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Matrix factorizations via Koszul duality
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Abstract

In this paper we prove a version of curved Koszul duality for Z/2Z-
graded curved (dg) (co)algebras. A curved version of the homological
perturbation lemma is also obtained as a useful technical tool for study-
ing curved (co)algebras and precomplexes.

The results of Koszul duality can be applied to study the dg cat-
egory of matrix factorizations MF(R,W). We show how Dyckerhoff’s
generating results fit into the framework of curved Koszul duality the-
ory. One immediate application is the construction of a free dg algebra
model forMF(R,W). As another application we clarify the relationship
between the Borel-Moore Hochschild homology of curved (co)algebras
and the ordinary Hochschild homology of the category MF(R,W).

The same methods can also be used to study the dg category of
equivariant or graded matrix factorizations. Both the Koszul duality
property and its applications are generalized to include these cases as
well. In particular we obtain an explicit set of (classical) generators
for these categories. Our results in the graded case are closely related
to Seidel’s work on the derived category of coherent sheaves on Calabi-
Yau hypersurfaces via the CY/LG correspondence.
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1. Introduction

1.1. Motivation. Let R be a finitely generated commutative regular local
ring over a ground field k and letW be an element in R. The data of the pair
(R,W) is called a Landau-Ginzburg (LG) model following the terminology
from physics. To the data of a LG model, we can associate a differential
graded (dg) category MF(R,W) consisting of matrix factorizations of finite
rank (see Section 2 for details). Its homotopy category [MF(R,W)] is called
the derived category of matrix factorizations. (For a dg category D we
denote by [D ] its homotopy category.)

Matrix factorizations were first introduced by Eisenbud [6] in the study
of singularity theory. More recently matrix factorizations also appeared as
boundary conditions for B-branes in LG models in topological string the-
ory. In view of mirror symmetry matrix factorizations are mirror dual of
Lagrangians in toric manifolds. The category of graded version of matrix fac-
torizations is intimately related to the derived category of coherent sheaves
on projective hypersurfaces as demonstrated by Orlov [10]. By Costello’s
construction [2] the dg category of matrix factorizations and their Hochschild
chain complexes give rise to an interesting class of open-closed topological
conformal field theories. It is an interesting and difficult question to carry
out explicit computations for his constructions.

1.2. The following fundamental results concerning the structure of the dg
category MF(R,W) were obtained by Dyckerhoff [5] under the assumption
that W has isolated singularities:

— [MF(R,W)] is classically generated by a single object kstab;

— The dg algebra A := EndMF(R,W)(k
stab) is a model for MF(R,W);

— We have HH∗(MF(R,W)) ∼= Jac(W)[dimR].

The notions of classical generators for a triangulated category is recalled in
Section 2. For a dg algebra A and a dg category D we say that A is a dg
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algebra model for D if a certain completion of the category [D ] is equivalent
to the derived category of perfect dg A-modules. We refer to [5] for more
details. Finally Jac(W) denotes the Jacobian ring of W, i.e., the quotient of
R by the ideal generated by the partial derivatives of W.

1.3. To a LG model (R,W) we can also associate a curved algebra RW . Then
the category MF(R,W) can be identified with the dg category of twisted
complexes of finite rank over the curved algebra RW (see Section 2 for de-
tails). We denote the latter category by Twb(RW) where the superscript
"b" is to indicate finite rank. The category of twisted complexes of possibly
infinite rank will be denoted by Tw(RW) which sometimes is also denoted
by MF∞(R,W).

1.4. If the algebra RW were not curved a result of Keller [7] would show
that

HH∗(RW) ∼= HH∗(MF(R,W)).

A natural question is whether this isomorphism remains true in the presence
of curvature. Unfortunately the answer to this question is negative. In fact
it was shown in [4] that HH∗(RW) is always trivial for W 6= 0.

Following ideas of Segal [14], Căldăraru and the author [4] introduced
a modification of the Hochschild chain complex of the curved algebra RW .
This modified complex is called the Borel-Moore Hochschild chain complex
using an analogy with the Borel-Moore complex in algebraic topology. In
this modification we take the space of chains to consist of direct products
of homogeneous chains, instead of the direct sum in the classical definition.
The homology of the Borel-Moore Hochschild chain complex was studied
in [4] where an explicit calculation showed that

HHBM
∗ (RW) ∼= Jac(W)[dimR].

Note that here the ring R does not have to be local.

1.5. The main goal of the current paper is to understand all the results
mentioned above from the perspective of Koszul duality. In particular this
point of view allows us to relate HHBM

∗ (RW) and HH∗(MF(R,W)) directly,
without computing both sides. As another application of Koszul duality we
generalize the results of Dyckerhoff mentioned above to both the orbifold
case and the graded case. The following is a more precise formulation of our
main results.
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1.6. Koszul duality. For an important technical reason we need to dualize
and consider curved coalgebras instead of curved algebras. The main exam-
ple of interest to us is the symmetric coalgebra C := sym(V) on a vector
space V over the ground field k. The curvature is given by a k-linear map
M : C → k. We assume that M vanishes on scalar and linear terms. To
this data we can associate a curved coalgebra denoted by CM. One can also
define dg categories Twb(CM) and Tw(CM) of twisted complexes over CM
whose objects are called matrix cofactorizations. (These constructions are
explained in detail in Section 2).

The k-linear dual of a curved coalgebra CM is a curved algebra. For
example the dual of the symmetric coalgebra sym(V) is the commutative

algebra R := ̂sym(V∨) of formal power series on V expanded at the origin.
The dual of the map M : C → k defines a map W : k → R which gives the
curvature element W ∈ R (the image of 1 ∈ k).
1.7. Let CM be a curved coalgebra as above and let RW be its dual curved al-
gebra. Then the categories Twb(CM) and Twb(RW) = MF(R,W) are related
by an equivalence of dg categories

D : Twb(CM)op → Twb(RW) = MF(R,W)

where the functor D is simply the k-linear dualizing operation (for more
details see Lemma 2.7). Note that this operation does not extend to an
equivalence on infinite rank objects.

1.8. Koszul duality for (curved) coalgebras exhibits a homotopy equivalence
between the categories of twisted complexes over a (curved) coalgebra and
those over the associated cobar algebra. In this context the theory was
developed by Positselski [13]. Note that the classical Koszulness assumption
is not necessary here.

For a (coaugmented) curved coalgebra BM, we can define the associated
cobar dg algebra Ω(BM) and two natural dg functors

Φ : Tw(BM) → Tw(Ω(BM)) and Ψ : Tw(Ω(BM)) → Tw(BM)

between the two categories of twisted complexes (of possibly infinite rank).
Both the cobar construction and the definitions for functorsΦ, Ψ are recalled
in Section 2 where we also prove the following theorem.

1.9. Theorem. Let BM be a coaugmented curved coalgebra and letΩ(BM)

be its cobar dg algebra. Then the functors Φ and Ψ are inverse homotopy
equivalences of dg categories

Tw(BM) ∼= Tw(Ω(BM)).
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If furthermore the coalgebra B is conilpotent, then the dg algebra Ω(BM)

itself is a compact generator for [Tw(Ω(BM))] and Ψ(Ω(BM)) is a compact
generator for [Tw(BM)].

Remark: The above theorem is essentially a special case of results in [13]
where much more general Koszul duality type theorems are obtained by
Positselski. Our proof is simpler and more direct, which results from an
interesting technique for studying curved (co)algebra and precomplexes — a
curved version of the homological perturbation lemma. The main statement
of this lemma is the following. Details can be found in the Appendix A.

1.10. Lemma. Let (i, p,H) be a special homotopy retraction data between

two complexes (L, b)
i
→֒ (M,d). Let δ be a small curved perturbation of

(M,d). Then there exists a perturbed homotopy retraction data (i1, p1, H1)

between the perturbed precomplexes.

1.11. Dyckerhoff’s results in view of Koszul duality. We specialize to
the curved (co)algebra in (1.6), and we will keep these notations until (1.17).
As symmetric coalgebras are conilpotent, all results in Theorem 1.9 apply
to this case. The theorem below shows that Dyckerhoff’s compact generator
kstab comes from Koszul duality. Note that for this identification we do not
need to assume that W has isolated singularities.

1.12. Theorem. The object Ψ(Ω(CM)) is homotopic to a finite rank object
in Twb(CM) which we will still denote by Ψ(Ω(CM)). Hence its k-linear dual
makes sense and can be identified by a homotopy equivalence

DΨ(Ω(CM)) ∼= kstab.

Moreover the dg algebra Ω(CM) is homotopic to Aop where A is the dg
algebra model constructed by Dyckerhoff.

1.13. It does not follow from the above theorem that kstab classically gener-
ates [MF(R,W)]. Indeed it follows from Theorem 1.9 that Ψ(Ω(CM)) always
classically generates the full compact subcategory of Tw(CM), but the sub-
category [Twb(CM)] might not be a compact subcategory of [Tw(CM)] for
general W. See Section 3 for details.

1.14. Theorem. The following statements are equivalent:

(a) W has isolated singularities;

(b) kstab classically generates [MF(R,W)];

(c) [Twb(CM)] is a compact subcategory of [Tw(CM)].
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Remark: It follows from Theorems 1.12 and 1.14 that the dg algebra
Ω(CM) can be taken as a dg algebra model for MF(R,W) when W has
isolated singularities. The advantage of our dg algebra model Ω(CM) is
that it is a free dg algebra. The associated minimal model A∞ algebra of it
is studied in Section 4.

1.15. Hochschild homology. We can also use Koszul duality to clarify
the relationship between the Borel-Moore Hochschild homology of the curved
algebra RW and the ordinary Hochschild homology of MF(R,W). The results
are summarized in the following theorem.

1.16. Theorem. Assume thatW has isolated singularities. Then there are
natural isomorphisms:

HH∗(MF(R,W)) ∼=HH∗(Tw
b(CM)) ∼= HH∗(CM);

HHBM
∗ (RW) ∼= HH∗(CM)∨.

Remark: It is an interesting puzzle to understand why in the second iso-
morphism the Borel-Moore Hochschild homology is naturally the dual of
the Hochschild homology of MF(R,W). This might be explained by a rela-
tionship between Koszul duality and a natural pairing (generalized Mukai-
pairing) on the Hochschild homology.

1.17. LG Orbifolds. In Section 6 we present a generalization of Theo-
rem 1.9 and its applications to the study of LG orbifolds. The main ideas
remain the same. We will work over the field of complex numbers C as we
need to consider characters of groups.

Consider a LG model (R,W) with a finite abelian group G acting on it.
This means that G acts on the algebra R while preserving the functionW. In
this situation, one can consider the dg category of equivariant matrix factor-
izations. Loosely speaking, objects are matrix factorizations with G-actions
and all morphisms are required to be G-equivariant. One can think of this
category as the category of sheaves on a hypothetical orbifold [Spec(RW)/G].
We denote this category by Twb([RW/G]) or MFG(R,W). The main results
proved in Section 6 are summarized in the following theorem.

1.18. Theorem. Assume that W has isolated singularities. Then we have

— The category [Twb([RW/G])] or [MFG(R,W)] is classically generated by
{
kstab ⊗ Cχ | χ is a character for the group G

}

where Cχ denotes the one dimensional representation associated to the
character χ.
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— The smash product dg algebra Ω(CM)♯G is a model for MFG(R,W).

— For the Hochschild homology we have

HH∗(MFG(R,W)) ∼=HH∗(Tw
b([CM/G])) ∼= HH∗(CM♯G);

HHBM
∗ (RW♯G) ∼= HH∗(CM♯G)∨.

Remark: In [4] the vector space HHBM
∗ (RW♯G) was explicitly computed as

HHBM
∗ (RW♯G) = (⊕g∈GHHBM

∗ (RW |g))
G

where RW |g denotes the curved algebra associated to the LG model on the g-
fixed points of Spec(R). The commutative ring involved here is the quotient
of R by the ideal generated by elements of the form f−g(f) and the curvature
is the image of W in this quotient ring.

1.19. Graded matrix factorizations. We still work over the field k = C.
Let C := sym(V) be the symmetric coalgebra and let M : C → k be a dual
potential. This time we consider M to be homogeneous of degree d and
assume that d ≥ 2. The Z-graded dual algebra of C is the (non-complete)
symmetric algebra S := sym(V∨) with the ordinary polynomial grading. The
curvature W =M∨ is homogeneous of degree d.

Such data carries an action of the group G := Z/dZ. Indeed there is a
C∗-action on S (C respectively) induced from the Z-grading and the Z/dZ-
action on S (C respectively) is defined through the natural embedding of
groups i + dZ 7→ ζid, where ζd is a primitive d-th root of unity. As W (M
respectively) has degree d, it is preserved by this G-action.

Consider the smash product algebra SW♯G and its dual coalgebra CM♯G.
One can define a Z-grading on SW♯G (CM♯G) so that it becomes a Z-graded
curved algebra (coalgebra respectively). With respect to this grading, the
curvature term has degree 2. Details of this Z-grading can be found in
Section 7, which is also explained in [4] from a categorical point of view.
Our main results are included in the following theorem.

1.20. Theorem. Assume that W has isolated singularities. Then we have

— The category [MFgr(S,W)] is classically generated by

kstab(d− 1), kstab(d− 2), · · · , kstab

where the shifts in the parentheses are polynomial degree shifts of
graded S-modules.
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— There is a Z-graded smash product algebra Ω(CM)♯G that can be taken
as a dg algebra model for MFgr(S,W).

— For the Hochschild homology we have the following isomorphisms:

HH∗(MFgr(S,W)) ∼=HH∗(Tw
b
Z(CM♯G)) ∼= HH∗(CM♯G);

HHBM
∗ (SW♯G) ∼= HH∗(CM♯G)∨

where the ∨ denotes the graded dual operation.

Remark: This result is in agreement with the results of Orlov [10] on
the relationship between [MFgr(S,W)] and the derived category of coherent
sheaves on the corresponding projective hypersurface defined by W (see
semi-orthogonal decompositions in Section 2 of loc. cit.).

Remark: In the Calabi-Yau situation (when d = dim(V)) Theorem 1.20
is also closely related to the results of Seidel in his unpublished notes [15].
There Seidel obtains an A∞ algebra structure on the vector space ∧∗(V)♯G

as an A∞ algebra model for the category of coherent sheaves. As the homol-
ogy of the dg algebra Ω(CM)♯G in Theorem 1.20 is ∧∗(V)♯G we obtain an
A∞ algebra structure on the same underlying vector space via homological
transfer property. Presumably these two A∞ structures should be at least
homotopic to each other if not the same. The explanation for such a coin-
cidence would again be the (dg version of) the CY/LG correspondence [4].

1.21. The paper is organized as follows. In Section 2 we first recall the basic
constructions in the Koszul duality theory. After that we prove Theorem 1.9.
The (curved) homological perturbation lemma from Appendix A is used in
the proofs.

Sections 3, 4, and 5 are applications of the Koszul duality theory to LG
models. Section 3 is devoted to the study of generators for MF(RW). We
show that the object Ψ(Ω(CM)) is homotopic to a matrix cofactorization
of finite rank and hence we can apply the dualizing functor D. Then it
takes some extra work to match the resulting object with kstab from [5].
In Section 4 we compute the homology of the dg model Ω(CM). We com-
ment on the minimal model A∞ algebra structure and its relationship with
more standard Koszul duality. Section 5 clarifies the relationship between
the Borel-Moore Hochschild homology of the curved algebra RW and the
ordinary Hochschild homology of the category MF(R,W).

In Section 6 we generalize the main results to the case of LG orbifolds.
The results in Theorem 1.18 are proved. Finally, Section 7 deals with the
category of graded matrix factorizations. Theorem 1.20 is proved there.

8



In Appendix A we recall the homological perturbation lemma and prove
the curved version of it. The proof is pretty much the same as that of the
case with no curvature. In Appendix B we construct an explicit special
homotopy between the cobar algebra Ω(C) and its homology ∧∗(V). This
follows from a form of Hodge theory on the cobar complex Ω(C).

1.22. Acknowledgments. I would like to thank my advisor Andrei Căldă-
raru for his continuous support and valuable discussions as well as for reading
the first manuscript of this work. I thank Tony Pantev for his encouragement
and Bernhard Keller for answering several questions. I also thank Damien
Calaque for explaining Koszul duality and Paul Seidel for sharing his unpub-
lished notes. Furthermore I am thankful to Tobias Dyckerhoff and Daniel
Pomerleano for pointing out a mistake in an earlier version of the paper and
also for making interesting comments. Finally I thank Leonid Positselski
for answering numerous questions I had in understanding his curved Koszul
duality paper.

2. Koszul duality for the (co)bar constructions

In this section we recall the bar and cobar constructions and prove a version
of Koszul duality between Z/2Z-graded curved coalgebras and their cobar
algebras. Then we prove some useful properties concerning the derived
categories of cobar algebras. The results proved in this section are essentially
due to Positselski [13], although we give more direct proofs which use the
homological perturbation lemma.

Throughout this section we will work over a base field k. Linear algebra
operations such as tensor product or homomorphism between vector spaces
are all taken over k unless otherwise stated.

2.1. Curved differential graded (dg) algebras. A curved differential
graded (dg) algebra structure on a super vector space A is an associative
algebra structure on A together with an odd linear map d : A→ A and an
even element W ∈ A such that

• d(W) = 0;

• d2(a) = [W,a];

• d(a1a2) = d(a1)a2 + (−1)|a1 |a1d(a2) (Leibniz rule).

Here [−,−] is the graded commutator and |a| is the parity of a. The curved
dg algebra obtained from the data above will be denoted by AW.
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Here is an example of a curved differential graded algebra that will be
of primary interest in this paper. Let V be a finite dimensional vector space

over a field k. Consider the vector space R := ̂sym(V∨) of formal power series
on V expanded at the origin. As a super vector space R is concentrated the
even part. The associative algebra structure is the ordinary multiplication
of power series. The differential is trivial and the curvature element can be
chosen to be any element W ∈ R. One easily checks that this data defines a
curved algebra RW .

2.2. Matrix factorizations. We begin by recalling the definition of the
category Tw(RW) of twisted complexes over this curved algebra RW . The
objects of this category are pairs (E,Q) where E is a Z/2Z-graded free R-
module and Q is an odd R-linear map such that Q2 =W id. The morphism
space between two objects (E,Q) and (F, P) consists of all R-linear maps
from E to F. As such, the Hom space inherits a differential defined by
D(ϕ) = P ◦ ϕ − (−1)|ϕ|ϕ ◦Q. One easily checks that D squares to zero as
W id is in the center of any matrix algebra.

This differential makes the category Tw(RW) into a dg category. Note
that here we allow possibly infinite rank free R-modules in Tw(RW). We
denote by Twb(RW) the full subcategory of Tw(RW) consisting of twisted
complexes that are of finite rank over R. The category Twb(RW) (Tw(RW)

respectively) is sometimes also denoted by MF(R,W) (MF∞(R,W) respec-
tively).

As the category Tw(RW) has a dg structure we can define the notion
of homotopy between morphisms and objects. More precisely, we say two
morphisms f and g are homotopic if f − g is exact. We say two objects E
and F are homotopic if there are morphisms f : E → F and g : F → E such
that f ◦ g is homotopic to idF and g ◦ f is homotopic to idE.

2.3. We mention some terminologies. For a k-linear category C , recall that
a predifferential on a Z/2Z-graded object L is an odd morphism d : L → L

such that d2 lies in the center of EndC (L). The data given by the pair (L, d)
is then called a precomplex. For example a matrix factorization structure Q
on a free R-module E is in particular a predifferential on E over the k-linear
category of R-modules. In general the category of precomplexes can also be
endowed with a dg structure.

2.4. Curved differential graded coalgebras. Dualizing the definition
for curved dg algebras we arrive at the definition for curved dg coalgebras.
A curved dg coalgebra structure on a vector space B is a Z/2Z-graded
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coassociative coalgebra structure on B together with an odd map d : B→ B

and an even map M : B→ k such that

• M ◦ d = 0;

• d2(x) =M(x(1))x(2) − x(1)M(x(2));

• coLeibniz rule.

Here we have used Sweedler’s notation for the coproduct. As before, we
denote the curved coalgebra obtained from the data above by BM.

As an example we work out the dual of the example given in the previous
subsection. Let C := sym(V) be the vector space of symmetric tensors on V .
Again we consider C as a super vector space concentrated in the even part.
There is a natural coalgebra structure on C = sym(V) whose dual algebra is
the commutative algebra R. The differential is trivial again. The curvature
term is any linear map M : C→ k.

2.5. Matrix cofactorizations. One can construct a category Tw(CM) of
twisted complexes over CM. The objects are pairs (E,Q) with E a cofree
C-comodule and Q an odd comodule map on E such that the dual of the
matrix factorization identity holds,

Q2(x) =M(x(1))x(2).

Here we write the coaction map to be ρ(x) =
∑
x(1)⊗ x(2) for x(1) ∈ C (thus

we are using left module structure). The Hom spaces and differentials on
Hom spaces are defined in a similar way as for matrix factorizations. Objects
in Tw(CM) will be called matrix cofactorizations.

As before we can also define a dg structure on Tw(CM) using the fact
that matrix cofactorizations are also precomplexes. The full subcategory of
Tw(CM) consisting of matrix cofactorizations that are of finite rank over C
will be denoted by Twb(CM).

2.6. We recall some useful properties of cofree comodules. First of all we
consider cofree comodules of the form C ⊗ V for some k-vector space V
(possibly infinite dimensional) in the twist construction above. Moreover
in the abelian category A of C-comodules, cofree comodules are injective
objects and hence is closed under direct product in A . For example we
have

∏
(C⊗Vi) ∼= C⊗ (

∏
Vi). A special property for A is that the class of

injective objects is also closed under direct sum in A .
There is a simple relation between the two dg categories Twb(RW) and

Twb(CM), made precise in the following lemma.
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2.7. Lemma. Let RW and CM be as above. Assume that the dual map of
M is W. Define a functor D : Twb(CM) → Twb(RW) given by

(E,Q)
D7→ (E∨,Q∨)

on objects and for any morphism f ∈ HomTw(CM)((E,Q), (F, P))

D(f) := f∨ : (F∨, P∨) → (E∨,Q∨).

Then D is a dg equivalence between Twb(CM)op and Twb(RW).

Proof. Observe that a map h : C→ C of C-comodules is uniquely determined
by its composition with the counit map. Conversely, any linear map α : C→
k defines a map of C-comodules by

C→ C⊗ C α⊗id→ k⊗ C = C.

It is easy to check that this defines an isomorphism between HomC(C,C) and
Homk(C, k) = R. More generally, for two cofree C-comodules E1 = C ⊗ V1
and E2 = C⊗ V2 with V1 and V2 finite dimensional vector spaces over k we
have

HomC(E1, E2) = HomC(C⊗ V1, C⊗ V2) ∼= HomC(C,C)⊗ Homk(V1, V2)

∼= R⊗ Hom(V1, V2).

For the Hom space between DE2 and DE1, we have

HomR((C⊗ V2)∨, (C⊗ V1)∨) = HomR(R⊗ V∨

2 , R⊗ V∨

1 )

= R⊗ Hom(V∨

2 , V
∨

1 ) = R⊗ Hom(V1, V2)

where the first and the last equality follow from V1 and V2 being finite
dimensional. Thus we have verified that the functor D is an equivalence. A
direct computation shows that it also preserves the differential and hence
the lemma is proved.

2.8. The bar and cobar constructions. We first recall the bar construc-
tion for dg algebras. Let A be a unital dg algebra with a k-linear splitting
ǫ : A → k of the unit map. Denote by A+ the kernel of ǫ. The splitting ǫ
induces an isomorphism of k-vector spaces between A and A+ ⊕ k. We will
freely make use of this isomorphism. Moreover we will assume that the map
ǫ is always a map of algebras (but not necessarily of dg algebras) and hence
the space A+ is closed under the product (but not necessarily closed under
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the differential). If the map ǫ also preserves the differential it is called an
augmentation of A.

Given a splitting ǫ the bar construction produces a curved dg coalgebra
B(A) defined as follows. The coalgebra structure is simply the free tensor
coalgebra generated by A+[1]. Explicitly we have

B(A) := T c(A+[1]) = ⊕∞

k=0(A
+[1])⊗k.

The space of coderivations on B(A) can be identified with the space of
linear maps Hom(B(A), A+). The differential d is a coderivation on B(A),
determined by the following two components

A+ ⊗A+ →֒A⊗A ·→ A→ A+;

A+ dA→ A→ A+.

The curvature of B(A) is given by

A+ →֒ A
dA→ A→ k

on the tensor component A+ and zero otherwise. Observe that the curvature
vanishes if and only if the splitting map ǫ is an augmentation.

2.9. Next we explain the cobar construction for curved coalgebras with a
coaugmentation. Let BM be a curved coalgebra and let η : k → B be a
coaugmentation of BM. This boils down to requiring that η splits the counit
map and that it is a map of coalgebras such that

M ◦ η = 0.

Denote by B+ the cokernel of η which can be identified with the kernel of
the counit through the direct sum decomposition B ∼= B+ ⊕ k.

Given a coaugmentation as above, the cobar construction Ω(BM) is a
dg algebra. Explicitly, as an associative algebra Ω(BM) is the free tensor
algebra generated by B+[−1]:

T(B+[−1]) = ⊕∞

k=0(B
+[−1])⊗k.

The differential d is a derivation on Ω(BM), determined by the following
two components

B+ →֒ B→B⊗ B→ B+ ⊗ B+;

B+ →֒ B
M→ k.

13



2.10. An example. We work out an example to illustrate these construc-
tions. Consider the the case of the cocommutative coalgebra C := sym(V)

with curvature given by a map M : sym(V) → k. In order to have a coaug-
mentation, we assume thatM vanishes on scalar terms in C. It follows that
the inclusion of scalars η : k → C is a coaugmentation of CM. Indeed, it
is easy to see that η splits the counit and is a map of coalgebras. The fact
that M ◦ η = 0 follows from our additional assumption that M vanishes on
scalars.

By the above construction Ω(CM) is the free tensor algebra generated
by sym(V)+[−1] with differential given by the sum of two components which
we denote by d+ and d−. The d+ differential comes from the coproduct on
sym(V)+[−1] and d− from the curvatureM. Explicitly d+ and d− are deter-
mined by requiring them to be k-linear and to act on monomials f1, · · · , fk
by

d+(f1|f2| · · · |fk) =
k∑

i=1

(−1)i−1f1| · · · |∆(fi)| · · · |fk,

d−(f1|f2| · · · |fk) =
k∑

i=1

(−1)i−1M(fi)f1| · · · |f̂i| · · · |fk

where ∆ is the reduced coproduct given by

∆(f) =
∑

(g,h)|gh=f,g 6=1,h6=1

g⊗ h.

2.11. Twisting cochains. For a curved dg coalgebra BM and a unital
differential graded algebra A, one can construct a curved dg algebra struc-
ture on the space of k-linear maps Hom(B,A). It is defined by the following
formulas:

• Curvature: W(B,A): B
M→ k

unit→ A;

• Differential: (dϕ)(x) = d(ϕ(x)) − (−1)|ϕ|ϕ(dx);

• Product: (ϕ ∗ψ)(x) = (−1)|x
(1) ||ψ|ϕ(x(1))ψ(x(2)).

A twisting cochain from B to A is an odd element τ ∈ Hom(B,A) such that

τ ∗ τ+ dτ+W(B,A) = 0.
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There are natural twisting cochains associated to the (co)bar constructions.
For a dg algebra A we have a natural map from its bar construction B(A)
to itself given by

τA : B(A) → A+ →֒ A.

For a curved dg coalgebra BM, we have

τBM
: BM → B+ →֒ Ω(BM).

It is easy to verify τA and τBM
are both twisting cochains. The bar-cobar

adjunction
Hom(Ω(C), A) ∼= Tw(C,A) ∼= Hom(C,B(A))

can also generalized to this context with appropriate categories of algebras
and coalgebras [13].

2.12. Correspondence of twisted complexes. One use of twisting
cochains is to define a correspondence between categories of twisted com-
plexes. We work out the this correspondence for a coaugmented curved
coalgebra BM. The proofs can be easily adapted to include more general
cases as well.

2.13. We want to construct dg functors Φ : Tw(BM) → Tw(Ω(BM)) and
Ψ : Tw(Ω(BM) → Tw(BM). We begin by constructing Φ. Let (E,Q) be
a matrix cofactorization over BM (with left B-comodule structure). We
will produce a twisted complex denoted by Φ(E) over the cobar dg algebra
Ω(BM) in the following way. As a vector space over k, it is simplyΩ(BM)⊗E.
The left Ω(BM)-module structure is induced from that of Ω(BM). The
differential on Ω(BM)⊗E is defined using the natural twisting cochain τBM

:

d(x⊗ e) = dx⊗ e+ (−1)|x|x⊗Qe + (−1)|x|+1xτ(y(1))⊗ e(2)

where we have denoted the coaction map ρ : E → B ⊗ E by ρ(e) = y(1) ⊗
e(2) for y(1) ∈ B. One checks that d2 = 0 and that it is compatible with
the left module structure on Φ(E). Hence Φ(E) is a free dg module or
twisted complex over Ω(BM). We sometimes write Φ(E) = Ω ⊗τ E where
the superscript τ is to indicate that we are using the twisting cochain τ to
define the differential on Φ(E).

However note that Φ(E) is of infinite rank whenever B is of infinite
dimension over k. For this reason we need to consider Tw(Ω(BM)) instead
of Twb(Ω(BM)).

For a morphism f : (E,Q) → (F, P) in Tw(BM), define Φ(f) = id⊗f from
Φ(E) to Φ(F). In this way we have defined a functor Φ from Tw(BM) to
Tw(Ω(BM)). One can check that Φ is a dg functor between dg categories.
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2.14. In the reverse direction, if (F, d) is a twisted complex over Ω(BM), we
define a matrix cofactorization Ψ(F) over BM. As a vector space it is B⊗ F.
The left B-comodule structure is induced from that of B and the matrix
cofactorization map is defined by

Q(x⊗ f) = dx⊗ f + (−1)|x|x⊗ df+ x(1) ⊗ τ(x(2))f

where τ(x(2))f is the action of Ω(BM) on F. One checks that Q satisfies the
matrix cofactorization identity and hence defines a twisted complex (again
of infinite rank) over BM. Similarly the above construction extends to the
morphism space and hence defines a dg functor Ψ in the reverse direction.

2.15. As both the categories Tw(BM) and Tw(Ω(BM)) are dg categories,
one can speak of the notion of homotopy between dg functors. Namely we
say a functor F is homotopic to another functor G if they are homotopic
when applied to any object. Hence we can also define the notion of homo-
topy between categories by requiring that there are functors in both ways
such that their compositions are homotopic to the identity functors. The
following theorem is the Koszul duality property for the cobar construction.
Essentially it is duality between the categories of twisted complexes.

2.16. Theorem. The functorsΦ and Ψ are homotopy inverse of each other.
Hence the two categories Tw(BM) and Tw(Ω(BM)) are homotopic.

2.17. We start by showing that the composition Ψ ◦Φ is homotopic to the
identity functor on Tw(BM). For any object (E,Q) ∈ Tw(BM), consider the
morphism ηE between E and ΨΦ(E) = B⊗τ Ω(BM)⊗τ E defined by

E→ B⊗ E →֒ B⊗τ Ω(BM)⊗τ E

where the first map is the coaction map and the second map is simply
putting unit of Ω(BM) on the middle position of B⊗τΩ(BM)⊗τ E. A direct
computation shows that ηE is a map of twisted complexes over BM. We need
the following standard lemma in homological algebra.

2.18. Lemma. Let f : (E,Q) → (F, P) be a closed morphism in Tw(BM).
Define the cone of f to be the matrix cofactorization (E[1] ⊕ F, T) with T
given by the matrix

T =

[
Q 0

f P

]
.

Then f is a homotopy equivalence if and only if cone(f) is contractible.
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2.19. Proof of Lemma 2.18. If cone(f) is contractible, there exists a
morphism H : cone(f) → cone(f) such that

id = [T,H].

Writing H as a matrix [
a b

c d

]
,

after a matrix multiplication, we find that the map b defines a homotopy
inverse of f. A similar consideration works for the reversed direction.

2.20. We apply the above lemma to the morphism ηE constructed above.
The cone cone(ηE) is given by E[1] ⊕ (B ⊗τ Ω(BM) ⊗τ E) with a predif-
ferential D acting on it (D satisfies the matrix cofactorization identity).
This space has a grading by the number of B-tensors it contains. We write
b0[b1| · · · |bl]⊗ e for an element containing l+ 1 B-tensors and e for an ele-
ment with no B-tensors . On these elements the first type of elements the
predifferential D acts by

D := d∆ +Q + dM;

d∆(b0[b1| · · · |bl]⊗ e) :=
l∑

i=0

(−1)ib0[b1| · · · |∆(bi)| · · · |bl]⊗ e

+ b0[b1| · · · |bl|b(1)]⊗ e(2);
Q(b0[b1| · · · |bl]⊗ e) := (−1)l+1b0[b1| · · · |bl]⊗Qe;

dM(b0[b1| · · · |bl]⊗ e) :=
l∑

i=1

(−1)ib0[b1| · · · |M(bi)| · · · |bl]⊗ e.

On elements in E[1] the predifferential D acts by

D := d∆ +Q+ dM;

d∆(e) := b
(1) ⊗ e(2);

Q(e) := Q(e);

dM(e) := 0.

One recognizes that the differential d∆ is simply the cobar resolution of the
B-comodule E

E→ B⊗ E→ B⊗ B+ ⊗ E→ · · ·
which is exact. Moreover since the B-comodule E is cofree (hence injec-
tive) there exists a B-linear homotopy H on the cobar resolution above that
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makes the complex contractible over B. Note that the homotopy reduces
the number of B-tensor components by one.

The homotopy operator H defines a homotopy retraction data (0, 0,H)

between the zero complex and the cobar resolution (see the Appendix A for
details on homological perturbation technique). We also want to require H
to be special, i.e. H2 = 0. This can be achieved by making the following
transformation

H 7→ Hd∆H.

As the maps d∆ are also B-linear, the new special homotopy retraction H is
also B-linear.

2.21. To show that cone(ηE) is contractible, we need to show that there
exists a B-linear homotopy for D. For this, we consider D as obtained from
d∆ by a small perturbation Q + dM. Then apply homological perturbation
lemma to obtain the homotopy for D.

As mentioned earlier, the map D is not really a differential as D2 is not
zero. Thus the ordinary homological perturbation lemma does not apply
to this case. However it is a predifferential, that is D2 is in the center
of B-linear maps from cone(ηE) to itself. In this situation the homological
perturbation lemma can still be applied as is explained in the Appendix A.
The condition that needs to be checked for this to work is summarized in
the following lemma.

2.22. Lemma. The curved perturbation δ := Q+ dM is small. That is we
can define the operator (id−δ ◦H)−1 on cone(ηE). In fact the operator δ ◦H
is locally nilpotent on cone(ηE).

2.23. Proof of Lemma 2.22. For a Z≥0-graded vector space we say an
operator on it is locally nilpotent if for any element of bounded degree it
is nilpotent. In our case, we consider the space cone(ηE) be graded by the
number of B-tensors. Observe that the operator Q preserves the number of
B-tensors while dM reduces the number of B-tensors by one. The homotopy
operator also reduces the number of B-tensors by one. Hence the composi-
tion δ ◦ H strictly reduces the number of B-tensors. So it must be locally
nilpotent by degree consideration. Since δ◦H is a locally nilpotent operator,
one can define the operator (id−δ ◦ H)−1 on the direct sum of each graded
components which is cone(ηE). (Note that it is important here that here
cone(ηE) is a direct sum rather than a direct product.)

It follows from the curved homological perturbation lemma A.4 over the
linear category of B-linear morphisms that there exists a homotopy H1 for
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the operator D. Hence we have finished half of the proof of the theorem,
namely the composition ΨΦ is homotopic to the identity functor on Tw(BM).

2.24. The other half of the proof, the fact that ΦΨ is homotopic to identity
on Tw(Ω(BM)) is relatively easier as we are dealing with actual complexes.
The author learned this argument from Positselski. It is an expanded version
of the proof given in subsection 6.4 in [13]. For an object F ∈ Tw(Ω(BM))

we consider the natural map ǫF : ΦΨ(F) := Ω(BM)⊗τ BM ⊗τ F→ F defined
by

a⊗ 1⊗ f 7→ af

and zero on the other tensors. To show that ǫF is a homotopy equivalence
it suffice to show that the cocone K := cone(ǫF)[−1] is contractible. This dg
module as a vector space is F[−1]⊕Ω(BM)⊗B⊗F. Define a finite decreasing
filtration on it by

F0K := K ⊃ F1K := Ω(BM)⊗ B⊗ F ⊃ F2K := Ω(BM)⊗ B+ ⊗ F ⊃ F3K := 0.

One checks that the differential on K does not preserve this filtration but
sends FiK to Fi−1K. Moreover the induced differential on the associated
graded components agrees with the canonical resolution

0→ Ω(CM)⊗ C+ ⊗ F→ Ω(CM)⊗ k⊗ F→ F→ 0

which is exact. Then we can define a dg Ω(CM)-submodule of K by

L := F2K+ dF2K

where d is the differential on K. It follows from the exactness of the above
short exact sequence that both L and K/L are contractible. In general this
does not imply that K is also contractible. But in our case the dg module
K/L is free as Ω(BM)-modules, which implies that K admits a direct sum
decomposition L⊕K/L as Ω(BM)-modules. Note that this splitting does not
necessarily preserve the differential on K, nevertheless it realizes K as the
cone of a closed map from L[−1] to K/L, which implies that K itself is also
contractible.

Remark: More general Koszul duality statements are studies in [13] be-
tween various types of derived categories. The theory of Koszul duality for
general curved algebras (not necessarily arising as the dual of curved coal-
gebras) is not yet understood. This is the reason why we need to restrict to
curved algebras of the form RW .
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2.25. For a dg category D we denote by [D ] its homotopy category. Recall
that [D ] has the same objects as D , but the morphism spaces between
objects are given by the zeroth cohomology of the morphism spaces in D .
Our next goal is to have an understanding of the category [Tw(Ω(CM))].

It is a well-known fact that for a dg algebra A the category [Tw(A)] is a
triangulated category. However it does not agree with the derived category
of A in general. The reason is that the derived category of A is defined
by the localization of [Tw(A)] with respect to the class of acyclic objects
(dg modules with zero cohomology) which might not be trivial in [Tw(A)].
Specifically, there might exist objects in Tw(A) that are acyclic while not
being contractible. One such example is to take A = k[x]/x2 and E ∈ Tw(A)

to be
· · ·A→ A

·x→ A→ A · · ·
where the maps are all given by multiplication by x.

In the following proposition, we will show that for a coaugmented conil-
potent coalgebra C with curvature term M acyclic objects are the same as
contractible objects in Tw(Ω(CM)). Recall that a coaugmented coalgebra C
is conilpotent if C+ is the union of the kernels of finite iterated coproducts.

2.26. Proposition. Let C be a coaugmented conilpotent coalgebra and
let F be an object in Tw(Ω(CM)). Then F is acyclic if and only if F is
contractible.

Proof. It suffices to prove that if F is acyclic then it is contractible. As F
is an acyclic complex there always exists a contracting homotopy for F over
the field k. Let H be such a k-linear special homotopy of F.

Consider the Koszul dual Ψ(F) = C ⊗τ F. The C-linear map id⊗H de-
fines a special contracting homotopy for the complex (C ⊗ F, id⊗dF). The
predifferential Q on Ψ(F) is given by

Q = id⊗dF + dτ

where the map dτ comes from the natural twisting cochain τ associated with
the curved coalgebra CM. We consider δ := dτ as a curved perturbation of
id⊗dF and apply the curved homological perturbation lemma as in the proof
of the Theorem 2.16.

2.27. Lemma. The curved perturbation δ is small.

This is an immediate consequence of the conilpotency condition on C. In
fact the conilpotency condition implies that δ◦ (id⊗H) is a locally nilpotent
operator.
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Note that all maps involved in the perturbation are C-linear, hence by the
curved homological perturbation lemma A.4 the object Ψ(F) is contractible
in Tw(CM). It follows that the object ΦΨ(F) is also contractible. By Theo-
rem 2.16, ΦΨ(F) is homotopic to F and hence F is also contractible.

2.28. The proposition immediately implies that the dg algebraΩ(CM) itself
is a generator for the triangulated category [Tw(Ω(CM))]. To make a more
precise statement we recall several distinct notions of generators for trian-
gulated categories. We follow the exposition in [1]. Let D be a triangulated
category. A set of objects E := {Ei|i ∈ I} is said to classically generate D

if the smallest triangulated subcategory of D containing E that is closed
under isomorphism and direct summands is equal to D itself. We say that
D is finitely generated if it is classically generated by one object.

The second notion of generation is defined via the orthogonal category
of E . Namely, we say that E weakly generates D if the right orthogonal
E ⊥ is trivial. (The right orthogonal E ⊥ is by definition the full subcategory
of D consisting of objects A such that HomD(Ei[n], A) = 0 for all i and all
n.) It is clear that classical generators are also weak generators. But the
converse is not true in general, often we will drop the adverb ”weak” and
say that E generates D if E weakly generates it.

If furthermore the category D admits arbitrary direct sums one can
define the notion of compactness for objects. In such a category an object E
in D is said to be compact if the functor HomD(E,−) commutes with direct
sums. Denote by Dc the full subcategory consisting of compact objects. We
say that D is compactly generated if Dc generates D . We need the following
result by Ravenel and Neeman [9].

2.29. Theorem. Assume that a triangulated category D admitting arbi-
trary coproduct is compactly generated. Then a set of compact objects
classically generates Dc if and only if it generates D .

2.30. Corollary. Let the notations and assumptions be the same as in
Proposition 2.26. Then the dg-module Ω(CM) is a compact generator for
the category [Tw(Ω(CM))]. Moreover it classically generates the compact
subcategory [Tw(Ω(CM))]c.

Proof. It is clear that the object Ω(CM) is compact. Moreover if F ∈
[Tw(Ω(CM))] is right orthogonal to Ω(CM), it implies that the object F is
acyclic. Then it follows from Proposition 2.26 that F is in fact contractible
hence becomes zero in [Tw(Ω(CM))]. The last assertion follows from Theo-
rem 2.29.
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3. Generators for MF(R,W)

In this section we prove that the image of the cobar algebra Ω(CM) itself
under the Koszul duality functor lies in Twb(CM). Hence its k-linear dual
makes sense and defines a matrix factorization in Twb(RW) = MF(R,W).
Then we identify this object produced by Koszul duality with Dyckerhoff’s
kstab.

In [5] it was shown that object kstab classically generates the category
[MF(R,W)]. The results obtained in this section do not reproduce this gen-
erating theorem by Dyckerhoff, despite Corollary 2.30 and Proposition 3.2.
The problem is that we do not know a priori that finite rank matrix co-
factorizations are compact objects in Tw(CM). In fact we will show in this
section (see Proposition 3.11 that kstab classically generates [MF(R,W)] if
and only if [Twb(CM)] is compact in [Tw(CM)], which is useful in the study
of equivariant or graded matrix factorizations in Sections 6, 7.

Throughout this section, we specialize to the curved coalgebra CM where
C is a symmetric coalgebra and M : C → k is a curvature term that van-
ishes on scalar and linear terms. As symmetric coalgebras with the canonical
coaugmentation are conilpotent coalgebras, hence all the results in the pre-
vious section hold for CM.

3.1. A compact generator for [Tw(CM)]. We explain the main idea
to construct a compact generator for the homotopy category of Tw(CM).
Note that it is clear that in both the category Tw(CM) and Tw(Ω(CM))

arbitrary coproducts exist and hence one can talk about compactness of
objects in these categories.

By Theorem 2.16 the two dg categories Tw(CM) and Tw(Ω(CM)) are
homotopic via the homotopy equivalences Φ and Ψ. Moreover both func-
tors Φ and Ψ preserve coproducts and hence they send compact objects to
compact objects. Being homotopy equivalences the functors Φ and Ψ send
compact generators to compact generators.

By Corollary 2.30 the object Ω(CM) is a compact generator for the
homotopy category [Tw(Ω(CM))]. It follows that the matrix cofactorization
Ψ(Ω(CM)) is a compact generator for the homotopy category of Tw(CM).
We have proved the following result.

3.2. Proposition. The homotopy category of Tw(CM) is compactly gener-
ated by Ψ(Ω(CM)). The same object also classically generates the associated
compact subcategory.

3.3. Next we show that the compact generator Ψ(Ω(CM)) is in fact ho-
motopic to an object of Twb(CM). Again we use the curved homological
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perturbation lemma A.4 to prove this. Using formulas in Paragraph 2.10,
the predifferential Q on Ψ(Ω(CM)) := C ⊗τ Ω(CM) can be split into three
parts defined by

d+(x⊗ y) := x⊗ d+(y);
d−(x⊗ y) := x⊗ d−(y);
dτ(x⊗ y) := x(1) ⊗ τ(x(2))y;

Q := d+ + d− + dτ.

Here we have slightly abused the notation for d+ and d−, but no confusion
should arise. We consider δ := d− + dτ as a curved perturbation for the
operator d+. In Appendix B we construct a special homotopy H between
(∧∗(V), 0) and (Ω(CM), d+) which extends to a special homotopy between

(C⊗∧∗(V), 0) ∼= (C⊗Ω(CM), d+)

by putting id on the C part. (The notion of special homotopy is reviewed
in Appendix A.)

3.4. Lemma. The map i, p and H (again extend by id on the C part)
defines a special homotopy retraction between (C ⊗ ∧∗(V), 0) and (C ⊗
Ω(CM), d+). The curved perturbation δ := d− + dτ is small. In fact, the
operator δ ◦H is locally nilpotent.

Proof. The first half is clear. The second half follows again from degree
considerations. Namely d− reduces the number of tensor components, dτ

reduces the degree of the C part and H reduces the number of tensor com-
ponents.

Remark: It is interesting to observe that if M = 0, one can show that
the perturbed differential is the Koszul differential on the space C⊗∧∗(V),
hence recovering the Koszul complex. In general, d− and its combination
with dτ is responsible for the other part of Q.

3.5. Lemma 3.4 allows us to apply the curved homological perturbation
lemma A.4 to Ψ(Ω(CM)), which shows that Ψ(Ω(CM)) is homotopic to a
matrix cofactorization on C⊗∧∗(V). From now on, we shall slightly abuse
the notation by denoting by Ψ(Ω(CM)) the finite rank matrix cofactorization
obtained via the curved perturbation lemma.

3.6. Relation with Dyckerhoff’s generator kstab. In [5] Dyckerhoff
defined a matrix factorization on R ⊗ ∧∗(V∨) which he denoted by kstab.
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The space kstab is a super space with parity determined by the exterior
degree. The matrix factorization on kstab is defined as follows.

Choose a basis x1, · · · , xn of V∨, and write W in the form
∑n
i=1 xiWi.

Denote the dual basis for V by y1, · · · , yn. Then the matrix map Q∨ is
defined by

Q∨(f⊗ α) := xif⊗yyiα+Wif⊗ xi ∧ α
where yyi denotes the contraction operator and repeated indices are implic-
itly summed.

3.7. As explained above we can get a matrix cofactorization on C⊗∧∗(V)

from Ψ(Ω(CM)) via curved homological perturbation. Applying the functor
D yields a matrix factorization on R ⊗ ∧∗(V∨) which is the same as the
underlying space of kstab. Hence it is natural to ask whether the two matrix
factorizations are the same (homotopic). In the following we identify the
matrix factorization D(Ψ(Ω(CM))) from Koszul duality with Dyckerhoff’s
kstab.

3.8. Proposition. With the notations introduced above we have a homo-
topy equivalence

D(Ψ(Ω(CM))) ∼= kstab

between objects in MF(R,W).

Proof. Since the functor D is an equivalence of categories, we denote by E :=

(E,Q) the matrix cofactorization whose dual is kstab. As Ψ is a homotopy
inverse to Φ, it is enough to prove that

Φ ◦ Ψ(Ω(CM)) ∼= Φ(E).

As shown in the proof of Theorem 2.16 the counit of the adjunction map

Φ ◦ Ψ(Ω(CM))
ǫΩ(CM)

→ Ω(CM)

is a homotopy equivalence. Hence it suffices to show that Φ(E) and Ω(CM)

is homotopic. The object Φ(E) as a vector space is given by Ω(CM)⊗ C⊗
∧∗(V). Define a linear map α from Ω(CM) to Φ(E) by

[f1| · · · |fk] 7→ [f1| · · · |fk]⊗ 1⊗ 1

where the middle 1 is the image of the coaugmentation map of 1 ∈ k. The
last 1 is the unit in ∧∗(V). The map α clear respects the left Ω(CH)-module
structure. Moreover it is a map of complexes as Q vanishes on 1 ⊗ 1 (Q∨

increase the polynomial degree on C, Q must decrease the degree). We use
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homological perturbation to show that α is a homotopy equivalence. Again
we split the differential D on Φ(E) into several parts and use homological
perturbation lemma. Explicitly for an element a ⊗ f ⊗ y ∈ Ω(CM) ⊗ C ⊗
∧∗(V), the map D is the sum of the following four parts:

dΩ(a⊗ f⊗ y) := dΩ(a)⊗ f⊗ y;
dτ(a⊗ f⊗ y) := aτ(f(1))⊗ f(2) ⊗ y;

Q+(a⊗ f⊗ y) := a⊗ ∂f

∂yi
⊗ yi ∧ y;

Q−(a⊗ f⊗ y) := a⊗Di(f)⊗yxi

where yi as before is a basis for the vector space V . The map Di is defined
by

C→ C⊗ C dual of Wi⊗id
→ k⊗ C = C.

The map Q+ is simply the Koszul differential on C ⊗ ∧∗(V). We consider
the differential d := dΩ + Q+ on the underlying vector space of Φ(E) and
the other part δ := dτ + Q− as perturbations of d. One can easily write
down a special homotopy H for the Koszul differential Q+ and extend it
by id on Ω(CM) to give a homotopy retraction data between Ω(CM) and
(Ω(CM)⊗C⊗∧∗(V), d). Then one verifies that the perturbation δ is small
which follows from the conilpotency property of C and the fact that the
curvature M vanishes on scalar and linear terms. Moreover observe that
both H and δ are Ω(CM)-linear and

δ ◦ α = 0,

which implies that the perturbed inclusion is still α and the perturbed dif-
ferential is still dΩ on Ω(CM) by formulas in Appendix A. Hence the propo-
sition is proved.

3.9. In view of the two propositions 3.2, 3.8 above it is plausible to expect
a new proof of the fact that kstab is a generator for [MF(R,W)]. Indeed it is
a direct consequence of these two propositions that kstab weakly generates
[MF(R,W)], i.e. its right orthogonal full subcategory is trivial.

However it does not imply that kstab classically generates [MF(R,W)] as
the category [MF(R,W)] does not admit arbitrary coproducts (and hence
Theorem 2.29 does not apply). The problem here is that the subcate-
gory Twb(CM) might not be compact in Tw(CM). Indeed we show that
this is equivalent to the condition that the object kstab classically generates
[MF(R,W)]. We need the following theorem (which can be found in [9]) that
characterizes compact objects.
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3.10. Theorem. Let D be a triangulated category with arbitrary coprod-
uct. Moreover, assume that D is compactly generated by a set of compact
objects E . Then an object of D is compact if and only if it is a direct
summand of an iterated extension of copies of objects of E shifted in both
directions.

3.11. Proposition. The full subcategory [Twb(CM)] of [Tw(CM)] is com-
pact if and only if kstab ∼= DΨ(Ω(CM)) classically generates [MF(R,W)].

Proof. Assume that [Twb(CM)] is a compact subcategory of [Tw(CM)], i.e.
every object of [Twb(CM)] is compact, then it follows from Theorem 3.10
that the object Ψ(Ω(CM)) in [Twb(CM)] obtained by perturbation classically
generates [Twb(CM)] as it is a compact generator for [Tw(CM)]. Apply the
equivalence functor D implies that DΨ(Ω(CM)) = kstab classically generates
[MF(R,W)].

Conversely, if kstab classically generates [MF(R,W)], by Theorem 3.10
we conclude that objects in [Twb(CM)] can be obtained from Ψ(Ω(CM)) by
taking direct factors of iterated extensions and shifts, which implies that
objects in [Twb(CM)] are compact in [Tw(CM)] as Ψ(Ω(CM)) is a compact
generator.

3.12. We will now show that the homological smoothness of the dg algebra
Ω(CM) implies that the object kstab classically generates [MF(R,W)]. Recall
that a dg algebra A is called homologically smooth if A considered as an
A ⊗ A-bimodule is a perfect object, i.e. it is a direct factor of finite rank
free A⊗A dg-module.

3.13. Proposition. If the dg algebra Ω(CM) is homologically smooth then
the full subcategory [Twb(CM)] of [Tw(CM)] is compact.

Proof. A matrix cofactorization structure on C⊗V is equivalent to aΩ(CM)

dg-module structure on V . Hence it suffices to show that any finite dimen-
sional dg Ω(CM)-module is compact in Tw(Ω(CM)). Homological smooth-
ness implies the existence of resolution of diagonal by a perfect complex of
Ω(CM) ⊗ Ω(CM)-bimodules. Via integral transform it produces a resolu-
tion for any finite dimensional dg module by a perfect complex of Ω(CM)-
modules.

Remark: By proposition 3.8 the dg algebra Ω(CM) is homotopic to the dg
algebra A := EndMF(R,W)(k

stab)op as

Aop ∼= EndTw(CM)(Ψ(Ω(CM))) ∼= EndTw(Ω(CM))(Ω(CM)) = Ω(CM).
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In [5] Dyckerhoff showed that A is homological smooth under the assumption
that W has isolated singularities, but a more direct proof of this fact is not
known. Therefore we have the following implications:

W has isolated singularities

⇒Ω(CM) or A is homologically smooth

⇒[Twb(CM)] is compact in [Tw(CM)]

⇔kstab classically generates [MF(R,W)].

In fact these statements are all equivalent in view of [16].

4. A∞ structures on minimal models.

In this section we study the minimal model A∞ algebras for Ω(CM). As
shown in the previous section, the dg algebra Ω(CM) is homotopy to A :=

EndMF(R,W)(k
stab)op constructed by Dyckerhoff in [5]. The advantage of

Ω(CM) is that it is a free algebra. Some results in the computational aspects
are also presented.

Throughout this section we assume that the curvature M vanishes on
scalar and linear terms. We refer the reader to Appendix A for details on
homological perturbation lemma.

4.1. Preparations for homological perturbation. Recall the algebra
structure of Ω(CM) is the free tensor algebra and the differential d is the
sum of two parts: d+ coming from the coproduct of C and d− coming from
the dual potential H. The formula for these maps are given in Paragraph
2.10 in Section 2. Consider d = d+ +d− as a deformation of the differential
d+. For the differential d+, we have the following quasi-isomorphisms

i : (∧∗(V), 0) → (Ω(C), d+),

and
p : (Ω(C), d+) → (∧∗(V), 0).

where i is the anti-symmetrization map and p is the quotient map. It is
clear that p splits i. Moreover, an explicit (in principal) homotopy H is
constructed in the Appendix B between these two complexes. Namely, we
have

i ◦ p = id+d+H +Hd+.

Moreover, the homotopy H is special, that is

H ◦ i = 0;p ◦H = 0;H2 = 0.
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4.2. To do homological perturbation, we just have to show that the operator
id−δH is invertible for some perturbation δ (d− in our case). This is an
easy consequence from degree considerations. Indeed, the operator δ := d−

reduces the tensor degree by 1 and the operator H := −d∗ ◦G also reduces
the tensor degree by 1. So their composition reduces the tensor degree by 2.
It follows that δH is nilpotent on Ω(C).Thus we have proved the following
lemma.

4.3. Lemma. Let δ be the perturbation operator d− on Ω(CM). The op-
erator δH is locally nilpotent on Ω(CM) and hence id−δH is invertible.

4.4. Homological perturbation. We can apply the homological pertur-
bation technique in the above situation. The perturbed differential on ∧(V)

is again zero. To see this, note that the perturbed differential is given by

b := p ◦ (id−δH)−1 ◦ δ ◦ i.

The requirement that M vanishes on linear terms implies that

δ ◦ i = 0.

Hence b = 0 by the above formula of b. We can summarize the results in
the following corollary.

4.5. Corollary. Let CM be as above and assume that the dual potentialM
vanishes on scalar and linear terms. Then the homology of the dg algebra
Ω(CM) is ∧∗(V).

Remark: If we did not assume thatM vanishes on scalar and linear terms,
then the cobar construction Ω(CM) might be a curved dg algebra. The
scalar part of M controls the curvature term of Ω(CM) while the linear
adds an additional differential on it. Through homological perturbation it
adds a differential on the vector space ∧ ∗ (V).
4.6. A∞ structures. The standard tree formula can be used to transfer the
dg algebra structure on Ω(CM) to an A∞ algebra structure on its homology
∧∗(V). We summarize the computational aspects of this A∞ structure.

IfM vanishes, it is then easy to see that the dg algebra Ω(CM) is formal.
In fact p defined above is an algebra quasi-isomorphism when putting the
exterior algebra structure on ∧∗(V). This is simply the classical Koszul
duality between symmetric algebras and exterior algebras.

If M is only of degree 2, explicit computation can be done in this case.
The result is thatM deforms the exterior product on ∧∗(V) into the Clifford
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product with M the defining quadratic form. This is the standard curved
Koszul duality theory as developed by Polishchuk and Positselski in [12].

The higher degree terms of M is more interesting but also more com-
plicated to compute. It produces the higher multiplications (A∞ algebra
structure) on ∧(V).

Together with the previous remark on scalar and linear terms of M,
we see that each homogeneous components of M nicely corresponds to the
homotopy associative structures on its Koszul dual. It is reasonable to say
that the Koszul dual of CM is in general a (curved) A∞ algebra structure
on ∧∗(V).

5. Hochschild invariants

As another application of Theorem 2.16, we show that one can calculate the
Hochschild homology of MF(RW) using the Borel-Moore Hochschild chain
complex of the curved algebra RW. The latter was introduced and explicitly
computed in [4]. We assume that W has isolated singularities throughout
this section.

5.1. Basic ideas. As mentioned in Section 2, the dg category of matrix
factorizations Twb(RW) is isomorphic as a dg category to Twb(CM)op. As
the Hochschild homology is stable under the opposite operation, we have an
isomorphism

HH∗(Tw
b(RW)) ∼= HH∗(Tw

b(CM)).

IfW has isolated singularities, by Dyckerhoff’s generating result and Propo-
sition 3.11 it follows that [Twb(CM)] is a compact subcategory of [Tw(CM)]

(see Section 3). Thus we have an inclusion of dg categories

Twb(CM) →֒ Tw(CM)c.

Moreover Theorem 3.10 implies that every compact object in Tw(CM) is a
direct factor of an object in Twb(CM) as Ψ(Ω(CM)) ∈ Twb(CM) compactly
generates [Tw(CM)] by Proposition 3.2. This implies the above inclusion of
categories is an equivalence up to factors, which yields

HH∗(Tw
b(CM)) ∼= HH∗(Tw(CM)c)

by Keller’s result [7]. The right hand sided category Tw(CM)c is homotopic
to the category Tw(Ω(CM))c via the coproduct preserving homotopy equiv-
alences Φ and Ψ. As the Hochschild homology is also homotopy invariant,
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we conclude that

HH∗(Tw(CM)c) ∼= HH∗(Tw(Ω(CM))c).

Finally the Hochschild homology of Tw(Ω(CM))c can be calculated by that
of the dg algebra Ω(CM) (again by Keller’s result [7]).

5.2. Combining all these isomorphisms, we conclude that the Hochschild
Homology of Twb(RW) = MF(R,W) is isomorphic to that of the dg algebra
Ω(CM)

HH∗(MF(R,W)) ∼= HH∗(Ω(CM)).

In the following, we relate the vector space HH∗(Ω(CM)) with the Borel-
Moore Hochschild homology of the curved algebra RW .

5.3. The case with vanishing curvature. To relate the Hochschild com-
plex of Ω(CM) to that of the curved algebra RW , we begin with the classical
case where the curvature W is not presented. For this, we first recall the
Hochschild homology of a coalgebra C.

Namely, for a coalgebra C with an coaugmentation, we form the cobar
algebra Ω(C). The Hochschild chain complex C∗(C) is by definition given
by the complex

(Ω(C)⊗τ C⊗τ Ω(C)) ⊗
Ω(C)⊗Ω(C)

Ω(C).

Here the superscript τ on tensor symbol is again to denote the twisted tensor
product using the natural twisting cochain τ. The expression on the left side
of the tensor product is a free Ω(C)-bimodule resolution for the diagonal.

After the tensor product operation, C∗(C) is simply C⊗Ω(C) as a vector
space, but the differential is the sum of the differential from Leibniz rule and
the one from the twisting cochain. To simply our notations, we denote by
C⊗̃Ω(C) the Hochschild complex C∗(C).

5.4. The advantage of this definition of the Hochschild complex is that it is
quite simple to relate it the Hochschild complex of Ω(C). Indeed, the latter
complex is by definition given by

(Ω(C)⊗τ BΩ(C)⊗τ Ω(C)) ⊗
Ω(C)⊗Ω(C)

Ω(C).

Notice that these two complexes only differ by the middle term where twisted
tensor products are formed. The fact that they are quasi-isomorphic follows
from the following classical lemma, see [8] for example.
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5.5. Lemma. Let C1
τ1→ A be a twisting cochain between a dg coalgebra C1

and an dg algebra A. Let C2
γ
→ C1 be a quasi-isomorphism of dg coalgebras.

Then the composition τ2
C2 → C1 → A

is also a twisting cochain. Moreover, for any dg A-module F, the map defined
by

C2 ⊗τ2 F
γ⊗id
→ C1 ⊗τ1 F

is a quasi-isomorphism.

5.6. Apply the lemma to the unit morphism of the adjunction Ω ⊣ B

ηC : C→ BΩ(C)

and the natural twisting cochain BΩ(C) → Ω(C). The fact the ηC is a
quasi-isomorphism is well-know for ordinary (dg) algebras (even non-curved
A∞ algebras).

As a conclusion of the above discussion, we end up with the following
quasi-isomorphism between the two Hochschild complexes,

C∗(C) := C⊗̃Ω(C)
ηC⊗id
→ C∗(Ω(C)) := BΩ(C)⊗̃Ω(C).

5.7. Finally, taking the k-linear dual of the complex C∗(C) yields the Hoch-
schild complex of the algebra R. However, it is important to observe that
we should be getting the direct product Hochschild chain complex of R as
a result of dualizing a direct sum complex. However, there is an obvious Z-
grading on C∗(C) by the number of C tensor components. And the homology
of C is finite with respect to this grading. It follows from this facts that
the Borel-Moore Hochschild homology (the one by taking direct product
complex) and the direct sum Hochschild homology coincides for the algebra
R.

This explains the main point we wan to make. Indeed, in the curved case,
the differential does not preserve the filtration associated to this Z-grading,
and we will always end up with the Borel-Moore Hochschild homology.

5.8. Adding the curvature term. We can add the curvature term W

(or M) into the previous discussion. All the constructions explained above
remain the same as we have already explained the twisting cochain and
the twisted tensor products in the curved case in Section 2. However, the
proof of Lemma 5.5 does not generalize as the coalgebra BΩ(CM) is curved
with noncommutative coproduct. Hence the differential does not square to
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zero in this case. It is even problematic to talk about the notion of quasi-
isomorphism for these coalgebras. Nevertheless, the map ηC ⊗ id remains a
quasi-isomorphism on the associated Hochschild complexes. This is proved
in the following proposition.

5.9. Proposition. The map ηC ⊗ id is a quasi-isomorphism between the
chain complexes C∗(CM) and C∗(Ω(CM)).

Proof. Observe the existence of a Z-grading on the space C∗(CM) by the
number of C tensor components. And define the following Z-grading on the
space BΩ(CM)⊗Ω(CM) by

deg(f1 ⊗ · · · ⊗ fk) := k for an element in Ω(CM);

deg([α1| · · · |αn]⊗ β) := deg(α1) + · · · + deg(αn) + deg(β) − n.

Then one breaks the Hochschild differentials into two parts. The first part
is simply the differential when the curvature is not presented. The second
part is the differential defined by the curvature term M. For simplicity, we
denote them by d+ and d− respectively. (We will not bother to distinguish
them on the two complexes as we will specify the complex when making
statements.) Observe that the first differential increases the degrees defined
above by 1 and the second differential decreases the degree by 1. Hence we
have a morphism of mixed complexes

ηC ⊗ id : (CM⊗̃Ω(CM), d+, d−) → (BΩ(CM)⊗̃Ω(CM), d+, d−).

Through the associated bi-complex of these mixed complexes (details of the
mixed complex technique is explained in [4]), we can conclude that the ηC⊗id

is a quasi-isomorphism as it is so on the E1-page.

Remark: In the proof, it is important that we are dealing with direct
sum complexes and d+ is degree increasing. Because only in this case, the
spectral sequences under consideration starts with the differential d+ for
which we know gives an isomorphism.

5.10. The last step is to dualize the Hochschild complex C∗(CM). It is
easy to see that the Borel-Moore Hochschild complex CBM

∗ (RW) of RW is
quasi-isomorphic to C∗(CM)∨. To see this observe that through the natural
inclusions

R⊗ R+ · · ·R+ ⊗ R+ →֒ (C⊗ C+ · · ·C+ ⊗C+)∨,

we get a map of mixed complexes

CBM
∗ (RW)

i
→֒ (C∗(CM))∨.
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Consider the associated double complexes, it is easy to see that the map
induces an isomorphism on the E1-term by the classical HKR isomorphism.
Hence the inclusion map i is a quasi-isomorphism of mixed complexes. We
summarize the main results in the following proposition.

5.11. Proposition. We have the following isomorphisms:

HH∗(MF(R,W)) ∼=HH∗(Tw
b(CM)) ∼= HH∗(CM);

HHBM
∗ (RW) ∼= HH∗(CM)∨.

Remark: When W has isolated singularities, the vector space HH∗(CM)

is finite dimensional. Moreover, the generalized Mukai pairing induces an
isomorphism of HH∗(Tw

b(RW)) with its dual vector space. In view of the
proposition, it is natural to ask how the Koszul duality phenomena might
be related to the Chern character theory and Riemann-Roch type theorems.
The author would like to return to this aspect in future.

6. Equivariant matrix factorizations

In this section, we study the orbifold version of the Theorem 2.16 and its
applications to the category of equivariant matrix factorizations. Through-
out the section we work over the ground field k = C as we need to consider
characters of groups.

6.1. Orbifold Koszul duality. Let C := sym(V) to be the symmetric
coalgebra over a vector space V and let M : C → k be a linear map on C
that vanishes on scalar and linear terms. Consider a finite abelian group
G acting on C via coalgebra morphisms and that the action preserves the
linear map M, i. e. the composition

C
g
→ C

M→ k

is equal to M for any element g ∈ G.
Given such data we would like to consider the dg category of equivariant

twisted complexes over the curved coalgebra CM. The objects are pairs
(E,Q) where E is a cofree C-comodule with a G-action of the form

E := ⊕iC⊗ Cχi .

Here Cχi denotes the one dimensional G-representation associated to a given
character χi and we allow repeated indices in the direct sum above. The

33



linear map Q is a C-comodule morphism on E which is also G-equivariant.
Moreover Q satisfies the matrix cofactorization identity. The morphism
spaces between objects would be G-equivariant C-comodule maps. We de-
note this category by Tw([CM/G]) to mimic the orbifold notation. As before
we denote by Twb([CM/G]) the full subcategory consisting of finite rank ob-
jects.

Since the cobar construction is functorial, we also have a G-action on the
cobar algebra Ω(CM). Thus we can define the category Tw([Ω(CM)/G]) in
a similar way.

6.2. The Koszul duality functors Φ and Ψ are defined in the same way as
before. Namely, for an equivariant matrix cofactorization (E,Q) define

Φ(E) := Ω(CM)⊗τ E

where Φ(E) inherits the tensor product G-representation. Observe that
the differential on Φ(E) is G-equivariant as the differential on Ω(CM), the
predifferential Q on E and the twisting cochain τ are all equivariant maps.

One easily checks from direct inspection that the functors Φ and Ψ send
equivariant objects to equivariant objects and equivariant morphisms to
equivariant morphisms. Moreover the homotopy constructed to prove that
Φ and Ψ are homotopy inverses can be made G-equivariant by averaging if
necessary. Thus we have shown the following theorem.

6.3. Theorem. The functors Φ and Ψ are homotopy inverses between
Tw([CM/G]) and Tw([Ω(CM)/G]).

6.4. Change of category. To make better use of the above Theorem 6.3,
we first need to make a change of category. Namely, we will switch from
equivariant categories to categories of twisted complexes over a smash prod-
uct algebra. These two types of categories are closely related.

The equivariant category construction can be reduced to the ordinary
twisting construction by the smash product construction. Namely as G
acts on the curved coalgebra CM, we could form the smash product curved
coalgebra CM♯G. As a vector space it is C ⊗ k[G] and the coproduct is
defined by

x⊗ g 7→
∑

g1g2=g

(x(1) ⊗ g1)⊗ (g−11 (x(2))⊗ g2)

The curvature of CM♯G is defined byM on the component C⊗ idG and zero
otherwise.
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6.5. The dg category Tw(CM♯G) is closely related to the equivariant dg
category Tw([CM/G]). Observe that the smash product coalgebra CM♯G

carry natural G-action and CM♯G-linear maps are equivalent to C-linear
maps that are also G-equivariant. Thus the category Tw(CM♯G) is a fully
faithful subcategory of Tw([CM/G]) consists of objects that are free CM♯G-
comodules. Conversely every objects of Tw([CM/G]) is a direct summand
of an object in Tw(CM♯G) through the fully faithful embedding. To see this
observe that for any object (E,Q) ∈ Tw([CM/G]) form the object

g∗(E,Q) := (⊕g∈Gg∗E,⊕g∈Gg∗Q).

One easily checks that g∗(E,Q) is an object of Tw(CM♯G). Such a relation
between the two categories are called equivalence up to factors (from [7]). If
two categories are equivalent up to factors, then lots of properties of them
are the same. For example (classical) generators of the smaller category are
also (classical) generators of the bigger one. It is also proved by Keller [7]
that the Hochschild type invariants are isomorphic for these two categories.

6.6. It is easy to see that Φ and Ψ restrict to homotopy equivalences

Tw(Ω(CM)♯G) ∼= Tw(CM♯G).

We can summarize the previous discussion in the following commutative
diagram.

Tw(Ω(CM)♯G)
Koszul duality−−−−−−−−−−−→ Tw(CM♯G)

yinclusion
yinclusion

Tw([Ω(CM)/G])
Koszul duality−−−−−−−−−−−→ Tw([CM/G]).

The vertical inclusions are all equivalences up to factors.

6.7. Generators. The advantage of the smash product construction is
that it is clear in this description the object Ω(CM)♯G compactly gener-
ates the homotopy category of Tw(Ω(CM)♯G). Indeed for an object F ∈
Tw(Ω(CM)♯G) we have

HomTw(Ω(CM)♯G)(Ω(CM)♯G, F) = HomTw(CM)(Ω(CM), F)

through the inclusion mentioned above. By Corollary 2.30 if the latter is
acyclic, then the dg-module F is contractible over Ω(CM). Averaging the
contracting homotopy yields a contraction over Ω(CM)♯G. Hence arguing
as in Corollary 2.30 shows that the object Ω(CM)♯G compactly generates
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[Tw(Ω(CM)♯G)]. As the categories Tw(Ω(CM)♯G) and Tw([Ω(CM)/G]) are
equivalent up to factors, the objectΩ(CM)♯G (through the inclusion functor)
also compactly generates the homotopy category of the latter one.

Apply the Koszul duality functor Ψ yields compact generators for the
homotopy category of Tw([CM/G]). Moreover, one can easily identify the
generators by observing that the object Ω(CM)♯G when considered as ob-
jects in Tw([Ω(CM)/G]) is isomorphic to the direct sum

⊕χΩ(CM)⊗ Cχ

over the characters of G. Hence its image under Ψ is the direct sum

⊕χΨ(Ω(CM))⊗ Cχ.

Moreover twisting by characters does not change the homology of Ω(CM)χ

and hence Lemma 3.4 still applies, which proves that the objects Ψ(Ω(CM)χ)

are all homotopic to matrix cofactorizations of finite rank. By Proposi-
tion 3.8 the k-linear dual of these cofactorizations yields the following col-
lection of matrix factorizations:

{
kstab ⊗ Cχ | χ is a character for the group G

}
.

6.8. Theorem. Let notations be as above and assume thatW has isolated
singularities. Then the category [MFG(R,W)] is classically generated by
objects of the form kstab ⊗ Cχ defined above.

Proof. It is enough to show that the subcategory [Twb(CM♯G)] is compact
in [Tw(CM♯G)] in view of Proposition 3.11. For this observe that taking
cohomology commutes with taking G-invariants and hence for a finite rank
object E we have

Hom[Tw(CM♯G)](E,⊕Ei) := H0(HomTw(CM♯G)(E,⊕Ei))
= H0(HomTw(CM)(E,⊕Ei))G

= [⊕H0(HomTw(CM)(E, Ei))]
G

= ⊕Hom[Tw(CM♯G)](E, Ei).

Here we have used the fact that E is of finite rank and the group G is
finite, which implies that E viewed as an object in [Tw(CM)] is compact by
Proposition 3.11.
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6.9. Hochschild homology. We argue in the same way as in Section 5.
Again for the Hochschild homology we need to assume that W has isolated
singularities. We have

HH∗(MFG(R,W)) ∼= HH∗(Tw
b([CM/G]))

as these two dg categories are opposite to each other by the k-linear dual
functorD. Since the compact generators Ψ(Ω(CM))⊗Cχ of Tw([CM/G]) lies
inside Twb([CM/G]) which is compact under the assumption of W having
isolated singularities, we have

HH∗(Tw
b([CM/G])) ∼= HH∗(Tw([CM/G])

c) ∼= HH∗(Tw(CM♯G)c)

as these categories are equivalent up to factors. Finally, we invoke the Koszul
duality of the curved coalgebra CM♯G itself to calculate the Hochschild ho-
mology of Tw(CM♯G)c. This gives a homotopy equivalence

Tw(CM♯G)c ∼= Tw(Ω(CM♯G))c

between dg categories. From this homotopy equivalence, we conclude that

HH∗(Tw(CM♯G)c) ∼= HH∗(Tw(Ω(CM♯G))c) ∼= HH∗(Ω(CM♯G))

where the last isomorphism is again by Keller’s result. Combining the above
isomorphisms yields the following isomorphism

HH∗(MFG(R,W)) ∼= HH∗(Ω(CM♯G)).

Then the same proof as in Section 5 implies the following proposition.

6.10. Proposition. Let the notations be as above and assume that W has
isolated singularities. Then we have the following isomorphisms:

HH∗(MFG(R,W)) ∼=HH∗(Tw
b([CM/G])) ∼= HH∗(CM♯G);

HHBM
∗ (RW♯G) ∼= HH∗(CM♯G)∨.

Remark: Explicit computation of HHBM
∗ (RW♯G) has been obtained in [4].

7. Graded matrix factorizations

In this section, we study the category of graded matrix factorizations via
Koszul duality. The main ideas is the same as in the orbifold case. The
results obtained are closely related to the work of Orlov [10] (on the relation-
ship between graded matrix factorizations and derived category of coherent
sheaves) and Seidel [15] (on the A∞ category of coherent sheaves on Calabi-
Yau hypersurfaces). Throughout the section we work over the ground field
k = C.
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7.1. Graded matrix factorizations. For a graded commutative ring S
and a homogeneous curvature elementW ∈ R, one can define the dg category
of graded matrix factorizations MFgr(R,W) (see [4] for a definition). As is
explained in loc. cit. this category is closely related to certain orbifold
construction.

For this we specialize the group G to be Z/dZ. The symmetric algebra
S := sym(V∨) (non-complete) has a Z-grading by the ordinary polynomial
degrees which defines a C∗-action on the vector space S. We consider the
G-action on S as the induced representation by embedding the group G into
C∗ via

i+ dZ 7→ ζid

for ζd := exp(2π
√
−1/d). Moreover we consider a homogeneous curvature

element W ∈ S of polynomial degree d. We will denote by the polynomial
degree of an element f ∈ S by |f|.

Clearly the G-action on S preserves the curvature element W. This
implies that the G-action in fact acts on the curved algebra SW. Thus we
can form the smash product curved algebra SW♯G. Note that this smash
product algebra inherits a Z-grading from that of S. The problem is that
with respect to this grading SW♯G does not form a Z-graded curved algebra
in which the curvature element must be of degree 2.

7.2. A new Z-grading. To fix this problem we need to introduce a new
Z-grading on SW♯G. Note that the underlying vector space of SW♯G is
S⊗k[G]. The group algebra k[G] has a special basis coming from characters
of G. Explicitly we denote by χi for i an integer between [0, d − 1] the
characters of the group G. They are defined by

χi(j + dZ) := (ζd)
i·j.

Then the elements

Uχ :=
1

|G|

∑

g∈G

χ(g)♯g

indexed by characters form an orthogonal idempotent basis for the group
algebra k[G]. Using this basis we can define a new Z-grading on the vector
space S⊗ k[G]. The homogeneous elements are of the form

f⊗Uχj

for some homogeneous polynomial f ∈ S. Define an integer i ∈ [0, d − 1] by

i ≡ j− |f| (mod d).
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Then the new grading of f⊗Uχj is defined by

deg(f⊗Uχj) :=
2

d
(|f| − j + i).

7.3. Relation between TwbZ(SW♯G) and MFgr(S,W). We mention some
important properties for this Z-grading on SW♯G. First of all, as promised
the curvature term W♯ idG has degree 2 with respect to this grading. This
follows the following expression

W♯ idG =
∑

χj

W ⊗Uχj .

Since |W| = d we have i = j and hence

deg(W ⊗Uχj) =
2

d
· |W| =

2

d
· d = 2.

Secondly the category of Z-graded twisted complexes over SW♯G is closely
related to the category of graded matrix factorizations. In fact, it is shown
in [4] that they are equivalent up to factors. (There we considered SW♯G as
a category, then the twist construction would yields in fact an equivalence.
Here we prefer to consider SW♯G as a curved algebra.) Namely, there is an
inclusion

TwbZ(SW♯G) →֒ MFgr(S,W)

which is fully faithful and an equivalence up to factors.

7.4. Dualizing. Next we dualize the Z-graded curved algebra to consider
a Z-graded curved coalgebra CM♯G where C is the symmetric coalgebra
sym(V). We denote the polynomial degree for a homogeneous f ∈ sym(V) by
|f|. If we identify the vector space CM♯G with C♯k[G], then the homogeneous
elements in CM♯G are of the form

f⊗Uχj

and the degree of it is given by

deg(f⊗Uχj) := −
2

d
(|f| − j + i)

for the same i as defined above.
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7.5. With respect to this Z-grading the map M : C → k has degree 2.
Hence it forms a Z-graded curved coalgebra. When forming the category
TwbZ(CM♯G) we do not want to allow arbitrary arbitrary coalgebra maps
but only the direct sums of the homogeneous ones. We introduce a notation
to deal with such situations. Let E be a vector space with a C∗-action, we
denote by Egr the vector space defined by

Egr := ⊕Ei

where Ei is the subspace of E on which C∗ acts by λi. With this notation
we have

HomTwZ(CM♯G)(−,−) := [HomTw(CM♯G)(−,−)]gr.

Then the Z-graded k-linear dual operation D defines an equivalence

TwbZ(CM♯G)op ∼= TwbZ(SW♯G)

between dg categories.

7.6. Z-graded Koszul duality. From the above discussion, we would like
to understand the curved Koszul duality for the Z-graded curved coalgebra
CM♯G. Motivated by the discussion in the orbifold case, we consider the
algebra Ω(CM)♯G. We define a Z-grading on Ω(CM)♯G as follows. The
homogeneous elements are of the form

[f1| · · · |fk]⊗Uχj

for some character χj of the group G. Its degree is defined by

deg([f1| · · · |fk]⊗Uχj) := −
2

d
(
∑

l

|fl|− j+ i) + k

where the integer i ∈ [0, d − 1] is defined by

i ≡ j −
∑

l

|fl| (mod d).

7.7. Define the Z-graded Koszul duality functors by the same formula as
before

E ∈ TwZ(CM♯G)
Φ7→ Ω(C)⊗τ E and

F ∈ TwZ(Ω(CM)♯G)
Ψ7→ C⊗τ F.
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The degrees on Φ(E) can be defined by

deg([f1| · · · |fk]⊗ f0 ⊗Uχj) := −
2

d
(

k∑

l=0

|fl|− j + i) + k

where the integer i ∈ [0, d − 1] is defined by

i ≡ j −
k∑

l=0

|fl| (mod d).

Similar one can also define degrees for Ψ(F). With respect to these gradings
the twisted differentials on Φ(E) or Ψ(F) have degree one. Moreover it is
easy to see that Φ and Ψ are homotopy equivalences by observing that
the homotopy equivalences used in the proof of Theorem 2.16 respects this
grading (the homotopies are of degree −1).

7.8. Theorem. The functors Φ and Ψ are homotopy inverses between dg
categories

TwZ(Ω(CM)♯G) ∼= TwZ(CM♯G).

7.9. Generators. We assume that W has isolated singularities from now
on. One can argue in the same way as in the orbifold case that Ω(CM)♯G

compactly generates [TwZ(Ω(CM)♯G)]. Through the Z-graded Koszul du-
ality functor, Ψ(Ω(CM)♯G) defines a compact generator for [TwZ(CM♯G)].
The same proof as in Section 3 shows that the object Ψ(Ω(CM)♯G) in fact
is homotopic to an object in TwbZ(CM♯G). Thus its k-linear graded dual
object in MFgr(S,W) makes sense.

To identify this object we consider the natural forgetful functor from
TwZ(CM♯G) to Tw(CM♯G). Note that this is well-defined as the new Z-
grading on CM♯G is in 2Z and hence its reduction modulo 2 reduces to the
curved coalgebra CM♯G. Using the forgetful functor we see that as matrix
factorizations the object DΨ(Ω(CM)♯G) is given by

⊕ikstab ⊗ χi.

Through the correspondence

TwbZ(RW♯G) →֒ MFgr(S,W)

defined in [4], twisting by characters χj corresponds to twisting (j) of ordi-
nary graded S-modules. Hence if we assume any lifting of the Z-grading on
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kstab, we conclude that the object DΨ(Ω(CM)) in the category MFgr(S,W)

given by the direct sum of the objects

kstab(d − 1), kstab(d − 2), · · · , kstab.

7.10. Theorem. Let notations be as above and assume that W has iso-
lated singularities. Then the above collection of objects classically generates
[MFgr(R,W)].

Proof. For this it is enough to prove that the category TwbZ(CM♯G) is
compact in TwZ(CM♯G) which follows from the fact that taking cohomology
of a differential of Z-degree 1 commutes with both taking G-invariants and
the operation − 7→ −gr.

Remark: In the CY situation, i.e. when dim(S) = d = deg(W) this col-
lection of generators is in fact well-know in algebraic geometry. They corre-
spond to the collection

OX,OX(1), · · · ,OX(d− 1)

on the CY hypersurface defined by the equation W via CY/LG correspon-
dence.

7.11. Minimal model A∞ algebras. The homology of the dg algebra
Ω(CM)♯G is easily seen to be ∧∗(V)♯G. This latter notation is slightly
misleading because we did not mean the smash product algebra. It is simply
the smash product vector space. The presence of the curvature term puts
A∞ structure on ∧∗(V)♯G via homotopy transfer property.

However this computation quickly gets complicated. The author has not
been able to describe it even in the case of elliptic curves. We mention two
closely related results in these directions. In an unpublished notes [15], Seidel
has obtained the above picture for an A∞ structure on ∧∗(V)♯G via quite
different methods. Explicit calculations for A∞ structures on elliptic curves
have been obtained by Polishchuk in [11], again through other methods. In
latter case even the underlying vector space is different.

7.12. Hochschild homology. In the graded case, the Hochschild homol-
ogy of the dg category MFgr(S,W) can also be related with the Borel-Moore
Hochschild homology of a curved algebra. The proof is the same as the
orbifold case except that we use graded k-linear dualizing functor. We omit
the proof here. The precise results are stated in the following proposition.
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7.13. Proposition. Let the notations be as above and assume that W has
isolated singularities. Then we have the following isomorphisms:

HH∗(MFgr(S,W)) ∼=HH∗(Tw
b
Z([CM/G]))

∼= HH∗(CM♯G);

HHBM
∗ (SW♯G) ∼= HH∗(CM♯G)∨

where the ∨ denotes the graded dual operation.
Remark: Again the groups HHBM

∗ (SW♯G) has been computed in [4] via
certain localization formula. What’s new here is the existence of a Z-grading
on these homology groups. In the Calabi-Yau situation, the dg version of
CY/LG correspondence shows that this computation provides an alternative
way to compute the Hochschild homology of CY hypersurfaces.

A. Curved homological perturbation lemma

In this appendix we recall the homological perturbation technique as studied
in [3]. Then we prove that the homological perturbation lemma remains true
when curvatures are presented. This is useful to study homotopy between
precomplexes.

We will work over a fixed k-linear category over a ground field k. For
the purposes of this paper, we are primarily concerned with the category of
twisted complexes Tw(B) over some coalgebra B.

A.1. Deformation retractions. The homological perturbation technique
deals with perturbations of homotopy equivalences. Let (L, b) and (M,d) be
two complexes. Consider a special type of homotopy equivalence — defor-
mation retractions between them. Explicitly this means maps of complexes

i : (L, b) → (M,d) and p : (M,d) → (L, b)

such that
p ◦ i = idL .

Moreover there is a homotopy H between i ◦ p and idM:

i ◦ p = id+dH+Hd.

The data (i, p,H) is then called a deformation retraction. If in additional
these maps also satisfy

Hi = 0, pH = 0, and H2 = 0, (1)

Then it is called a special homotopy retraction.

43



A.2. Perturbations. A perturbation of the complex (M,d) is an odd map
δ : M → M such that (d + δ)2 = 0. Following the terminologies in [3], we
call δ small if (id−δH) is invertible. For a small perturbation δ, define the
operator

A := (id−δH)−1δ

and define the perturbed homotopy retraction operators by

b1 := b+ pAi, i1 := i+HAi, p1 := p+ pAH, H1 := H+HAH. (2)

Homological perturbation lemma states that the data (i1, p1, H1) defines a
new special deformation retraction between the perturbed complexes (L, b1)
and (M,d+δ). This simple lemma plays an important role in the homotopy
theory of algebras.

A.3. Curved homological perturbation lemma. Next we state and
prove a curved version of the homological perturbation lemma. Namely we
assume the same initial conditions for i, p, H. But for the perturbation, we
do not assume that (d + δ)2 = 0. Instead we assume that that

(d + δ)2 lies in the center of the algebra End(M).

We denote this central element by F ∈ End(M) and call δ a curved pertur-
bation. Note that here End is taken inside a pre-fixed linear category.

The differential d1 := d+δ no longer squares to zero but lies in the center
of End(M). The data (M,d1) is called a precomplex. It is easy to see that the
category of precomplexes also form a dg category. Hence one can speak of the
homotopy between precomplexes. What curved homological perturbation
achieves is the fact one can obtain a homotopy between precomplexes by
perturbing ordinary complexes. The main result of this appendix is the
following lemma.

A.4. Lemma. (Curved homological perturbation lemma.) For a special
homotopy retraction data (i, p,H) and a curved perturbation δ, the for-
mula 2 defines a new special homotopy retract between the precomplexes
(L, b1) and (M,d1). Explicitly we have

• (L, b1) is a precomplex;

• d1 ◦ i1 = i1 ◦ b1 (i1 is a map of precomplexes);

• b1 ◦ p1 = p1 ◦ d1 (p1 is a map of precomplexes);

• p1 ◦ i1 = idL and i1 ◦ p1 = idM+d1H1 +H1d1 (homotopy retract);

• H1 ◦ i1 = 0, p1 ◦H1 = 0 and H21 = 0 (specialness).
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A.5. The proof is analogous to the proof of the ordinary perturbation lemma
in [3]. We basically only need to check the above formulas with a weaker
condition that F is in the center (weaker as 0 is in the center). We begin
with the following lemma.

A.6. Lemma. We have

• δHA = AHδ = A− δ;

• (id−δH)−1 = id+AH and (id−Hδ)−1 = id+HA;

• AipA+Ad+ dA = F + FAH + FHA.

Proof. The first two equations are direct computations and is the same as
in [3]. For the last one, we have

AipA+Ad+ dA = A(id+dH+Hd)A+Ad+ dA

= A2 +AdHA +AHdA+Ad+ dA

= A2 +Ad(HA + id) + (AH + id)dA

= A2 +Ad(id−Hδ)−1 + (id−δH)−1dA

= (id−δH)−1[(id−δH)A2(id−Hδ) + (id−δH)Ad+ dA(id−Hδ)](id−Hδ)−1

= (id−δH)−1[δ2 + δd+ dδ](id−Hδ)−1

= F(id−δH)−1(id−Hδ)−1

= F(id+AH)(id+HA)

= F+ FAH + FHA.

A.7. With these preparations, the proof of the main lemma follows easily
as an extension of the case without curvature. We have

b21 = (b+ pAi)(b+ pAi)

= bpAi+ pAib+ p(AipA)i

= bpAi+ pAib+ p(F+ FAH + FHA −Ad− dA)i

= pFi+ pFAHi+ pFHAi

= pFi+ pFAHi+ pHFAi (F is central)

= pFi (specialness) .

Thus b21 is simply the restriction of F on its subspace L (via i and p). And
hence it is in the center of End(L). This proves the first assertion that (L, b1)
is a precomplex.
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A.8. To check that i1 is a map of precomplexes, we have

i1b1−(d+ δ)i1 = (i +HAi)(b+ pAi) − (d+ δ)(i+HAi)

= ib+ ipAi+HAib+H(AipA)i − di− dHAi− δi− δHAi

= ipAi+HAib+H(F + FAH + FHA − dA−Ad)i− dHAi

− δi− (A − δ)i

= ipAi−HdAi− dHAi−Ai+HFi +HFAHi +HFHAi

= (ip−Hd− dH− id)Ai+HFi +HFAHi +HFHAi

= FHi +HFAHi+ FHHAi

= 0 (by specialness and F is central) .

A.9. Similarly we check that p1 is map of precomplexes:

b1p1−p1(d+ δ) = (b+ pAi)(p+ pAH) − (p+ pAH)(d + δ)

= bpAH+ pAip+ p(AipA)H− pδ− pAHd− p(AHδ)

= bpAH+ pAip− p(Ad+ dA)H+ p(F + FAH + FHA)H

− pδ− pAHd− p(A− δ)

= pAip− pAdH− pAHd− pA+ pFH+ pFAHH + pFHAH

= pFH+ pFAHH + pFHAH

= 0 (by specialness and F is central) .

A.10. To show that the data forms a deformation retraction, we have

p1i1 = (p+ pAH)(i+HAi)

= pi+ pHAi+ pAHi+ pAHHAi

= id (by specialness) .

A.11. In the reversed direction, we have

id+H1d1 + d1H1 − i1p1 =

= id+(H+HAH)(d + δ) + (d+ δ)(H +HAH) − (i +HAi)(p+ pAH)

= Hδ+HAHd +H(AHδ) + δH+ dHAd+ (δHA)H

− ipAH−HAip−H(AipA)H

= Hδ+HAHd +H(A − δ) + δH+ dHAd+ (A − δ)H

− ipAH−HAip+H(Ad + dA)H −H(F + FAH + FHA)H

= HA(Hd + id+dH− ip) + (dH+ id−ip+Hd)AH

−HFH −HFAHH −HFHAH

= 0 (again by specialness and F is central) .
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A.12. Thus we have shown that (i1, p1, H1) forms a deformation retraction.
It still remains to show that it is special. This is again a computation:

H1 ◦ i1 = (H +HAH)(i +HAi)

= Hi +HHAi+HAHi+HAHHAi

= 0;

p1 ◦H1 = (p+ pAH)(H +HAH)

= pH+ pHAH+ pAHH + pAHHAH

= 0;

H1 ◦H1 = (H +HAH)(H +HAH)

= HH+HAHH +HHAH +HAHHAH

= 0.

Thus the lemma is proved.

B. Hodge theory on the cobar complex

In this appendix we study the cobar construction Ω(C) of the coalgebra C =

sym(V). Motivated from the classical Hodge theory of elliptic complexes, we
construct a Green’s operator on Ω(C) with which one can easily write down
a homotopy H between Ω(C) and its cohomology. Such homotopy is by
construction O(V)-invariant.

B.1. The coalgebra C. We first recall the coalgebra structure on C =

sym(V). We explicitly write the coproduct using a basis (e1, e2, · · · , ed) of
the vector space V . Let (f1, f2, · · · , fd) be the dual basis for V∗. These
gives basis (ek11 · · · ekdd ) for the vector space sym(V). We call these terms
monomials. To simplify the notation, let K := (k1, · · · , kd) be multi-index
and denote by eK the corresponding monomial. The degree of a multi-index
is defined by

|K| =

d∑

i=1

ki.

Using these notations, the coproduct is given by

∆(eK) =
∑

(I,J)|I+J=K

eI ⊗ eJ.
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Clearly the coproduct ∆ is the k-linear dual of the ordinary product of
polynomials,

fI ⊗ fJ 7→ fI+J.

B.2. The cobar algebra of C. The cobar construction Ω(sym(V)) (see
Section 2) is a dg algebra, and hence in particular a complex of vector spaces.
We denote the differential on Ω(sym(V)) by d.

On the other hand, C = sym(V) is also a commutative algebra, the bar
construction B(sym(V)) is a dg coalgebra which as a vector space is the
same as Ω(symV). The dg structure hence defines another differential on
the same graded vector space. We denote this differential by d∗.

B.3. Metrics. Our notation indicates that d and d∗ are adjoint operators
on Ω(C) (from now on, we denote by Ω(C) the underlying vector space).
To state this property precisely, we need to define a metric on Ω(C).

Observe that there are several gradings on the vector space Ω(C). We
have the grading by the number of tensor component. We also have the
grading by the degree of polynomials. The differential d increases the tensor
degree and preserves the polynomial degree. The differential d∗ decreases
the tensor degree and also preserves the polynomial degree.

Hence for a fixed positive integer N, we denote the subspace in Ω(C)

of polynomial degree N by ΩN(C). Note that in the cobar construction we
removed the scalar part of C, this implies that the vector space ΩN(C) is
finite dimensional. Moreover the previous discussion on degrees shows that
both operators d and d∗ restrict to ΩN(C).

The choice of a basis (e1, · · · , ed) endows a canonical metric structure on
ΩN(C) by requiring that the canonical basis ofΩN(C) formed by (eK1 | · · · |eKl)

such that Kj are multi-index with

l∑

j=1

|Kj| = N

is orthonormal.

B.4. Lemma. With the metric on ΩN(C) defined as above, the operators
d and d∗ are adjoint operators.

Proof. It suffice to prove this for the coproduct map and product map itself.
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For that, we have

〈d(eK), eI |eJ〉 =
∑

(R,S)|R+S=K

〈eR|eS, eI |eJ〉

=
∑

(R,S)|R+S=K

δI=R,J=S

= δI+J=K.

On the other hand, we have

〈eK, d∗(eI|eJ)〉 = 〈eK, eI+J〉
= δI+J=K.

Thus the lemma is proved.

B.5. Hodge theory on Ω(C). Hence we can form the Hodge Laplacian
operator

� := d ◦ d∗ + d∗ ◦ d.
Elements in the kernel of � are called harmonic. The subspace of harmonic
elements in ΩN(C) is denoted by HN.

The complex (ΩN(C), d) is graded by the tensor grading. Denote by
the component of tensor degree l by ΩN

l (C). And the space of harmonic
elements of tensor degree l in ΩN(C) is denoted by HNl .

The Hodge decomposition property can be proved in the same way as
in the usual Hodge theory on manifolds since the space ΩN(C) is finite
dimensional, Fredholm property is trivially satisfied.

B.6. Theorem. We have the following orthogonal Hodge decomposition
for ΩN

l (C):
ΩN
l (C) = H

N
l ⊕ Im(d)⊕ Im(d∗).

As a consequence of the above decomposition, we have an isomorphism

Hl(ΩN(C), d) ∼= HNl .

In other words, every cohomology class admits a unique harmonic represen-
tative.

Proof. It is easy to verify if x is harmonic, then dx = 0 and d∗x = 0.
It follows that the subspaces HNl is orthogonal to Im(d) and Im(d∗). For
instance, we have

〈x, dy〉 = 〈d∗x, y〉 = 0.
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The two subspaces Im(d) and Im(d∗) are also orthogonal as d and d∗ are
differentials (square to zero). Hence the image of � is perpendicular to
harmonic elements. So the map

� : (HNl )
⊥ → (HNl )

⊥,

being an endomorphism of finite dimensional vector spaces with zero kernel,
is an isomorphism. Hence in particular it is surjective. It follows that
(HNl )

⊥ = Im(d) + Im(d∗). Moreover these subspaces are also perpendicular,
thus it is a direct sum decomposition. Hence the Hodge decomposition is
proved. For the second part, let [x] be a cohomology class that is represented
by x ∈ ΩN

l (C). So we have
dx = 0.

Moreover from the Hodge decomposition, we can assume that

x = xH + dy+ d∗z.

Then we have
dx = dd∗z = 0,

which implies that d∗z = 0 by adjoint property. And hence

x = xH + dy,

which shows that every cohomology class can be represented by some har-
monic element. The uniqueness follows from the fact the space HNl is per-
pendicular to Im(d) and hence their intersection is trivial.

B.7. A homotopy of Ω(C). It is well known that for the coalgebra C =

sym(V), the cohomology of the cobar complex Ω(C) is the exterior algebra
∧(V). In fact, there is a quasi-isomorphism of complexes

p : (Ω(C), d) → (∧(V), 0)

defined by the canonical quotient map from the tensor algebra to the exterior
algebra. In fact, this is a map of dg algebras (hence the dg algebra Ω(C) is
formal).

However we need to consider another map in the reverse direction. Let
us assume that k has characteristic zero. Consider the anti-symmetrization
map

i : (∧(V), 0) → (Ω(C), d)
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defined by

v1 ∧ · · · vk i7→ 1

k!

∑

σ

(−1)σvσ(1)| · · · |vσ(k).

This map splits the canonical quotient map and hence is also a quasi-
isomorphism of complexes. Moreover Im(i) is in fact harmonic. As d∗

involves applying symmetric products of sym(V) which vanishes on anti-
symmetric tensors.

Define the Green’s operator G : Ω(C) → Ω(C) to be the zero operator
on the harmonic subspace H(C), and the inverse of the Laplacian operator
� on the orthogonal complement of H(C). Note that this is well-defined as
� is invertible on the complement.

B.8. Theorem. Let the notations be as above. Then the image of i is the
harmonic space H(C). And the image of the projection operator id−i ◦ p is
the orthogonal complement of H(C). Define the homotopy operator

H := −d∗ ◦G

where G is the Green’s operator defined as above. Then we have

i ◦ p = id+dH+Hd.

If fact, the data (i, p,H) defines a special homotopy retraction (see the
Appendix A).

Proof. First, it is easy to see the image of i is inside H(C) by a direct
calculation that

d ◦ i = 0, and d∗ ◦ i = 0.
Moreover, by the Hodge decomposition B.6 and the fact that i is a quasi-
isomorphism, we know that the image of i is the whole space H(C). Next
we show that Im(id−i ◦ p) is orthogonal to H(C). We have

〈e1| · · · |ek,
∑

σ

(−1)σeσ(1)| · · · |eσ(k)〉 = 1

and

〈 1
k!

∑

µ

(−1)µeµ(1)| · · · |eµ(k),
∑

σ

(−1)σeσ(1)| · · · |eσ(k)〉 =
1

k!

∑

µ=σ

(−1)µ(−1)σ

= 1.
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Thus the orthogonality follows. For the last identity, let i(x) be a harmonic
elements, we have

i ◦ p(i(x)) = i(x), and
(id+dH+Hd)(i(x)) = i(x) − dd∗G(i(x)) − d∗dG(i(x))

= i(x).

For an element y in the orthogonal complement of H(C), we have

(id−i ◦ p)(y) = y, and
(dH +Hd)(y) = −dd∗G(y) − d∗Gd(y)

= −dd∗G(y) − d∗dG(y) (d commutes with G)

= −(�)(�)−1(y)

= −y.

The identity is proved. Finally we check that the homotopy H is special.
The identity H ◦ i = 0 is by definition of G. The identity p ◦H = 0 follows
from the fact the the image of d∗ is orthogonal to H(C). And H squares to
zero as G commutes with d∗ and d∗ squares to zero.

B.9. An example. Let V be the one dimensional vector space spanned by
x. Then one easily checks that the Green’s operator G on Ω(C) is given by

xi1 | · · · |xik 7→ 1

i1 + · · · + ik − 1
xi1 | · · · |xik .

Hence the homotopy operator in this case is given by

H(xi1 | · · · |xik) :=
k−1∑

j=1

(−1)j
1

i1 + · · · + ik − 1
xi1 | · · · |xij+ij+1 | · · · |xik .
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