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BALANCED METRICS ON HARTOGS DOMAINS

ANDREA LOI, MICHELA ZEDDA

Abstract. An n-dimensional strictly pseudoconvex Hartogs domain

DF can be equipped with a natural Kähler metric gF . In this paper

we prove that if m0gF is balanced for a given positive integer m0 then

m0 > n and (DF , gF ) is holomorphically isometric to an open subset of

the n-dimensional complex hyperbolic space.

1. Introduction

Let M be a complex manifold endowed with a Kähler metric g and let

ω be the Kähler form associated to g, i.e. ω(·, ·) = g(·, J ·). Assume that

the metric g can be described by a strictly plurisubharmonic real valued

function Φ : M → R, called a Kähler potential for g, i.e. ω = i
2∂∂̄Φ.

A Kähler potential is not unique, in fact it is defined up to an addition

with the real part of a holomorphic function on M . Let HΦ be the weighted

Hilbert space of square integrable holomorphic functions on (M,g), with

weight e−Φ, namely

HΦ =

{

f ∈ Hol(M) |
∫

M

e−Φ|f |2ω
n

n!
< ∞

}

, (1)

where ωn

n! = det(∂∂̄Φ)
ωn
0

n! is the volume form associated to ω and ω0 =
i
2

∑n−1
α=0 dzα ∧ dz̄α is the standard Kähler form on C

n. If HΦ 6= {0} we can

pick an orthonormal basis {fj} and define its reproducing kernel by

KΦ(z, z) =

∞
∑

j=0

|fj(z)|2.

Consider the function

εg(z) = e−Φ(z)KΦ(z, z). (2)

As suggested by the notation εg depends only on the metric g and not on

the choice of the Kähler potential Φ. In fact, if Φ′ = Φ − Re(ϕ), for some

holomorphic function ϕ, is another potential for ω, we have e−Φ′

= e−Φ|eϕ|2.
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Furthermore, since ϕ is holomorphic and ∂∂̄Φ′ = ∂∂̄Φ, eϕ is an isomorphism

between HΦ and HΦ′ , and thus we can write KΦ′(z, z) = |eϕ|2KΦ(z, z),

where KΦ(z, z) (resp. KΦ′(z, z)) is the reproducing kernel of HΦ (resp.

HΦ′). It follows that e−Φ(z)KΦ(z, z) = e−Φ′(z)KΦ′(z, z), as claimed.

In the literature the function εg was first introduced under the name of

η-function by J. Rawnsley in [17], later renamed as ε-function in [3], and it is

also appear under the name of distortion function for the study of Abelian

varieties by J. R. Kempf [14] and S. Ji [13], and for complex projective

varieties by S. Zhang [18]. It also plays a fundamental role in the geometric

quantization of a Kähler manifold and in the Tian-Yau-Zelditch asymptotic

expansion (see [11] and references therein).

Definition. Let g be a Kähler metric on a complex manifold M such that

ω = i
2∂∂̄Φ. The metric g is balanced if the function εg is a positive constant.

Remark 1. The definition of balanced metrics was originally given by S.

Donaldson [7] in the case of a compact polarized Kähler manifold (M,g) and

generalized in [2] (see also [4], [10], [9]). In the compact case the potential

Φ will certainly not exist globally and the only holomorphic functions on M

are the constants. Nevertheless, since g is polarized there exists an hermitian

line bundle (L, h) → M such that Ric(h) = ω. One can then endowed the

space of global holomorphic sections of L, denoted by H0(L), with the scalar

product

〈s, t〉h =

∫

M

h(s(x), t(x))
ωn

n!
, s, t ∈ H0(L).

If H0(L) 6= {0} one can set

εg(x) =

N
∑

j=0

h(sj(x), sj(x)),

where {s0, . . . , sN}, N+1 = dimH0(L), is an orthonormal basis of (H0(L), 〈, 〉h)
and define the metric g balanced if εg is a positive constant.

In this paper we study the balanced condition for a particular class of

strictly pseudoconvex domains DF of Cn, called Hartogs domains (see next

section or [8]), equipped with a Kähler metric gF depending on a real valued

function F . Our main result is Theorem 7 below where we prove that if

the metric m0gF of a n-dimensional Hartogs domain DF is balanced for

a given m0 > n, then (DF , gF ) is holomorphically isometric to an open

subset of the n-dimensional complex hyperbolic space. The paper contains

another section with the description of the Hartogs domains and the proof

of Theorem 7.
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2. Statement and proof of the main result

Let x0 ∈ R
+ ∪ {+∞} and let F : [0, x0) → (0,+∞) be a decreasing

continuous function, smooth on (0, x0). The Hartogs domain DF ⊂ C
n

associated to the function F is defined by

DF = {(z0, z1, . . . , zn−1) ∈ C
n | |z0|2 < x0, ||z||2 < F (|z0|2)},

where ||z||2 = |z1|2 + · · ·+ |zn−1|2. We shall assume that the natural (1, 1)-

form on DF given by

ωF =
i

2
∂∂ log

(

1

F (|z0|2)− ||z||2
)

, (3)

is a Kähler form on DF . The following proposition gives some conditions

on DF equivalent to this assumption:

Proposition 2 ([16]). Let DF be a Hartogs domain in C
n. Then the fol-

lowing conditions are equivalent:

(i) the (1, 1)-form ωF given by (3) is a Kähler form;

(ii) the function −xF ′(x)
F (x) is strictly increasing, namely −

(

xF ′(x)
F (x)

)′
> 0

for every x ∈ [0, x0);

(iii) the boundary of DF is strongly pseudoconvex at all z = (z0, z1, . . . , zn−1)

with |z0|2 < x0.

The Kähler metric gF associated to the Kähler form ωF is the metric we

will be dealing with in the present paper. It follows by (3) that a Kähler

potential for this metric is given by

ΦF = − log
(

F (|z0|2)− ||z||2
)

.

Example 1. When F (x) = 1− x, 0 ≤ x < 1,

DF = CHn = {(z0, z1, . . . , zn−1) | |z0|2 + ‖z‖2 < 1)},

the n-dimensional complex hyperbolic space CHn and gF is the hyperbolic

metric, i.e. gF = ghyp. A Kähler potential for ghyp is given by Φhyp =

− log(1−∑n−1
α=0 |zα|2), and the associated volume form reads

ωn
hyp

n!
=

(

1−
n−1
∑

α=0

|zα|2
)−(n+1)

ωn
0

n!
.

Consider mghyp, for a positive integer m, and let HmΦhyp
be the weighted

Hilbert space of square integrable holomorphic functions on (CHn,m ghyp),

with weight e−mΦhyp =
(

1−∑n−1
α=0 |zα|2

)m

, namely

HmΦhyp
=







ϕ ∈ Hol(CHn) |
∫

CHn

(

1−
n−1
∑

α=0

|zα|2
)m−(n+1)

|ϕ|2ω
n
0

n!
< ∞







.
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If m ≤ n, then it is not hard to see that HmΦhyp
= {0}. On the other hand,

for m > n, an orthonormal basis for HmΦhyp
is given by

{

. . . ,

√

(m+ j − 1)!√
πn
√

j1! · · · jn−1!(m− n− 1)!
z
j0
0 · · · zjn−1

n−1 , . . .

}

.

where j = j0 + · · · + jn−1. In fact, since the metric depends only on

the squared module of the variables, it is easy to see that the monomi-

als zj00 · · · zjn−1

n−1 are a complete orthogonal system for HmΦhyp
. Further, the

following computation

∫

CHn

|zj00 · · · zjn−1

n−1 |2
(

1−
n−1
∑

α=0

|zα|2
)m−(n+1)

in

2n
dz0 ∧ dz̄0 ∧ · · · ∧ dzn−1 ∧ dz̄n−1

=πn

∫ 1

0
· · ·
∫ 1−r1−···−rn−1

0
r
j0
0 · · · rjn−1

n−1

(

1−
n−1
∑

α=0

rjαα

)m−(n+1)

dr0 · · · drn−1

=πn j0! · · · jn−1!(m− n− 1)!

(m+ j − 1)!
,

justifies the choice of the normalization constants. The reproducing kernel

for HmΦhyp
is then given by

KmΦhyp
(z, z) =

(m− 1) · · · (m− n)

πn(1−∑n−1
j=0 |zj |2)m

,

and thus

εmghyp(z) =
(m− 1) · · · (m− n)

πn
.

In this example we have that the metric mghyp is balanced iff m > n.

In the geometric quantization framework introduced in [3] the Kähler forms

satisfying this property play a fundamental role for the quantization by

deformation of the Kähler manifold (M,g). In our setting one says that a

Kähler manifold (M,g) admits a regular quantization if the functions

εmg(z) = e−mΦ(z)KmΦ(z, z)

are positive constants (depending on m) for all sufficiently large positive

integers.

Regarding regular quantizations we have the following lemma which will

be an important ingredient in the proof of our main result, Theorem 7.

Lemma 3. Let g be a Kähler metric on a complex manifold M . If (M,g)

admits a regular quantization then the scalar curvature of the metric g is

constant.

Proof. See Theorem 5.3 in [1] for the compact case and Theorem 4.1 in [15]

for the noncompact one. �
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Hartogs domains have been considered in [8] and [15] in the framework

of quantization of Kähler manifolds. In [5] is studied the existence of global

symplectic coordinates on (DF , ωF ) and [6] deals with the Riemannian ge-

ometry of (DF , gF ). In [15] (see also [16]) these domains are studied from

the scalar curvature viewpoint. The main results obtained in [16] and in

[6] are summarized in the following two lemmata needed in the proof of

Theorem 7 and its Corollary 8.

Lemma 4. Let (DF , gF ) be a n-dimensional Hartogs domain. Assume that

its scalar curvatures is constant. Then (DF , gF ) is holomorphically isometric

to an open subset of the complex hyperbolic space (CHn, ghyp).

Lemma 5. A Hartogs domain (DF , gF ) is geodesically complete if and only

if
∫

√
x0

0

√

−
(

xF ′

F

)′
|x=u2 du = +∞, (4)

where we define
√
x0 = +∞ for x0 = +∞.

For the proof of Theorem 7 we need another result, Lemma 6 below, which

is a straightforward generalization to dimension n of Propositions 3.12 and

3.14 proven by M. Englǐs in [8]. In order to state it we set

ck(F
m) =

∫ x0

0
tkF (t)mG(t)dt, (5)

where

G(t) = −
(

tF ′

F

)′
, (6)

(notice that G(t) > 0 by (ii) in Proposition 2) and assume that there exists

a real number γ such that for all positive integers m
∞
∑

k=0

tk

ck(Fm)
= (m− 1 + γ)F (t)−m. (7)

Many examples of Hartogs domains satisfy this condition (see [8, pp. 450-

454]). Such domains admit a quantization by deformation (see [8] for details)

and so they are also interesting from the physical point of view.

Let us also write the volume element corresponding to the metric ωF by

ωn
F

n!
=

F 2(|z0|2)
(F (|z0|2)− ||z||2)n+1

G(|z0|2)
ωn
0

n!
. (8)

Lemma 6. Let (DF , gF ) be an Hartogs domain and let HmΦF
be the cor-

responding weighted Hilbert space given by (1). Assume that condition (7)

is satisfied for all positive integers m. Then HmΦF
6= {0} iff m > n and its

reproducing kernel is given by

KmΦF
(z, z) =

(m− 2) · · · (m− n)

πn(F (|z0|2)− ||z||2)m [m− 1 + (1− w)γ] ,
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where w = ‖z‖2
F (|z0|2) and γ is the real number appearing in (7).

Proof. It is not hard to verify that the monomials zj00 z
j1
1 · · · zjn−1

n−1 are a com-

plete orthogonal system for HmΦF
, for m > n. Hence, the well-known

formula for reproducing kernels gives for the Hilbert space HmΦF

KmΦF
(z, z) =

∑

j0,...,jn−1

|z0|2j0 · · · |zn−1|2jn−1

‖zj00 · · · zjn−1

n−1 ‖2m
, (9)

where

‖zj00 · · · zjn−1

n−1 ‖2m =

∫

DF

(

F (|z0|2)− ||z||2
)m

n−1
∏

k=0

|zk|2jk
ωn
F

n!
.

By formula (8) the right hand side is equal to

∫

DF

(

F (|z0|2)− ||z||2
)m−n−1

n−1
∏

k=0

|zk|2jkF 2(|z0|2)G(|z0|2)
ωn
0

n!
,

which passing to polar coordinates reads

πn

∫ x0
1/2

0

∫ F (r2
0
)1/2

0
· · ·
∫ (F (r2

0
)−

∑n−1

i=2
r2i )

1/2

0

(

F (r20)− r2
)m−n−1

n−1
∏

k=0

r
2jk
k F 2(r20)G(r20)2

ndrdr0,

where r2 = r21 + · · · + r2n−1, dr = dr1 · · · drn−1. Making now the substi-

tution r2i = ti and using again the short notation t = t1 + · · · + tn−1,

dt = dt1 · · · dtn−1, we get

πn

∫ x0

0

∫ F (t0)

0
· · ·
∫ F (t0)−

∑n−1

i=2
ti

0
(F (t0)− t)m−n−1

n−1
∏

k=0

t
jk
k F 2(t0)G(t0)dtdt0,

which substituting tk = wkF (t0) for k = 1, . . . , n− 1, becomes

πn

∫ x0

0
t
j0
0 F (t0)

m+jG(t0)dt0

∫ 1

0
· · ·
∫ 1−

∑n−1

i=2
wi

0
(1− w)m−n−1

n−1
∏

k=1

w
jk
k dw,

where again w = w1 + · · · + wn−1, dw = dw1 · · · dwn−1. If m ≤ n the last

integral diverges, so we can assume m > n. Therefore,

‖zj00 · · · zjn−1

n−1 ‖2m = πn j1! · · · jn−1!(m− n− 1)!

(m+ j − 2)!
cj0(F

m+j), (10)

where j = j1 + · · ·+ jn−1 and cj0(F
m+j) is defined by (5). Thus

KmΦF
(z, z) =

∑

j0,...,jn−1

|z0|2j0 · · · |zn−1|2jn−1
(m+ j − 2)!

πnj1! · · · jn−1!(m− n− 1)!

(

cj0(F
m+j)

)−1
.
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By (7) we can carry out the summation over j0, getting

KmΦF
(z, z) =

∑

j1...,jn−1

|z1|2j1 · · · |zn−1|2jn−1
(m+ j − 2)!(m+ j − 1 + γ)

πnj1! · · · jn−1!(m− n− 1)!
F−m−j(|z0|2)

=
∑

j1...,jn−1

|z1|2j1
F j1(|z0|2)

· · · |zn−1|2jn−1

F jn−1(|z0|2)
(m+ j − 2)!(m+ j − 1 + γ)

πnj1! · · · jn−1!(m− n− 1)!
F−m(|z0|2)

=
∑

j1...,jn−1

w
j1
1
· · ·wjn−1

n−1

(m+ j − 2)!(m+ j − 1 + γ)

πnj1! · · · jn−1!(m− n− 1)!
F−m(|z0|2)

=
(m− 2) · · · (m− n)

πn

∑

j1...,jn−1

w
j1
1

j1!
· · · w

jn−1

n−1

jn−1!

[(

m+ j − 1

m− 1

)

(m− 1)+

+

(

m+ j − 2

m− 2

)

γ

]

F−m(|z0|2)

=
(m− 2) · · · (m− n)

πn

[

m− 1

(1− w)m
+

γ

(1− w)m−1

]

F−m(|z0|2)

=
(m− 2) · · · (m− n)

πn

[

m− 1

(F (|z0|2)− ||z||2)m +
(1− w)γ

(F (|z0|2)− ||z||2)m
]

=
(m− 2) · · · (m− n)

πn(F (|z0|2)− ||z||2)m [m− 1 + (1− w)γ] .

�

We can now state and prove our main result, which characterizes the

hyperbolic space among Hartogs domains in terms of a balanced condition.

Theorem 7. Let (DF , gF ) be a n-dimensional Hartogs domain. Assume

that condition (7) is satisfied for all positive integers m. If m0gF is balanced

then m0 > n and (DF , gF ) is holomorphically isometric to an open subset

of the complex hyperbolic space (CHn, ghyp).

Proof. Since by Lemma 6 HmΦF
= {0} for m0 ≤ n, we can set m0 >

n. Assume that m0gF is balanced, namely em0ΦF = cm0
Km0ΦF

, for some

positive constant cm0
. Therefore,

(

F (|z0|2)− ||z||2
)−m0 = cm0

Km0ΦF
(z, z).

By Lemma 6 we get

(

F (|z0|2)− ||z||2
)−m0 = cm0

(m0 − 2) · · · (m0 − n)

πn(F (|z0|2)− ||z||2)m0

[m0 − 1 + (1− w)γ] ,

that is

πn = cm0
(m0 − 2) · · · (m0 − n) [m0 − 1 + (1− w)γ] ,

which yelds γ = 0, being (1−w)γ the only term depending on the variables.

Since γ is fixed for all m, it follows that the reproducing kernel of HmΦF
,
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for m > n, is given by

KmΦF
(z, z) =

(m− 1)(m− 2) · · · (m− n)

πn(F (|z0|2)− ||z||2)m .

By (2), we have

εmgF (z) = KmΦF
(z, z)

(

F (|z0|2)− ||z||2
)m

=
(m− 1)(m− 2) · · · (m− n)

πn
.

Hence, for all m > n, (DF , gF ) admits a regular quantization. By Lemma 3

and Lemma 4 above, (DF , gF ) is then holomorphically isometric to an open

subset of the complex hyperbolic space. �

Combining Lemma 5 with Theorem 7 one gets:

Corollary 8. Let (DF , gF ) be an n-dimensional Hartogs domain. Assume

that conditions (4) and (7) are satisfied (the latter for all positive integers

m). If for some positive integer m0, m0gF is a balanced metric then (DF , gF )

is holomorphically isometric to the complex hyperbolic space (CHn, ghyp).

Remark 9. A balanced metric g on a complex manifold M is projectively

induced. Indeed, there exists a holomorphic map f : M → CP∞, called

the coherent states map in J. Rawnsley terminology [17], into the infinite

dimensional complex projective space CP∞ such that f∗gFS = g, where gFS

denotes the Fubini–Study metric on CP∞ (see [2] for details). Not all pro-

jectively induced metrics are balanced. Indeed, there exist n-dimensional

Hartogs domains (DF , gF ), DF 6= CHn, where m0gF is projectively induced

for m0 > n. An example is given by the so called Springer domain (DF , gF )

corresponding to the function F (x) = e−x, x ∈ [0,+∞) (see [12])). More-

over, it is not hard to verify that this domain satisfies condition (7) in

Theorem 7 with γ = 1 (see also [8]). This shows that the condition that

m0gF is balanced in Theorem 7 cannot be replaced by the weaker condition

that m0gF is projectively induced.
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