)
≤ 1

ςK(tn+1)ϕ(tn+1)

ϕ(tn+1)

ϕ(tn)
.

Hence

lim sup
t→0

1

ςK(t)ϕ(t)
≤ 1

q
.

Finally
lim inf
t→0

ςK(t)ϕ(t) ≥ 1.

In general the structure of K can be more complicated and does not allow
an explicit form for ςK(t). In some cases one can have only the estimation for
the Kolmogorov width for K

dn(K) = inf
dimL=n

max
x∈K

ρ(x, K),

where inf is taken over all subspaces L of H, which have the dimension n. From
this reason it is useful to estimate the growth of dimG0,t(H) when t → 0. For
the semigroup from the previous examples such an estimation can be obtained
as follows.

Example 4.3. Define α(t) = dimG0,t(H). Using the random variables
{τn; n ≥ 1} which were defined in Example 4.2 one can check, that

P{α(t) ≥ n} = P{∃ k1 < k2 < . . . < kn : τk1
≥ t, τk2

≥ t, . . . , τkn
≥ t}.

Consequently,

P{α(t) ≥ n} ≤ P{τ1 ≥ t, τ2 ≥ t, . . . , τn ≥ t}+ 1− P{∀ k > n : τk < t} ≤

≤ exp(−nt) + 1−
∞
∏

k=n+1

(1− exp(−kt)) ≤ exp(−nt) +

∞
∑

k=n+1

exp(−kt) ≤

11



≤ exp(−nt) +
exp(−nt)

1− exp(−t)
≤ exp(−nt)(1 + (1− e−1)

1

t
)

for t ∈ (0; t). Taking tk = 1
k
, nk = [(2 + δ)k ln k] for positive δ one can get that

lim sup
k→∞

α( 1
k
)

k ln k
≤ 2.

Here [x] means an integer part of x. Using the monotonicity of α one can con-
clude that with probability one

lim sup
t→0

tα(t)

2| ln t| ≤ 1.

To obtain an estimation from below let us denote

c(t) =

∞
∏

j=1

(1− exp(−jt)) = P{α(t) = 0}.

Note, that

ln c(t) =

∞
∑

j=1

ln(1 − exp(−jt)) ≤ −
∞
∑

j=1

exp(−jt) = − exp(−t)

1− exp(−t)
∼ −1

t
, t → 0.

Consequently,
lim
t→0

t ln c(t) = −1.

Now

P{α(t) < n} =

n−1
∑

k=0

P{α(t) = k} =

∞
∏

j=1

(1− exp(−jt))(1+

+

n−1
∑

k=1

∑

1≤j1<j2<...<jk

k
∏

s=1

exp(−jst)(1− exp(−jst))
−1).

Consider the series

∞
∑

j=2

exp(−jt)(1 − exp(−jt))−1 ≤
ˆ ∞

1

exp(−xt)(1 − exp(−xt))−1dx =

= −1

t
ln(1− exp(−t)).

Hence

P{α(t) < n} ≤
∞
∏

j=1

(1−exp(−jt))

n−1
∑

k=0

1

k!
(exp(−t)(1−exp(−t))−1−1

t
ln(1−exp(−t)))k.

12



Consequently, for arbitrary δ > 1, c > 1 for sufficiently small t

P{α(t) < n} ≤ c(t)cn
1

tn
| ln t|n ≤

≤ exp(−δ

t
+ n ln c+ n| ln t|+ n ln | ln t|).

For β > 2 consider the sequences {tk = 1
k
; k ≥ 1} and {nk = k

β ln k
; k ≥ 2}.

Then
∞
∑

k=2

P{α(tk) < nk} < +∞.

Using the monotonicity of α as above one can get that with probability one

lim inf
t→0

α(t)t| ln t| ≥ 1

2
.
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