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This paper explores the technique for the computer aided numerical inversion of Laplace
transform. The inversion technique is based on the properties of a family of three
parameter exponential probability density functions. The only limitation in the
technique is the word length of the computer being used. The Laplace transform has
been used extensively in the frequency domain solution of linear, lumped time invariant
networks but its application to the time domain has been limited, mainly because of the
difficulty in finding the necessary poles and residues. The numerical inversion technique
mentioned above does away with the poles and residues but uses precomputed numbers
to find the time response. This technique is applicable to the solution of partially
differentiable equations and certain classes of linear systems with time varying
components.
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THEORETICAL ASPECTS OF THE TECHNIQUE

The three parameter exponential probability density functions for a
random variable T are

Pm,n(a, t) ((m -+- n)/m)! (1 e-at)ae-mat a > 0 0 < < cx3
n!(m-- 1)! (1)

m=1,2,3 n=0,1,2

Plots of typical density functions are illustrated in Figure for
selected values ofm n. If the density of (1) is differentiated, the peak
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FIGURE Three parameter exponential probability density functions.

is found to occur at

t In (n+m)/a (:2)
m

The expected value of some function f of the random variable T is
given by

E[Z(t)] I(t)pm,,,(a, t)dt (3)

Obtaining binomial expansion of a portion of the density function
gives

(l e_at)n n 1)ie_ia
i=o

(- (4)
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FIGURE 2 Broken lines indicate bounds of errors for other values of N.

The expected value off(t) is then

Elf(t)] n!(m 1)’ (-1) dt
i=0
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FIGURE 3 Broken lines indicate bounds of errors.

changing order of the summation and integration, the result is

(n+m)! (n) foE[f(t)] n!(m 1)[ (-1)ia f(t)e-(i+m)atdt
i=0

(6)
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The integral can be identified as Laplace transform off(t) which is
denoted by F(s)

(nq-m),
Elf(t)] n!(m- 1)I (-1)iaF((i + m)a) (7)

i=0
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FIGURE 5 Broken lines indicate bounds of error for other values of N.

where the function F(s) is defined as

F(s) f(t)e-Stdt (8)

If the limit is taken as m and n approach infinity, the density
function becomes very peaked and behave like a Dirac delta function
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FIGURE 6 Broken line indicates bounds of errors for other values of N.

located at the mode (peak) of the density and hence the density tends
to sample the function f(t) at

t=ln(n/m)/m

or f[ln((n + m)/m) ] m,n-oolim Elf(t)]
(9)
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for convenience sake ’a’ is assigned the value

ln((m + n)/m)
a=

tA combination of (7) and (9) yields

f(t)= lim (ln((m+n)/m)(m+n), (n) )i
m,n--, t n!(m- 1) (-1

i=0

F[i+m (n+m)]}x In
t m

(11)
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FIGURE 8 Broken lines indicate bounds of errors for other values of N.

If the S-domain function F(s) is known, then (11) may be employed
to evaluate the corresponding time domain function for finite m and n,
the estimate of the inverse transform f,,n(t) may be written as:

ln((m + n)/m) - (m + n)!(-1)fm,n(t)
t Z-,i=0 (m 1)!(i)!(n 1)!

(12)
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if m n, then

in2 (2n)!(- 1)f,(t)
i=0 (m- 1)li!(n- 1)! F((i+n)ln(2/t)) (13)

Expression (13) is called the Gaver algorithm. Improved accuracy
may be obtained if the weighted average of fl(t), f2(t),...,fN/E(t) is
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taken for a fixed t, such that

N/2
fly(t) E xif’(t)

i=1

where the weights xi are given by

xi= (,,!)i-l(N/2), (N;2) i((N/2)+I i)(//2)-1

(14)

(15)
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and N must be an even integer. By recombination of similar terms in
(14) we find that the averaged approximate inverse transform is given
by

fl(t)
ln 2’ VF( ln 2 )T

i=1
t (16)
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FIGURE 12 Broken line indicates bounds of errors for other values of N.

Vi is given by

Min (i,N/2)

()’--l’(N/2)+i ’ ((N/2) k)’k’(k- 1)!(i- k)’(2k- i)!Vi
k=(i+l)/2

and k is computed using integer arithmatic. This expression is called
the stehfest algorithm.
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The analytical form of F(s) is not limited to polynomial ratios. Here
F(s) can include transcendental function or transport lag terms
exp (- ts) which arise in the analysis of distributed parameter systems.
The method of "extrapolation to the limit" which Gaver used, leads

to less accurate results for the same N, because not so many powers of
’n’ cancel out. Moreover, with this method N must be a power of 2, so
that in general one cannot make the best use of the available computer
precision.
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Theoretically fn becomes more accurate for large values of N.
Practically, rounding errors worsen the results if N becomes too large
because Vi with greater and greater absolute values occurs. For given
F(s) and T, N at which the accuracy is maximal increases with the
number of significant figures used. For fixed computer precision the
optimal value of N is smaller i.e., maximum accuracy is greater and fn
converges to f(t) faster. It was also found that with increasing N, the
number of correct figures first increases linearly and then owing to

rounding errors, decreases linearly. The optimum N is approximately
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proportional to the nmber of digits the machine is working with.
Evaluating an unknown function from its Laplace transform, one
should compare the results for different N, to see whether the function
is smooth enough (less oscillatory), what accuracy can be reached and
what the optimum N is. One should also make sure that the unknown
functionf(t) has not any discontinuities, salient points, sharp peaks or
rapid oscillations.
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If the Gaver algorithm is employed, the coefficients with alternating
signs create a problem in that large numbers of very nearly equal size
must be subtracted from one another, thus implying the need for
retention of a large number of significant digits. As the value of N is
increased this becomes a word length problem for any digital
processor. Similarly if the averaged approximate inverse algorithm is
employed, there will be a value N beyond which a degradation of the
inverse will occur due to finite digital processor word length. The
algorithm works very well when oscillatory solutions are not
anticipated, otherwise the asymptotic character of the inverse function
soon dominates.



206 U. KUMAR

N=8

10-6,

2 4 6 8
t

F($) =TI’(I+w 2)
Absolute error vs time

FIGURE 17

An alternative method on similar lines is: Consider the Laplace
transform inversion formula

1
(A)v(tl

where s is the complex frequency variable and C is the arbitrary
positive constant such that Resi < C where Si are the poles of V(s).
Using the substitution

(A) changes to z = St (B)
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1 fC’+yoo V(z/t)eZdzv(tl ,-o (c)

Approximate the function ez in (C) by a rational function. The Pade
approximation was used.

e,,,(z) PN()
QM(Z) (D)

where PN(Z) and QM(Z) are polynomials of order N,M respectively. As
is well known, the Pade approximation formally equates a rational
function to some terms of a series

Ea l+EJz: E c‘z‘+ E c’z’
i=O i= i=O M+N+I

(E)

the coefficients Ci for < M + N are the coefficients of the Taylor
expansion of ez. Therefore the Pade approximation N,M(z) has the
first M+N+ terms of its Taylor expansion equal to the Taylor
expansion of ez. The remaining terms of both expansions differ.

It is not necessary to solve the system of equations arising from (E).
A closed form exists

V,M(Z)=(M+N)’+(M+N-1)’(N)z+(M+N-2) N z2
2

+ + M (N) zl/
(M+N)’-(M+N-1)’(M)z+(+N-) z

2

The function N,M can be written in a doubly infinite Pade table

0,0 1,0 2,0
0,1 1,1 2,1
’0,2 1,2 ’2,2

(F)
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Any sequence of these functions converges to ez for any z as lim
(M+ N) --- o.All poles of (F) are simple and for M not differing considerably
from N, all are in the right half plane. Although this has been used for
the sake of simplicity, it can be shown that left half plane poles of (F)
do not alter the results.

Inverting (D) into (C), the approximation l?(t) of Y(t) becomes,

f
C’+yoo

(t) . c,_joo V(z/t) cV’M(Z)dz"

Integral (G) can be evaluated by residue calculus by closing the path
of integration along an infinite arc either to the right or to the left. In
order that arc does not contribute to the integral M,N is taken such
that the function

F(z) V(z/t)V,M(Z) (H)

has at least two more finite poles than zeros. Then

F(z)dz -+-27rj (residue at poles inside the closed path). (I)

where the positive sign applies when the path is closed in the left half
plane (counter-clockwise), whereas the negative one applies for the
other case. Important properties of the method will be derived by
alternatively closing the paths in both half planes. For N < M,

M

N,M(Z) Kilz- zi (J)
i=1

where zi are the poles of N,M(g) and ki are the corresponding residues.
Closing the path of integration around the poles of N,M(Z) in the

right half plane,

M

f"(t) =-1/t_aKi V(zi/t) (K)
i=1
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Real time functions can be evaluated using only the poles z in the
upper half plane. For M even

M M

(t) =-l/tk, V(zi/t)-l/tZK; V(z/t)
i=1 i=1

-1/t 2Re[Ki V(zi/t)]
i=1

M

=-1/tRe[K V(zi/t)]
i=1

(L)

where M’ M/2 and K 2Ki, ki is defined by (J) when M is odd,
M’ (M + 1)/2 and K; ki for the residue corresponding to the real
pole.

Periodic functions are calculated correctly for small times irrespec-
tive of whether they are smooth, with discontinuities or with
discontinuities in their derivatives. The error grows until it reaches a
region where it fluctuates between two limits. Some of these functions
cannot be described by Taylor series expansion and thus the accuracy
for larger times cannot be expected to be good, nevertheless the error
remains bounded.

Delayed functions with discontinuities in their response or in their
derivatives have largest errors at the point of discontinuity. The
phenomenon is the well known Gibbs effect and the error remains
reasonably small afterwards. Smooth delayed functions do not exhibit
the Gibbs phenomenon and the error is small. Unstable functions with
poles in the right half plane are inverted correctly for small times but
then the error grows without bound.
Manual verification of algorithm for (F(s) l/s, f(t) l)
Take N 2

Vi (- 1) (N/2)+i Min(i,N/2)_ (K)N/2 (2k)!
Z.., ((-N/2)- k)!k!(k- 1)!(i- k)(Ek- i)k=(i/l)/2

1! (2xl)!Vt (-1)i+tZ (1 i)’i(1 I)’!"(1’ 1)i(2 X 1-"1)! 2
k=l
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Similarly,

ln2 N

fly(t) ---i-

_
ViF( ln 2/t)

i=1

fE(t) =--- 2 x
ln2 x’---i" 2 x"ln2

ln2 t
=x [2-1]=

Thus we see that we get an exact numerical inversion of the given
Laplace transform.

Possible Application

Consider the solution to the one dimensional diffusion equation

02V k20V
Ox---- 0"-- (18

with boundary conditions

V(O, t) Vou(t) (19)

where u(t) is the unit step function and

V(, t) < oe (20)

and initial condition

V(x,O) =0 (21)

Laplace transform of (18) using (21) gives an ordinary differential
equation,

02,
cgx----- k2s 0 (22)

which has the solution

(x, s) Ae-kxv + Bekxx/’i (23)



LAPLACE TRANSFORM 211

Application of the boundary condition yields

Vo e_kxxfiT (24)

The exact inverse given by contour integration in the S-plane is

V(x, t)= Vo erfc[-kx/2v/-i] (25)

Equation (24) can be inverted approximately using the algorithm.

COMPUTER IMPLEMENTATION

The algorithm is implemented on the computer in the package LINV.
This package does the following:

(a) Calculate all Vi’s.
(b) Calculate the averaged approximate inverse transform.
(c) Calculates the error if the inverse of the Laplace Transform is

known.
(d) Calculates the maximum error and also the bounds of errors for

various values of N.

The above algorithm has been made more accurate by the use of a
sophisticated multiplication algorithm MUT. This does increase
processing time; but this is a one time expense. Once the tables of
Vi’s for different values of N are ready, one only has to feed these
precomputed numbers.

Thus, the program achieves a very important aim of error analysis
of the algorithm.

Calculations are made for several functions, the error calculated,
and an attempt made to localize these errors.

CONCLUSIONS

Several important conclusions can be made:

(a) It was found that with increasing N the number of correct figures
first increases nearly linearly and then owing to rounding errors,
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decreases linearly. The optimum N is approximately proportional
to the number of digits the machine is working with.

(b) The nature of the Gaver-Stehfest algorithms with large coefficients
and alternating signs makes it necessary to subtract very large
numbers of almost the same size, which creates word-length
computational problems. Particular choices of N were made
because of the limitation on N due to the finite word length of the
digital processor used. With 32 bits, we get a 7 decimal digit
resolution. In cases where N 18, the inverse function will
demonstrate considerable scatter due to truncation error in the
processor.

(c) It is clear that functions with oscillatory inverses present difficulty
to the method.

(d) There is considerable improvement due to the multiplication
algorithm used.

(e) Transforms for lightly damped sinusoids and BesSel functions
require large mainframe computers with long word-length.

The accuracy of the method was considered from the theoretical and
empirical points of view. It was found that the accuracy is high for
small time. Examples were used to illustrate the idea.
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