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ASYMPTOTICS OF ACH-EINSTEIN METRIC

YOSHIHIKO MATSUMOTO

Abstract. We study the boundary asymptotics of asymptotically complex hyperbolic

(ACH) solution of the Einstein equation in terms of the induced partially integrable

almost CR structure T 1,0 on the boundary. Once we prescribe a conformal class [Θ]

of Θ-structures compatible with given T 1,0, an approximate smooth solution is con-

structed, which is unique modulo high-order terms and [Θ]-preserving diffeomorphism

actions fixing the boundary. A new local CR-invariant tensor naturally arises as the

obstruction to construct a better approximation; it vanishes when the boundary struc-

ture is integrable. It is shown that there always exist formal solutions to the Einstein

equation if we allow logarithmic terms.
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Introduction

Asymptotically complex hyperbolic metrics, or ACH metrics in short, that we study here

were introduced by C. L. Epstein, R. B. Melrose and G. A. Mendoza [EMM] as generaliza-

tions of complete Kähler metrics of the form ∂∂ log(1/r) on strictly pseudoconvex domains,

where r is a boundary defining function. Recently the Einstein equation for ACH metrics

is investigated by O. Biquard and M. Herzlich [Bi, BiH]. The purpose of this paper is to

discuss the behavior of ACH-Einstein metrics near the boundary.

The boundary behavior of the complete Kähler–Einstein metric on a bounded strictly

pseudoconvex domain Ω ⊂ Cn+1, whose existence was established by S. Y. Cheng and
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S. T. Yau [CY], is studied by several authors. Following the pioneering work of C. L. Feffer-

man [Fe], J. M. Lee and R. Melrose [LM] proved that the solution of the zero boundary value

problem of the complex Monge–Ampère equation admits at the boundary an asymptotic

expansion including logarithmic terms. C. R. Graham [Gr] showed that this expansion is

determined by the local CR geometry of the boundary up to the ambiguity of one scalar-

valued function on ∂Ω.

In the ACH case, the induced almost CR structure on the boundary is no longer integrable

in general; however, it satisfies what S. Tanno [Tno] called the partial integrability condition.

By definition a (2n+1)-dimensional almost CR manifold (M,T 1,0) is partially integrable if

and only if

(0.1) [C∞(M,T 1,0), C∞(M,T 1,0)] ⊂ C∞(M,HC), where HC := T 1,0 ⊕ T 0,1.

The bundle HC is the complexification of a certain real subbundle of TM , which is denoted

by H . We may also describe an almost CR structure on M by its real expression (H, J),

where J ∈ EndH and J |T 1,0 = i idT 1,0 .

The nonintegrablility of (M,T 1,0) is measured by the Nijenhuis tensor N ∈ C∞(M,H∗
C
⊗

H∗
C
⊗HC) defined by

(0.2) N(X,Y ) := Π1,0[Π1,0X,Π1,0Y ] + Π1,0[Π1,0X,Π1,0Y ], X , Y ∈ C∞(M,HC),

where Π1,0 and Π1,0 are the projections onto T 1,0 and T 1,0, respectively. Equation (0.2)

shows that N is real. Given a local frame {Zα } = {Z1, . . . , Zn } of T 1,0, we put Zα = Zα
and write N(Zα, Zβ) = N γ

αβ Zγ .

A partially integrable almost CR manifold (M,T 1,0) is said to be nondegenerate if H is

a contact distribution, or equivalently, θ ∧ (dθ)n is a volume form on M for some (hence

for any) nowhere vanishing 1-form θ annihilating H . In this case the conormal bundle

E ⊂ T ∗M of H is orientable as well as TM . Hence E× := E \ (zero section) splits into two

R+-bundles; we fix one of them and call its sections pseudohermitian structures. A choice

of a pseudohermitian structure θ defines the Levi form h on HC by

(0.3) h(X,Y ) := dθ(X, JY ), X , Y ∈ C∞(M,HC).

Thanks to the nondegeneracy and the partial integrability, the Levi form h is a nondegen-

erate hermitian form. Furthermore, its signature (p, q), p + q = n, is independent of the

choice of θ. Once we fix a pseudohermitian structure θ, the Levi form h
αβ

= h(Zα, Zβ) and

its dual hαβ allows us to lower and raise indices.

There are several versions of the definition of ACH metric in the literature. We use the

one by C. Guillarmou and A. Sá Barreto [GuSá]; this is a reformulation of the conditions

which [EMM] imposed to Θ-metrics in a study of the resolvent of the Laplacian. Let X

be a (2n + 2)-dimensional smooth manifold-with-boundary with a fixed conformal class

[Θ] of Θ-structures, and ι : ∂X →֒ X the inclusion map. According to the definition by

Guillarmou and Sá Barreto, ACH metrics on X are fiber metrics of a modified tangent

bundle, which is denoted by TXΘ , satisfying certain conditions. Over the boundary ∂X ,

there is a natural filtration K2 ⊂ K1 ⊂ TXΘ |∂X by subbundles, where K1 is of rank 2n+1

and K2 of rank 1. Any ACH metric g induces a decomposition TXΘ |∂X = R ⊕ K2 ⊕ L,

K1 = K2 ⊕ L into subbundles and a complex structure J ∈ EndL, which is identified with

a partially integrable almost CR structure endomorphism J ∈ EndH on H = ker ι∗[Θ]. By
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a distinguished local frame { ξ∞, ξ0, ξα, ξα } we mean a local frame of TXΘ near ∂X such

that, if restricted to TpX
Θ , p ∈ ∂X , (ξ∞)p generates Rp, (ξ0)p generates K2,p, (ξ1)p, . . . ,

(ξn)p span the i-eigenspace of Jp ∈ EndLp, and ξα = ξα. For details see §1.

One of the main theorems of this paper is the following one on the existence of an

approximate solution of the Einstein equation. For any ACH metric g, its Ricci tensor Ric

is naturally defined as a symmetric 2-tensor over TXΘ . We define the Einstein tensor Ein

by Ein := Ric+ 1
2 (n+2)g. A boundary defining function ρ of a manifold-with-boundary X

is a real-valued smooth function satisfying ρ > 0 in X̊ , ρ = 0 on ∂X and dρ 6= 0 everywhere

on ∂X .

Theorem 0.1. Let X be a (2n + 2)-dimensional smooth manifold-with-boundary, [Θ] a

conformal class of Θ-structures, and T 1,0 a nondegenerate partially integrable almost CR

structure on ∂X such that ι∗[Θ] determines a conformal class of pseudohermitian structures

of (∂X, T 1,0). Then there exists an ACH metric g satisfying

Ein∞∞ = O(ρ2n+4), Ein∞0 = O(ρ2n+4), Ein∞α = O(ρ2n+3),

Ein00 = O(ρ2n+4), Ein0α = O(ρ2n+3),

Ein
αβ

= O(ρ2n+3), Einαβ = O(ρ2n+2)

(0.4)

with respect to any distinguished local frame { ξ∞, ξ0, ξα, ξα } of TXΘ near the boundary,

where ρ is any boundary defining function of X.

Note that the condition (0.4) is independent of the choice of a distinguished local frame

{ ξ∞, ξ0, ξα, ξα } and a boundary defining function ρ.

The construction of better approximate solutions is obstructed by a tensor field Oαβ on

the boundary, which is called the obstruction tensor. Let g be any ACH metric satisfying

the condition of Theorem 0.1 and θ ∈ ι∗[Θ] a pseudohermitian structure on ∂X . Then there

is a special boundary defining function ρ for θ, which satisfies ‖dρ/ρ‖g = 1/2 near ∂X and

ι∗(ρ4g) = θ2. By these ingredients Oαβ is defined by

Oαβ :=
(

ρ−2n−2 Einαβ
)∣

∣

∂X

in terms of the Einstein tensor of g. This is well-defined, i.e., this does not depend on the

choice of g, and is a universal polynomial of pseudohermitian invariants of (M,T 1,0, θ). As

expected Oαβ has some CR-invariant properties. Let ζ be F. Farris’ section of the CR

canonical bundle K of ∂X associated to θ, i.e., a section of K satisfying

(0.5) θ ∧ (dθ)n = in
2

n!(−1)qθ ∧ (T ⌋ ζ) ∧ (T ⌋ ζ),

where the signature of the Levi form is (p, q), and define the density-weighted version of the

obstruction tensor by

Oαβ := Oαβ ⊗ |ζ|
2n/(n+2)

∈ E(αβ) (−n,−n).

Then we have the following results.

Proposition 0.2. (1) The density-weighted obstruction tensor Oαβ is a CR invariant.

(2) For an integrable CR manifold, the obstruction tensor vanishes.

(3) Let Pαβ be a differential operator E(αβ) (−n,−n) → E(−n− 2,−n− 2) defined by

Pαβ = ∇α∇β − iAαβ −Nγαβ∇γ −Nγαβ
,γ ,
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where A is the pseudohermitian torsion tensor. Then this is a CR-invariant operator and

we have PαβOαβ − PαβO
αβ

= 0.

In spite of (2) above, there actually is a partially integrable almost CR manifold for which

Oαβ is nonzero. This indicates the importance of studying partially integrable almost CR

structures.

We shall also investigate how well the solution is improved if we introduce logarithmic

terms to ACH metrics. A function f ∈ C0(X) ∩ C∞(X̊) is said to be an element of A(X)

if it admits an asymptotic expansion of the form

(0.6) f ∼

∞
∑

q=0

f (q)(log ρ)q, f (q) ∈ C∞(X)

for any boundary defining function ρ. If f ∈ A(X), then the Taylor expansions of f (q)

at ∂X are uniquely determined. A singular ACH metric is a fiber metric g of TXΘ with

gIJ ∈ A(X) satisfying the same condition for usual ACH metrics. Then the components

of its Ricci tensor also belong to A(X), and hence so are those of the Einstein tensor. We

have the following theorem for such metrics. For any boundary point p ∈ ∂X , we say that

f ∈ A(X) vanishes to the infinite order at p if and only if all the coefficients f (q) have the

vanishing Taylor expansions at p. A tensor over TXΘ vanishes to the infinite order at p if

and only if all of its components vanish to the infinite order at p.

Theorem 0.3. Let X, T 1,0, [Θ] as in Theorem 0.1 and p ∈ ∂X. Then there exists a

singular ACH metric whose Einstein tensor vanishes to the infinite order at p. Furthermore,

if Oαβ = 0, where Oαβ is the obstruction tensor for (∂X, T 1,0), then there exists such an

ACH metric with no logarithmic terms.

A particularly noteworthy case is when the boundary almost CR structure is integrable.

By Proposition 0.2 (2), the second assertion of the theorem above applies to this case.

Although Graham [Gr] showed that there is a nontrivial scalar-valued obstruction for the

existence of a complete Kähler-Einstein metric on a bounded strictly pseudoconvex domain

which is smooth up to the boundary, our result says that in the ACH category we can always

erase the logarithmic terms. The author predicts that there is a Kähler-like condition to

ACH metrics which revives the scalar-valued obstruction; it might be an interesting topic

of further study.

Our result contradicts a work of N. Seshadri [Se], which states that there are a “primary”

scalar-valued obstruction function and a “secondary” 1-tensor obstruction to the existence

of ACH-Einstein metrics without logarithmic terms. Despite the fact that there is a slight

difference in the definition of ACH metrics, the conflict is not because of it. The work [Se]

contains some crucial calculation errors in §4, where the computation of the Ricci tensor

is carried out. Nevertheless, the influence of Seshadri’s paper on our treatment of ACH-

Einstein metrics is obvious; if it were not for it, this work should have been much harder to

complete.

The paper is organized as follows. We first recall the notion of Θ-structure on a manifold-

with-boundary X , the definition of ACH metric and relevant basic facts in §1. In §2 we

quickly develop a theory of pseudohermitian geometry for partially integrable almost CR

structures. After studying how the Ricci tensor depends on the metric in §3 and §4, we
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prove Theorem 0.1 and Proposition 0.2 in §5. In §6, we calculate the first variation of Oαβ

with respect to the modification of partially integrable almost CR structure from the flat

one and verify that there are abundant examples for which the obstruction tensor does not

vanish. The last section §7 is devoted to an investigation of singular ACH metrics and the

proof of Theorem 0.3.

In this paper the word “smooth” means infinite differentiability. The Einstein sum-

mation convention is used throughout. Parentheses surrounding indices indicate the sym-

metrization. Our convention for the exterior product ω ∧ η of 1-forms is (ω ∧ η)(X,Y ) =

ω(X)η(Y ) − ω(Y )η(X), while for the symmetric product ωη we observe (ωη)(X,Y ) =
1
2 (ω(X)η(Y ) + ω(Y )η(X)).

The author would like to express his gratitude to Kengo Hirachi for guidance to this

interesting research area and continuous encouragement. He also wishes to thank Takao

Akahori, Charles Fefferman, Robin Graham, Colin Guillarmou, Hiraku Nozawa, Raphaël

Ponge and Neil Seshadri for useful advice and discussions.

1. Θ-structure and ACH metric

Let X be a smooth manifold-with-boundary. Consider a 1-form Θ ∈ C∞(∂X, T ∗X |∂X)

defined only on the boundary such that ι∗Θ is nowhere vanishing, where ι : ∂X →֒ X is

the inclusion map. Then a Lie subalgebra VΘ of C∞(X,TX) is defined as follows: for any

boundary defining function ρ, a vector field V is an element of VΘ if and only if

V ∈ ρC∞(X,TX), Θ̃(V ) ∈ ρ2C∞(X).

Here Θ̃ ∈ C∞(X,T ∗X) is any extension of Θ. It is clear that the algebra VΘ depends only

on the conformal class of Θ. Hence it is reasonable to focus on the conformal class of Θ,

which we call a conformal Θ-structure.

Now let X be a (2n + 2)-dimensional manifold-with-boundary with a conformal Θ-

structure [Θ]. There is a canonical vector bundle TXΘ of rank 2n + 2 over X , whose

sections are the elements of VΘ. Over the interior of X it is identified with the usual tangent

bundle TX . To illustrate the structure near p ∈ ∂X , let {N, T, Yj } = {N, T, Y1, . . . , Y2n }

be a local frame of TX in a neighborhood of p dual to a certain local coframe of the form

{ dρ, Θ̃, αj }, where Θ̃ is an extension of some Θ ∈ [Θ]. Then any V ∈ VΘ is, near p,

expressed as

(1.1) V = aρN + bρ2T + cjρYj , a, b, cj ∈ C∞(X).

Hence { ρN, ρ2T, ρYj } extends to a local frame of TXΘ near p ∈ ∂X . The dual local frame

of the bundle T ∗XΘ := ( TXΘ )∗ is { dρ/ρ, Θ̃/ρ2, αj/ρ }. A fiber metric of TXΘ is called a

Θ-metric; we consider those of arbitrary signatures.

Example 1.1. Let Ω ⊂ Cn+1 be a bounded strictly pseudoconvex domain. Then the bound-

ary ∂Ω carries a strictly pseudoconvex CR structure. If r ∈ C∞(Ω) is a boundary defining

function and θ̃ := i
2 (∂r − ∂r), then θ := ι∗θ̃ is a pseudohermitian structure on ∂Ω, where

ι : ∂Ω →֒ Ω is the inclusion map. We consider the complete Kähler metric g0 on Ω with

Kähler form i ∂∂(log(1/r)), which is regarded as a Riemannian metric on Ω as follows:

g0 = 2
∑

j,k

∂2

∂zj∂zk

(

log
1

r

)

(dzj ⊗ dzk + dzk ⊗ dzj) =
1

r2
dr2 +

4

r2
θ̃2 +

2

r
h̃.
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Here we set h̃ := −(∂2r/∂zj∂zk)(dzj ⊗ dzk + dzk ⊗ dzj); note that this is an extension of

the Levi form on the boundary. Let X := Ω1/2 be the square root of Ω in the sense of

[EMM] and ι1/2 : X → Ω the identity map. We define Θ := (ι∗1/2θ̃)|∂X and take ρ :=
√

r/2

as a boundary defining function on X . Then g0 lifts to the following metric on X̊:

(1.2) g := ι∗1/2g0 =
4

ρ2
dρ2 +

1

ρ4
Θ̃2 +

1

ρ2
H̃, Θ̃ = ι∗1/2θ̃, H̃ = ι∗1/2h̃.

The expression (1.2) shows that g extends to a positive-definite Θ-metric on X .

Let Fp, p ∈ ∂X , be the set of vector fields of the form (1.1) with a(p) = b(p) = cj(p) = 0.

Then there is a natural identification between the fiber TpX
Θ of TXΘ at p and the quotient

vector space VΘ/Fp. Since Fp is an ideal, the fiber TpX
Θ is a Lie algebra, which is called

the tangent algebra at p. In the sequel we always further assume that

ι∗[Θ] is a conformal class of a contact form on ∂X ;

then the derived series of TpX
Θ consists of the following subalgebras:

K1,p := 〈ρ2T, ρY1, . . . , ρY2n〉 /Fp, K2,p := 〈ρ2T 〉 /Fp.

Collecting these subspaces we obtain the subbundles K1 and K2 of TXΘ |∂X .

ACH metrics generalize the Θ-metrics coming from complete Kähler metrics as illus-

trated in Example 1.1. The characterizing features are completely described in terms of the

boundary value of g. Our first two assumptions are that

(1.3)

∥

∥

∥

∥

dρ

ρ

∥

∥

∥

∥

g

=
1

2
over ∂X

and

(1.4) g is positive-definite on K2.

It is clear that (1.3) is independent of the choice of a boundary defining function ρ. The

condition (1.4) implies that if we pull ρ4g, regarded as a section of Sym2 T ∗X , back to

∂X then it is equal to the square of some contact form in ι∗[Θ]. If there is a fixed Θ-

metric g satisfying these two conditions, then for any p ∈ ∂X there is a unique orthogonal

decomposition

(1.5) TpX
Θ = Rp ⊕K2,p ⊕ Lp, K1,p = K2,p ⊕ Lp.

The subbundle of TXΘ |∂X whose fiber at p is Lp is denoted by L.

Let H ⊂ T (∂X) be the kernel of ι∗[Θ]. Given a boundary defining function ρ, there is a

vector-bundle isomorphism

(1.6) λρ : H → L, Yp → πp(ρY mod Fp),

where Y ∈ C∞(X,TX) is any extension of Yp ∈ Hp ⊂ Tp(∂X) and πp : K1,p → Lp is the

projection with respect to the decomposition (1.5). By a compatible almost CR structure

for [Θ] we mean any almost CR structure T 1,0 on ∂X such that T 1,0 ⊕ T 1,0 = HC, where

HC is the complexification of H .

Definition 1.2. Let (X, [Θ]) a manifold-with-boundary with a conformal Θ-structure. An

ACH metric on X is a Θ-metric g satisfying (1.3), (1.4) and the following additional con-

ditions:
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(i) For any p ∈ ∂X , if rp ∈ Rp is the vector such that (dρ/ρ)p(rp) = 1, then the map

Lp → TpX
Θ , Zp 7→ [rp, Zp], is equal to the identity onto Lp;

(ii) There is a compatible nondegenerate partially integrable almost CR structure T 1,0

such that, for some (hence for any) boundary defining function ρ and a pseudoher-

mitian structure θ ∈ ι∗[Θ] characterized by ι∗(ρ4g) = θ2, via (1.6) g|L agrees with

the Levi form on H determined by θ.

The condition (i) above is independent of the choice of ρ. On (ii), the assumptions of par-

tial integrability and nondegeneracy are not restrictive here, since if λ∗ρ(g|L) = (dθ)|H(·, J ·)

holds for a compatible almost CR structure (H, J) on ∂X , then (dθ)|H (·, J ·) is symmetric

and hence hermitian, which implies that (H, J) is partially integrable, and its nondegen-

eracy is nothing but the contact condition for ι∗[Θ] that we keep imposing. Furthermore,

because of the contact condition, (H, J) is unique. We say that this nondegenerate partially

integrable almost CR structure is induced by g.

Remark 1.3. Let g be a Θ-metric on (X, [Θ]) satisfying (1.3) and (1.4). We further assume

that we have fixed a local frame {N, T, Yj } around p ∈ ∂X , which is dual to { dρ, Θ̃, αj } for

an extension Θ̃ of some Θ ∈ [Θ], such that Rp = 〈ρN〉 /Fp and [N, T ] = [N, Yj ] = 0. Then,

since rp = (ρN)p and [ρN, ρ2T ] = 2ρ2T , [ρN, ρYj ] = ρYj mod Fp, the map Lp → TpX
Θ ,

Zp 7→ [rp, Zp] is the identity if and only if Lp = 〈ρY1, . . . , ρY2n〉 /Fp.

A distinguished local frame { ξ∞, ξ0, ξα, ξα } for an ACH metric g is a local frame of TXΘ

near a point on ∂X such that, if restricted on each p ∈ ∂X , (ξ∞)p generates Rp, (ξ0)p
generates K2,p, (ξ1)p, . . . , (ξn)p span T 1,0

p ⊂ (Hp)C of the induced almost CR structure,

where H and L are identified via (1.6), and ξα = ξα.

Proposition 1.4. Let Ω ⊂ Cn+1 be a bounded strictly pseudoconvex domain. Then, for

any choice of boundary defining function r ∈ C∞(Ω), the Θ-metric (1.2) on the square root

X of Ω is an ACH metric.

Proof. The first two conditions (1.3) and (1.4) are clear from (1.2). To check the other

conditions, we identify an open neighborhood of ∂Ω ⊂ Ω with ∂Ω × [0, 2ǫ2), where the

coordinate function for the second factor is equal to r. Then an open neighborhood of

∂X ⊂ X is identified with ∂X× [0, ǫ)ρ, where 2ρ
2 = r. Since θ̃ = θ+O(r) and h̃ = h+O(r),

where θ and h are extended in such a way that θ(∂r) = 0, h(∂r, ·) = 0 and constantly in the

r-direction, we have Θ̃ = θ+O(ρ2) and H̃ = h+O(ρ2). Let T be a vector field on ∂X such

that θ(T ) = 1 and Y1, . . . , Y2n a local frame of ker θ, and we extend them in the ρ-direction

constantly. If we further set N := ∂ρ, then {N, T, Yj } is a local frame of T (∂X × [0, ǫ)ρ)

satisfying [N, T ] = [N, Yj ] = 0. We can see that (ρN)p is orthogonal to ker(dρ/ρ)p for each

p ∈ ∂X . Hence, by Remark 1.3, (i) of Definition 1.2 holds if and only if (ρ2T )p is orthogonal

to 〈ρY1, . . . , ρY2n〉 /Fp, which is also easily verified. Finally, again from (1.2) we see that

g|L is identified with the Levi form determined by θ via (1.6). �

For a Θ-metric on X satisfying (1.3) and (1.4), there is a special boundary defining

function, which is called a model boundary defining function, as shown below.

Lemma 1.5. Let (X, [Θ]) be a manifold-with-boundary with a conformal Θ-structure and

g a Θ-metric on X satisfying (1.3), (1.4). Then, for any θ ∈ ι∗[Θ], there exists a boundary
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defining function ρ such that

(1.7)

∥

∥

∥

∥

dρ

ρ

∥

∥

∥

∥

g

=
1

2
near ∂X

and ι∗(ρ4g) = θ2. The germ of ρ along ∂X is unique.

Proof. This is given in [GuSá], but for readers’ convenience we include a proof. Let ρ′ be

any boundary defining function and set ρ = eψρ′. Then ‖dρ/ρ‖g = 1/2 is equivalent to

(1.8)
2Xρ′

ρ′
ψ + ρ

∥

∥

∥

∥

dψ

ρ′

∥

∥

∥

∥

2

g

=
1

ρ′

(

1

4
−

∥

∥

∥

∥

dρ′

ρ′

∥

∥

∥

∥

2

g

)

,

where Xρ′ = ♯g(dρ
′/ρ′) is the dual of dρ′/ρ′ with respect to g. If we express Xρ′ in

the form (1.1), then the assumption (1.3) implies that a = 1/4 on ∂X . Hence (1.8) is

a noncharacteristic first-order PDE. After prescribing the boundary value of ψ so that

ι∗(ρ4g) = θ2 is satisfied, we obtain a unique solution of (1.8) near ∂X . �

Fix any contact form θ ∈ ι∗[Θ] on ∂X . Let ρ be a model boundary defining function and

Xρ := ♯g(dρ/ρ). We consider the smooth map induced by the flow Flt of the vector field

4Xρ/ρ, which is transverse to ∂X :

Φ: (an open neighborhood of ∂X × { 0 } in ∂X × [0,∞)) → X, (p, t) 7→ Flt(p).

This is a diffeomorphism onto its image fixing the boundary (where ∂X × { 0 } is iden-

tified with ∂X). The map Φ can be seen as a map between manifolds-with-boundary

carrying conformal Θ-structures; ∂X × [0,∞)t carries a standard Θ-structure, which is

also denoted by θ and is given by extending θ in such a way that θ(∂t) = 0. Since

Θ̃(4Xρ/ρ) = 4ρ g(dρ/ρ, Θ̃/ρ2) = O(ρ), we conclude that Φ preserves the conformal Θ-

structures. By this construction t∂t is orthogonal to ker(dt/t) with respect to the induced

Θ-metric Φ∗g, and we also remark here the fact that t = Φ∗ρ, which implies that the func-

tion t is a model boundary defining function for Φ∗g and θ. In particular, any ACH metric

is identified, via a boundary-fixing diffeomorphism preserving conformal Θ-structures, with

an ACH metric g defined near the boundary of ∂X × [0,∞)ρ for which ρ∂ρ ⊥g ker(dρ/ρ)

and the second coordinate function ρ is a model boundary defining function. Hence it is

enough to consider the ACH metrics of the following form.

Definition 1.6. Let (M,T 1,0, θ) be a nondegenerate partially integrable almost CR man-

ifold with a fixed pseudohermitian structure, i.e., a pseudohermitian manifold. Then M ×

[0,∞)ρ carries the standard Θ-structure. Let ι : M = M × { 0 } →֒ M × [0,∞) be the

inclusion map. A normal-form ACH metric g is an ACH metric defined near the boundary

of M × [0,∞)ρ satisfying the following conditions:

(i) ρ∂ρ is orthogonal to ker(dρ/ρ) with respect to g;

(ii) ρ is a model boundary defining function for g and θ;

(iii) g induces the partially integrable CR structure T 1,0 on M =M × { 0 }.

Proposition 1.7. Let (M,T 1,0, θ) be a pseudohermitian manifold and X an open neighbor-

hood ofM =M×{ 0 } inM×[0,∞) carrying the standard Θ-structure. Let {Zα } in general
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denote a local frame of T 1,0 and { θα } a family of 1-forms on M satisfying θβ(Zα) = δ β
α .

Then a Θ-metric g on X is a normal-form ACH metric if and only if it is of the form

(1.9)

g = 4

(

dρ

ρ

)2

+ g00

(

θ

ρ2

)2

+2g0α
θ

ρ2
θα

ρ
+2g0α

θ

ρ2
θα

ρ
+2g

αβ

θα

ρ

θβ

ρ
+ gαβ

θα

ρ

θβ

ρ
+ g

αβ

θα

ρ

θβ

ρ
,

where θ and θα are extended in such a way that θ(∂ρ) = 0, θα(∂ρ) = 0 and constantly in

the ρ-direction, and satisfies

(1.10) g00 |ρ=0 = 1, g0α|ρ=0 = 0, g
αβ

|ρ=0 = h
αβ

and gαβ |ρ=0 = 0,

where h
αβ

is the Levi form associated to θ.

Proof. The condition ρ∂ρ ⊥g ker(dρ/ρ), together with (1.3), implies that g is of the form

(1.9). The second coordinate ρ is a model boundary defining function for g and θ if and

only if g00|ρ=0 = 1. By Remark 1.3, the condition (i) in Definition 1.2 is equivalent to

g0α|ρ=0 = 0 in the current setting. Since g induces T 1,0, the condition (ii) in Definition

1.2 is equivalent to g
αβ

|ρ=0 = h
αβ

and gαβ |ρ=0 = 0. Conversely, if g
αβ

|ρ=0 = h
αβ

and

gαβ |ρ=0 = 0 then g induces T 1,0 by the uniqueness of induced partially integrable almost

CR structures. �

2. Pseudohermitian geometry

Let (M,T 1,0) be a nondegenerate partially integrable almost CR manifold. In the pres-

ence of a fixed pseudohermitian structure θ, there is a canonical direct sum decomposition

of TCM :

TCM = CT ⊕ T 1,0 ⊕ T 0,1.

Here T , the Reeb vector field, is characterized by

θ(T ) = 1, T ⌋ dθ = 0.

If {Zα } is a local frame of T 1,0, the admissible coframe { θα } is defined in such a way

that θα(Zβ) = δ α
β and θα|CT⊕T 0,1 = 0. This makes { θ, θα, θα } into the dual coframe of

{T, Zα, Zα }. The index 0 is used for components corresponding with T or θ.

The Tanaka–Webster connection is described by the following proposition. The proof

goes in the same manner as in the integrable case, e.g., Proposition 3.1 in [Tnk].

Proposition 2.1. On a nondegenerate partially integrable almost CR manifold (M,T 1,0)

with a fixed pseudohermitian structure θ, there is a unique connection ∇ on TM satisfying

the following conditions:

(i) H, T , J , h are all parallel with respect to ∇;

(ii) The torsion tensor Θ(X,Y ) := ∇XY −∇YX − [X,Y ] satisfies

(2.1)

{

Θ(X,Y ) + Θ(JX, JY ) = 2 dθ(X,Y )T, X, Y ∈ Γ(H),

Θ(T, JX) = −JΘ(T,X), X ∈ Γ(H).
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The components Θ 0
αβ , Θ γ

αβ , Θ γ
αβ of the torsion are not visible in (2.1). Following the

argument in the integrable case the first two are shown to be zero. One immediately sees

from the definition that the last one is related to the Nijenhuis tensor by

Θ γ
αβ = −N γ

αβ (and Θ γ

αβ
= −N γ

αβ
).

The other nonzero components of the torsion are

Θ 0
αβ

= ih
αβ
, Θ β

0α = −Θ β
α0 =: A β

α

and their complex conjugates. We call A β
α the Tanaka–Webster torsion tensor.

Remark 2.2. There is another generalization of the Tanaka–Webster connection to the

partially integrable case given by Tanno [Tno], which is also used in [BaD], [BlD] and [Se].

Our generalization is different from it in that ours preserves J , which facilitates the whole

argument below, and that Θ γ
αβ is generally nonzero instead. It seems that our connection

is first considered by R. I. Mizner [Mi].

The first structure equation is as follows:

dθ = ih
αβ
θα ∧ θβ ,(2.2)

dθγ = θα ∧ ω γ
α −A γ

α θα ∧ θ − 1
2N

γ

αβ
θα ∧ θβ .(2.3)

Let {ω β
α } be the connection forms of the Tanaka–Webster connection. Without any

modification the proof of Lemma 2.1 in [L2] applies to the partially integrable case and we

obtain the following lemma.

Lemma 2.3. In a neighborhood of any point p ∈M there exists a frame {Zα } of T 1,0 for

which ω β
α (p) = 0 holds.

With such a local frame, it is easy to relate exterior derivatives with covariant derivatives.

For example, one immediately sees that the exterior derivative of a (1, 0)-form σ = σαθ
α is

given by

dσ = σα,βθ
β ∧ θα + σ

α,β
θβ ∧ θα + σα,0θ ∧ θ

α −A α
β
σαθ

β ∧ θ − 1
2N

α
βγ

σαθ
β ∧ θγ .

Here covariant derivatives of tensors are denoted by indices after commas. This notation

will be used in the sequel. In the case of covariant derivatives of a scalar-valued function

we omit the comma; e.g., ∇αu = uα and ∇
β
∇αu = u

αβ
.

Proposition 2.4. We have

Aαβ = Aβα,(2.4)

Nαβγ +Nβαγ = 0, Nαβγ +Nβγα +Nγαβ = 0.(2.5)

Proof. By differentiating (2.2) and considering types we obtain (2.4) and N[αβγ] = 0 (where

the square brackets denotes skew-symmetrization). The first identity of (2.5) is obvious from

the definition of the Nijenhuis tensor, and it thereby proves the second one. �

Lemma 2.5. The second covariant derivatives of a scalar-valued function u satisfy the

following:

(2.6) u
αβ

− u
βα

= ih
αβ
u0, uαβ − uβα = −N γ

αβ uγ , u0α − uα0 = A β
α u

β
.
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Proof. The same argument as the one in [L2] applies to our case. �

Next we shall study the curvature RTW(X,Y ) = ∇X∇Y − ∇Y∇X − ∇[X,Y ]. If we set

Π β
α = dω β

α − ω γ
α ∧ ω β

γ , it holds that RTW(X,Y )Zα = Π β
α (X,Y )Zβ . We put

(2.7) Π
αβ

= R
αβστ

θσ ∧ θτ +W
αβγ

θγ ∧ θ +W
αβγ

θγ ∧ θ + V
αβστ

θσ ∧ θτ + V
αβστ

θσ ∧ θτ ,

where V β
α (στ) = V β

α (στ) = 0. Since ∇h = 0 we have Π
αβ

+Π
βα

= 0, and hence

(2.8) R
αβστ

= R
βατσ

, W
αβγ

= −W
βαγ

, V
αβστ

= −V
βαστ

.

We substitute (2.7) into the exterior derivative of (2.3) and compare the coefficients to

obtain

R
αβστ

−R
σβατ

= −N γ
ασ N

τγβ
,(2.9a)

W
αβγ

= A
αγ,β

−NγσαA
σ
β
, V

αβστ
= i

2 (hσβAατ − h
τβ
Aασ) +

1
2Nστα,β .(2.9b)

The component R
αβρσ

is called the Tanaka–Webster curvature tensor. We put R
αβ

:=

R γ

γ αβ
and R := R α

α . It is seen from the first identity of (2.8) that R
αβ

= R
βα

, and from

(2.9a) we have

(2.10) R γ

α γβ
= R

αβ
−Nαστ N

τσ
β

.

As we have discussed above, a choice of a pseudohermitian structure θ defines the Tanaka–

Webster connection and supplies various pseudohermitian invariants. If a certain pseudo-

hermitian invariant is also conserved by any change of pseudohermitian structure, it is

called a CR invariant (rigorously speaking we should say “partially-integrable-almost-CR

invariant,” but we prefer the shorter expression). To investigate such invariants, we need

the transformation law of the connection and relevant quantities.

Proposition 2.6. Let θ and θ̂ = e2uθ, u ∈ C∞(M), be two pseudohermitian structures

on a nondegenerate partially integrable almost CR manifold (M,T 1,0). Then, the Tanaka–

Webster connection forms, the torsions and the Ricci tensors are related as follows:

ω̂ β
α = ω β

α + 2(uαθ
β − uβθα) + 2δ β

α uγθ
γ + 2i(uβα + 2uαu

β + 2δ β
α uγu

γ)θ,(2.11)

Âαβ = Aαβ + i(uαβ + uβα)− 4iuαuβ + i(Nγαβ +Nγβα )u
γ ,(2.12)

R̂
αβ

= R
αβ

− (n+ 2)(u
αβ

+ u
βα

)−
(

u γ
γ + uγγ + 4(n+ 1)uγu

γ
)

h
αβ
.(2.13)

Proof. The new Reeb vector field is T̂ = e−2u(T − 2iuαZα + 2iuαZα ) and the admissible

coframe dual to {Zα } is { θ̂α = θα + 2iuαθ }. To establish (2.11) and (2.12), it is enough

to check that

dĥ
αβ

= ĥ
γβ
ω̂ γ
α + ĥαγω̂

γ

β

and

dθ̂γ = θ̂α ∧ ω̂ γ
α − ĥγβÂ

αβ
θ̂α ∧ θ̂ − 1

2N
γ

αβ
θ̂α ∧ θ̂β .

They are shown straightforward using (2.6).
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We compute Π̂ γ
γ = dω̂ γ

γ modulo θ̂α ∧ θ̂β , θ̂α ∧ θ̂β , θ̂, or equivalently, modulo θα ∧ θβ ,

θα ∧ θβ , θ. By the first identity of (2.6) we obtain that, modulo θ̂α ∧ θ̂β , θ̂α ∧ θ̂β , θ̂,

Π̂ γ
γ ≡ Π γ

γ −
[

(n+ 2)(u
αβ

+ u
βα

) +
(

u γ
γ + u γ

γ + 4(n+ 1)uγu
γ
)

h
αβ

]

θα ∧ θβ

≡
[

R
αβ

− (n+ 2)(u
αβ

+ u
βα

)−
(

u γ
γ + u γ

γ + 4(n+ 1)uγu
γ
)

h
αβ

]

θ̂α ∧ θ̂β .

This proves (2.13). �

Finally we sketch the concept of density bundles following [GoGr]. Let us assume that

we have fixed a complex line bundle E(1, 0) over M together with a duality between

E(1, 0)⊗(n+2) and the canonical bundle K. Such a choice may not exist globally, but

locally it does; when we use density bundles we restrict our scope to the local theory. Then

E(w, 0) is the wth tensor power of E(1, 0), and we set

E(w,w′) = E(w, 0)⊗ E(0, w′), w, w′ ∈ Z,

where E(0, w′) := E(w′, 0). We call E(w,w′) the density bundle of biweight (w,w′). Since

there is a specified isomorphism E(−n − 2, 0) ∼= K, we can define a connection ∇ on

E(w,w′) so that it is compatible with the Tanaka–Webster connection on K. The space

of local sections of E(w,w′) is denoted by E(w,w′). (However we use the density bundles

of integral biweights only, one can also consider those of complex biweights (w,w′) with

w − w′ ∈ Z. See [GoGr] or [ČGo].)

F. Farris [Fa] observed that, if ζ is a locally defined nonvanishing section of K, there

is a unique pseudohermitian structure θ satisfying (0.5). If we replace ζ with λζ, λ ∈

C∞(M,C×), then θ is replaced by |λ|2/(n+2)θ. We set

|ζ|
2/(n+2)

= ζ1/(n+2) ⊗ ζ
1/(n+2)

∈ E(−1,−1),

which is independent of the choice of the (n+2)nd root of ζ and is in one-to-one correspon-

dence with θ, and define |ζ|−2/(n+2) ∈ E(1, 1) as its dual. Then we obtain a CR-invariant

section θ := θ ⊗ |ζ|−2/(n+2) of T ∗M ⊗ E(1, 1).

The Levi form h is a section of the bundle (T 1,0)∗ ⊗ (T 0,1)∗, which is also denoted

by E
αβ

using abstract indices α and β. Since h
αβ

and θ have the same scaling factor,

h
αβ

:= h
αβ

⊗|ζ|−2/(n+2) ∈ E
αβ

(1, 1) is a CR-invariant section of E
αβ

(1, 1) := E
αβ

⊗E(1, 1).

Its dual is hαβ ∈ Eαβ(−1,−1). Indices of density-weighted tensors are lowered and raised

by h
αβ

and hαβ .

One can show that ∇θ and ∇h are both zero. To see this it is enough to show that

∇|ζ|2 = 0, which follows from ∇h = 0. For details see the proof of Proposition 2.1 in

[GoGr].

The density-weighted versions of the Nijenhuis tensor, the Tanaka–Webster torsion tensor

and the curvature tensor are defined by

N
γ

αβ := N γ
αβ ∈ E γ

αβ , Aαβ := Aαβ ∈ Eαβ ,

R
αβστ

:= R
αβστ

⊗ |ζ|
−2/(n+2)

∈ E
αβστ

(1, 1).
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When dealing with density-weighted tensors, we let ∇α, ∇α and ∇
0
denote the compo-

nents of ∇ relative to θα, θα and θ. Since the transformation law (2.11) of the Tanaka–

Webster connection forms does not contain the Nijenhuis tensor, equation (2.7) and Propo-

sition 2.3 in [GoGr] also hold in the partially integrable case. Using them we can derive the

transformation law of any covariant derivative of any density-weighted tensor.

3. Ricci tensor and some low-order terms

Let M be a nondegenerate partially integrable almost CR manifold with a fixed pseudo-

hermitian structure θ and X an open neighborhood of M =M × { 0 } in M × [0,∞)ρ. We

take a local frame

(3.1) { ρ∂ρ, ρ
2T, ρZα, ρZα }

of TXΘ , where T is the Reeb vector field associated to θ and {Zα } is a local frame of T 1,0,

both extended constantly in the ρ-direction. The corresponding indices are ∞, 0, 1, . . . , n,

1, . . . , n. The local frame (3.1) is denoted by { ξI } if needed.

Rule for the index notation. The following rule is observed for the index notation in the

sequel, except in the proof of Proposition 5.5:

• α, β, γ, σ, τ run { 1, . . . , n } and α, β, γ, σ, τ run { 1, . . . , n };

• i, j, k run { 0, 1, . . . , n, 1, . . . , n };

• I, J , K, L run {∞, 0, 1, . . . , n, 1, . . . , n }.

Lowercase Greek indices and their complex conjugates are raised and lowered by the Levi

form unless otherwise stated.

We consider a normal-form ACH metric on X , i.e., a Θ-metric g satisfying

g∞∞ = 4, g∞0 = 0, g∞α = 0,

g00 = 1 +O(ρ), g0α = O(ρ), g
αβ

= h
αβ

+O(ρ), gαβ = O(ρ),
(3.2)

where h
αβ

is the Levi form. Note that { ξI } is a distinguished local frame for g, θ. We shall

compute the Ricci tensor of g and the Einstein tensor Ein := Ric+ 1
2 (n + 2)g. Our goal in

this section is the following proposition. By abuse of notation, in what follows we use the

same symbol for a tensor on M and its constant extension in the ρ-direction.

Proposition 3.1. The Einstein tensor EinIJ of a normal-form ACH metric g is O(ρ3) if

and only if

g00 = 1 +O(ρ3), g0α = O(ρ3),

g
αβ

= h
αβ

+ ρ2Φ
αβ

+O(ρ3), gαβ = ρ2Φαβ +O(ρ3),
(3.3)

where

Φ
αβ

= −
2

n+ 2

(

R
αβ

− 2NαστN
τσ

β
−

1

2(n+ 1)
(R − 2NγστN

γτσ)h
αβ

)

,

Φαβ = −2iAαβ −
2

n
(N γ

γαβ, +N γ
γβα, ).

(3.4)
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The functions ϕij are defined by

(3.5) g00 = 1 + ϕ00, g0α = ϕ0α, g
αβ

= h
αβ

+ ϕ
αβ
, gαβ = ϕαβ .

The totality of (ϕij) is seen as a symmetric 2-tensor onM with coefficients in C∞(X) using

the frame {T, Zα, Zα }. Hence the action of the Tanaka–Webster connection operator ∇ on

(ϕij) is naturally defined.

We define a connection ∇ on TX , which is “the trivial extension of ∇,” by setting

∇ZW = ∇ZW for vector fields Z, W on M and

∇∂ρ = 0, ∇∂ρT = ∇∂ρZα = 0.

The connection forms of ∇ with respect to the frame { ξI } are given by

(3.6) ω ∞
∞ =

dρ

ρ
, ω 0

0 = 2
dρ

ρ
, ω β

α = ω β
α + δ β

α

dρ

ρ
,

where ω β
α are the connection forms of ∇ with respect to {Zα }. The torsion Θ of ∇ is

Θ
∞

IJ = Θ
0

∞∞ = Θ
0

0I = Θ
γ

∞I = Θ
γ

00 = Θ
β

0α = Θ
γ

αβ = Θ
γ

αβ = 0,

Θ
0

αβ = ih
αβ
, Θ

β

0α = ρ2A β
α , Θ

γ

αβ = −ρN γ
αβ ;

(3.7)

the Ricci tensor of ∇, defined by RIJ := R
K

I KJ , is given by

R∞I = RI∞ = R0I = RI0 = 0,

Rαβ = ρ2(R
αβ

−Nαστ N
τσ

β
), Rαβ = ρ2

(

i(n− 1)Aαβ +N γ
γβα,

)

.
(3.8)

We sometimes reinterpret a tensor on X as a set of tensors on M with coefficient in

C∞(X). For example, a symmetric 2-tensor SIJ is also regarded as the composed object

of a scalar-valued function S∞∞ , a 1-tensor S∞i and a 2-tensor Sij , with coefficients in

C∞(X). Thus ∇ can be applied to SIJ = (S∞∞ , S∞i , Sij ). Let #(I1, . . . , IN ) := N +

(the number of 0’s in I1, . . . , IN ). Then, from (3.6) we have the following formulae:

(3.9) ∇∞SIJ = (ρ∂ρ −#(I, J))SIJ , ∇0SIJ = ρ2∇0SIJ , ∇αSIJ = ρ∇αSIJ ;

on the left-hand sides of the equalities { ρ∂ρ, ρ
2T, ρZα, ρZα } is used for covariant differen-

tiation, while on the right-hand sides {T, Zα, Zα } is used.

We set ∇g
ξJ
ξI = ∇ξJ ξI + D K

I J ξK , where ∇g is the Levi-Civita connection of g. Then

the Ricci tensor of g is given by

(3.10) RicIJ = RIJ +∇KD
K
I J −∇JD

K
I K −D L

I KD
K

J L +D L
I JD

K
L K .

Thus the calculation of the Ricci tensor essentially reduces to that ofD K
I J . We can compute

DIKJ := gKLD
L
I J by the formula

DIKJ = 1
2 (∇IgJK +∇JgIK −∇KgIJ +ΘIKJ +ΘJKI +ΘIJK),

where ΘIJK := gKLΘ
L

IJ . The result is given in Table 3.1.

To prove Proposition 3.1, it is enough to calculate everything modulo O(ρ3). However,

for later use, we shall carry out more precise computation. What we allow ourselves to

neglect are

(N1) any term at least quadratic in ϕij,k... with O(1) coefficients,
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Type Value

D
∞∞∞

−4

D
∞0∞ 0

D
∞α∞

0

D
∞∞0 0

D
∞00 −2 + 1

2
(ρ∂ρ − 4)ϕ00

D
∞α0

1
2
(ρ∂ρ − 3)ϕ0α

D
∞∞α 0

D
∞0α

1
2
(ρ∂ρ − 3)ϕ0α

D
∞βα

−h
αβ

+ 1
2
(ρ∂ρ − 2)ϕ

αβ

D
∞βα

1
2
(ρ∂ρ − 2)ϕαβ

D0∞0 2− 1
2
(ρ∂ρ − 4)ϕ00

D000
1
2
ρ2∇0ϕ00

D0α0 −
1
2
ρ∇αϕ00 + ρ2(∇0ϕ0α + A β

α ϕ
0β
)

D0∞α −
1
2
(ρ∂ρ − 3)ϕ0α

D00α
1
2
ρ∇αϕ00

D
0βα

i
2
h
αβ

+ i
2
h
αβ
ϕ00 +

1
2
ρ(∇αϕ0β

−∇
β
ϕ0α) +

1
2
ρ2(∇0ϕαβ

+ A γ
α ϕ

βγ
+A

γ

β
ϕαγ)

D0βα ρ2Aαβ + 1
2
ρ(∇αϕ0β −∇βϕ0α −N

γ
αβ ϕ0γ) +

1
2
ρ2(∇0ϕαβ + A γ

α ϕβγ +A
γ

β ϕαγ)

Dα∞0 −
1
2
(ρ∂ρ − 3)ϕ0α

Dα00
1
2
ρ∇αϕ00 − ρ2A β

α ϕ
0β

D
αβ0

i
2
h
αβ

+ i
2
h
αβ
ϕ00 +

1
2
ρ(∇αϕ0β

−∇
β
ϕ0α) +

1
2
ρ2(∇0ϕαβ

− A γ
α ϕ

βγ
+A

γ

β
ϕαγ)

Dαβ0
1
2
ρ(∇αϕ0β −∇βϕ0α −N

γ
αβ ϕ0γ) +

1
2
ρ2(∇0ϕαβ −A γ

α ϕβγ + A
γ

β ϕαγ)

D
α∞β

h
αβ

−
1
2
(ρ∂ρ − 2)ϕ

αβ

D
α0β

i
2
h
αβ

+ i
2
h
αβ
ϕ00 +

1
2
ρ(∇αϕ0β

+∇
β
ϕ0α)−

1
2
ρ2(∇0ϕαβ

+ A γ
α ϕ

βγ
+A

γ

β
ϕαγ)

D
αγβ

i
2
(hαγϕ0β

+ h
αβ
ϕ0γ) +

1
2
ρ(∇αϕβγ

+∇
β
ϕαγ −∇γϕαβ

−N σ

βγ
ϕασ)

D
αγβ

−
i
2
(h

γβ
ϕ0α − h

αβ
ϕ0γ) +

1
2
ρ(∇αϕγβ

+∇
β
ϕαγ −∇γϕαβ

−N σ
αγ ϕ

βσ
)

Dα∞β −
1
2
(ρ∂ρ − 2)ϕαβ

Dα0β −ρ2Aαβ + 1
2
ρ(∇αϕ0β +∇βϕ0α +N

γ
αβ ϕ0γ)−

1
2
ρ2(∇0ϕαβ +A γ

α ϕβγ + A
γ

β ϕαγ)

Dαγβ
i
2
(hαγϕ0β + hβγϕ0α) +

1
2
ρ(∇αϕβγ +∇βϕαγ −∇γϕαβ −N σ

αβ ϕγσ)

Dαγβ −ρNαγβ + 1
2
ρ(∇αϕβγ +∇βϕαγ −∇γϕαβ −N σ

αβ ϕγσ −N σ
αγ ϕβσ −N σ

βγ ϕασ)

Table 3.1. DIKJ for a normal-form ACH metric g. D0K∞ and DαK∞

are omitted; we have D0K∞ = D∞K0 and DαK∞ = D∞Kα
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(N2) any term linear in ϕ00,k..., ϕ0α,k..., ϕ0α,k... or ϕαβ,k... with O(ρ) coefficients which

vanish in the case of the CR sphere with standard pseudohermitian structure, and

(N3) any term linear in ϕαβ,k... or ϕαβ,k... with O(ρ2) coefficients which vanish in the

case of the CR sphere with standard pseudohermitian structure.

Modulo terms of type (N1), gIJ is given by

g∞∞ ≡ 1
4 , g∞0 ≡ g∞α = 0,

g00 ≡ 1− ϕ00, g0α ≡ −ϕ α
0 , gαβ ≡ hαβ − ϕαβ , gαβ ≡ −ϕαβ .

(3.11)

By these formulae and Table 3.1, we compute D K
I J modulo terms of type (N1)–(N3) using

the equality D K
I J = gKLDILJ . Table 3.2 is the result.

Finally we can show the following formulae for the Einstein tensor. We define the sub-

laplacian by ∆b := −(∇α∇α +∇α∇α).

Lemma 3.2. The Einstein tensor of an ACH metric g is, modulo terms of type (N1)–(N3),

Ein∞∞ ≡ − 1
2ρ∂ρ(ρ∂ρ − 4)ϕ00 − ρ∂ρ(ρ∂ρ − 2)ϕ α

α ,

Ein∞0 ≡ 1
2ρ(ρ∂ρ + 1)(∇αϕ0α +∇αϕ0α)− ρ2(ρ∂ρ + 1)∇0ϕ

α
α ,

Ein∞α ≡ − i
2 (ρ∂ρ + 1)ϕ0α − 1

2ρ(ρ∂ρ − 1)∇αϕ00 − ρ2∂ρ∇αϕ
β
β

+ 1
2ρ

2∂ρ(∇
βϕ

αβ
+∇βϕαβ) +

1
2ρ

2∂ρN
βγ

α ϕ
βγ

+ 1
2ρ

2(ρ∂ρ − 1)∇0ϕ0α,

Ein00 ≡ − 1
8

(

(ρ∂ρ)
2 − (2n+ 4)ρ∂ρ − 4n

)

ϕ00 +
1
2 (ρ∂ρ − 2)ϕ α

α

+ iρ(∇αϕ0α −∇αϕ0α) +
1
2ρ

2∆bϕ00 + ρ3(∇0∇
αϕ0α +∇0∇

αϕ0α)− ρ4∇0∇0ϕ
α
α

Ein0α ≡ ρ3A β
αβ, + ρ3N βγ

α A
βγ

− 1
8 (ρ∂ρ + 1)(ρ∂ρ − 2n− 3)ϕ0α

+ 3i
4 ρ∇αϕ00 +

i
2ρ∇αϕ

β
β − iρ∇βϕ

αβ
+ 1

2ρ
2∆bϕ0α − i

2ρ
2∇0ϕ0α

+ 1
2ρ

2(∇α∇
βϕ0β +∇α∇

βϕ
0β
)− ρ3∇0∇αϕ

β
β + 1

2ρ
3(∇0∇

βϕ
αβ

+∇0∇
βϕαβ),

Ein
αβ

≡ ρ2R
αβ

− 2ρ2N γ
α ρN

ρ

β γ
− 1

8

(

(ρ∂ρ)
2 − (2n+ 2)ρ∂ρ − 8

)

ϕ
αβ

+ 1
8hαβ(ρ∂ρ − 4)ϕ00 +

1
4hαβρ∂ρϕ

γ
γ + iρ(∇αϕ0β

−∇
β
ϕ0α)

− i
4ρ

2h
αβ

∇0ϕ00 −
i
2ρ

2h
αβ

∇0ϕ
γ
γ − 1

2ρ
2∇α∇β

ϕ00 − ρ2∇α∇β
ϕ γ
γ

+ 1
2ρ

2(∆bϕαβ +∇α∇
γϕ

βγ
+∇α∇

γϕ
βγ

+∇
β
∇γϕαγ +∇

β
∇γϕαγ)

+ 1
2ρ

3(∇0∇αϕ0β
+∇0∇β

ϕ0α)−
1
2ρ

4∇0∇0ϕαβ ,

Einαβ ≡ inρ2Aαβ + ρ2(N γ
γαβ, +N γ

γβα, )− ρ4Aαβ,0 −
1
8ρ∂ρ(ρ∂ρ − 2n− 2)ϕαβ

− 1
2ρ

2∇α∇βϕ00 − ρ2∇α∇βϕ
γ
γ

+ 1
2ρ

2(∆bϕαβ +∇α∇
γϕβγ +∇α∇

γϕβγ +∇β∇
γϕαγ +∇β∇

γϕαγ + 2i∇0ϕαβ)

+ 1
2ρ

3(∇0∇αϕ0β +∇0∇βϕ0α)−
1
2ρ

4∇0∇0ϕαβ .

Proof. Using Table 3.2 we compute, modulo terms of type (N1)–(N3),

∇KD
K
I J , ∇JD

K
I K , D L

I KD
K

J L and D L
I JD

K
L K

to obtain Tables 3.3–3.6. Then, from (3.8) and (3.10), the lemma follows. �
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Type Value (modulo terms of type (N1)–(N3))

D ∞

∞ ∞
−1

D 0
∞ ∞

0

D α
∞ ∞

0

D ∞

∞ 0 0

D 0
∞ 0 −2 + 1

2
ρ∂ρϕ00

D α
∞ 0

1
2
(ρ∂ρ + 1)ϕ α

0

D ∞

∞ α 0

D 0
∞ α

1
2
(ρ∂ρ − 1)ϕ0α

D β
∞ α −δ β

α + 1
2
ρ∂ρϕ

β
α

D β
∞ α

1
2
ρ∂ρϕ

β
α

D ∞

0 0
1
2
−

1
8
(ρ∂ρ − 4)ϕ00

D 0
0 0

1
2
ρ2∇0ϕ00

D α
0 0 −

1
2
ρ∇αϕ00 + ρ2∇0ϕ

α
0

D ∞

0 α −
1
8
(ρ∂ρ − 3)ϕ0α

D 0
0 α −

i
2
ϕ0α + 1

2
ρ∇αϕ00

D
β

0 α
i
2
δ β
α + i

2
δ β
α ϕ00 −

i
2
ϕ β

α + 1
2
ρ(∇αϕ

β
0 −∇

βϕ0α) +
1
2
ρ2∇0ϕ

β
α

D
β

0 α ρ2A β
α −

i
2
ϕ β

α + 1
2
ρ(∇αϕ

β
0 −∇

βϕ0α) +
1
2
ρ2∇0ϕ

β
α

D ∞

α 0 −
1
8
(ρ∂ρ − 3)ϕ0α

D 0
α 0 −

i
2
ϕ0α + 1

2
ρ∇αϕ00

D
β

α 0
i
2
δ β
α + i

2
δ β
α ϕ00 −

i
2
ϕ β

α + 1
2
ρ(∇αϕ

β
0 −∇

βϕ0α) +
1
2
ρ2∇0ϕ

β
α

D
β

α 0 −
i
2
ϕ β

α + 1
2
ρ(∇αϕ

β
0 −∇

βϕ0α) +
1
2
ρ2∇0ϕ

β
α

D ∞

α β

1
4
h
αβ

−
1
8
(ρ∂ρ − 2)ϕ

αβ

D 0
α β

i
2
h
αβ

+ 1
2
ρ(∇αϕ0β

+∇
β
ϕ0α)−

1
2
ρ2∇0ϕαβ

D
γ

α β

i
2
δ γ
α ϕ

0β
+ 1

2
ρ(∇αϕ

γ

β
+∇

β
ϕ γ

α −∇
γϕ

αβ
)− 1

2
ρN

γσ

β
ϕασ

D
γ

α β
−

i
2
δ

γ

β
ϕ0α + 1

2
ρ(∇αϕ

γ

β
+∇

β
ϕ γ

α −∇
γϕ

αβ
)− 1

2
ρN γσ

α ϕ
βσ

D ∞

α β −
1
8
(ρ∂ρ − 2)ϕαβ

D 0
α β −ρ2Aαβ + 1

2
ρ(∇αϕ0β +∇βϕ0α)−

1
2
ρN

γ
αβ ϕ0γ −

1
2
ρ2∇0ϕαβ

D
γ

α β
i
2
(δ γ

α ϕ0β + δ
γ

β ϕ0α) +
1
2
ρ(∇αϕ

γ
β +∇βϕ

γ
α −∇

γϕαβ)−
1
2
ρN σ

αβ ϕ
γ

σ

D
γ

α β −ρN
γ

α β + 1
2
ρ(∇αϕ

γ
β +∇βϕ

γ
α −∇

γϕαβ)

Table 3.2. D K
I J for a normal-form ACH metric g. D K

0 ∞ and D K
α ∞

are omitted; we have D K
0 ∞ = D K

∞ 0 and D K
α ∞ = D K

∞ α



18 YOSHIHIKO MATSUMOTO

Type Value (modulo terms of type (N1)–(N3))

∇KD
K

∞ ∞
1

∇KD
K

∞ 0
1
2
ρ3∂ρ∇0ϕ00 + 1

2
ρ(ρ∂ρ + 1)(∇αϕ0α +∇

αϕ0α)

∇KD
K

∞ α
1
2
ρ2(ρ∂ρ − 1)∇0ϕ0α + 1

2
ρ2∂ρ(∇

βϕ
αβ

+∇
βϕαβ)

∇KD
K

0 0 −
3
2
−

1
8
(ρ∂ρ − 3)(ρ∂ρ − 4)ϕ00 + 1

2
ρ2∆bϕ00 + ρ3(∇0∇

αϕ0α +∇0∇
αϕ0α)

+ 1
2
ρ4∇0∇0ϕ00

∇KD
K

0 α −
1
8
(ρ∂ρ − 2)(ρ∂ρ − 3)ϕ0α + i

2
ρ∇αϕ00 −

i
2
ρ(∇βϕ

αβ
+∇

βϕαβ)

+ 1
2
ρ2∆bϕ0α + 1

2
ρ2(∇α∇

βϕ0β +∇α∇
βϕ

0β
)

+ρ3A β
αβ, + 1

2
ρ3∇0∇αϕ00 +

1
2
ρ3(∇0∇

βϕαβ +∇0∇
βϕ

αβ
)

∇KD
K

α β
−

1
4
h
αβ

−
1
8
(ρ∂ρ − 1)(ρ∂ρ − 2)ϕ

αβ
+ i

2
ρ(∇αϕ0β

−∇
β
ϕ0α)

+ 1
2
ρ2(∆bϕαβ

+∇α∇
γϕ

βγ
+∇α∇

γϕ
βγ

+∇
β
∇

γϕαγ +∇
β
∇

γϕαγ)

+ 1
2
ρ3(∇0∇αϕ0β

+∇0∇β
ϕ0α)−

1
2
ρ4∇0∇0ϕαβ

∇KD
K

α β ρ2N
γ

γαβ, − ρ4Aαβ,0 −
1
8
(ρ∂ρ − 1)(ρ∂ρ − 2)ϕαβ + i

2
ρ(∇αϕ0β +∇βϕ0α)

+ 1
2
ρ2(∆bϕαβ +∇α∇

γϕβγ +∇α∇
γϕβγ +∇β∇

γϕαγ +∇β∇
γϕαγ) + iρ2∇0ϕαβ

+ 1
2
ρ3(∇0∇αϕ0β +∇0∇βϕ0α)−

1
2
ρ4∇0∇0ϕαβ

Table 3.3. ∇KD
K
I J for a normal-form ACH metric g

Type Value (modulo terms of type (N1)–(N3))

∇
∞
D K

∞ K 2n+ 3 + 1
2
ρ∂ρ(ρ∂ρ − 1)ϕ00 + ρ∂ρ(ρ∂ρ − 1)ϕ α

α

∇0D
K

∞ K
1
2
ρ3∂ρ∇0ϕ00 + ρ3∂ρ∇0ϕ

α
α

∇αD
K

∞ K
1
2
ρ2∂ρ∇αϕ00 + ρ2∂ρ∇αϕ

β
β

∇0D
K

0 K
1
2
ρ4∇0∇0ϕ00 + ρ4∇0∇0ϕ

α
α

∇αD
K

0 K
1
2
ρ3∇0∇αϕ00 + ρ3∇0∇αϕ

β
β

∇βD
K

α K
1
2
ρ2∇α∇β

ϕ00 + ρ2∇α∇β
ϕ γ

γ + i
2
ρ2h

αβ
∇0ϕ00 + iρ2h

αβ
∇0ϕ

γ
γ

∇βD
K

α K
1
2
ρ2∇α∇βϕ00 + ρ2∇α∇βϕ

γ
γ

Table 3.4. ∇JD
K
I K for a normal-form ACH metric g

Since by definition ϕij is O(ρ), from Lemma 3.2 we have

Ein∞∞ = 3
2ϕ00 + ϕ α

α +O(ρ2), Ein∞0 = O(ρ2), Ein∞α = −iϕ0α +O(ρ2),

Ein00 = 3
8 (2n+ 1)ϕ00 −

1
2ϕ

α
α +O(ρ2), Ein0α = 1

2 (n+ 1)ϕ0α +O(ρ2),

Ein
αβ

= 1
8 (2n+ 9)ϕ

αβ
− 3

8hαβϕ00 +
1
4hαβϕ

γ
γ +O(ρ2),

Einαβ = 1
8 (2n+ 1)ϕαβ +O(ρ2).

(3.12)
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Type Value (modulo terms of type (N1)–(N3))

D L
∞ KD

K
∞ L 2n+ 5− 2ρ∂ρϕ00 − 2ρ∂ρϕ

α
α

D L
∞ KD

K
0 L −ρ2∇0ϕ00 − ρ2∇0ϕ

α
α

D L
∞ KD

K
α L

i
2
(ρ∂ρ + 1)ϕ0β − ρ∇αϕ00 − ρ∇αϕ

β
β −

1
2
ρ(ρ∂ρ − 2)N βγ

α ϕ
βγ

D L
0 KD

K
0 L −

1
2
(n+ 4) + (ρ∂ρ − n− 2)ϕ00 + ϕ α

α − iρ(∇αϕ0α −∇
αϕ0α)

D L
0 KD

K
α L −ρ3N βγ

α A
βγ

+ 1
4
(3ρ∂ρ − 2n− 5)ϕ0α + i

2
(∇βϕ

αβ
−∇

βϕαβ)−
i
2
ρN βγ

α ϕ
βγ

+ i
2
ρ2∇0ϕ0α

D L
α KD

K

β L
ρ2N γ

α ρN
ρ

β γ
+ 1

2
(ρ∂ρ − 2)ϕ

αβ
+ 1

2
h
αβ
ϕ00 −

i
2
ρ(∇αϕ0β

−∇
β
ϕ0α)

D L
α KD

K
β L

1
2
ρ∂ρϕαβ + iρ2Aαβ + i

2
ρ(∇αϕ0β +∇βϕ0α)

Table 3.5. D L
I KD

K
J L for a normal-form ACH metric g

Type Value (modulo terms of type (N1)–(N3))

D L
∞ ∞

D K
L K 2n+ 3− 1

2
ρ∂ρϕ00 − ρ∂ρϕ

α
α

D L
∞ 0D

K
L K −ρ2∇0ϕ00 − 2ρ2∇0ϕ

α
α

D L
∞ αD

K
L K −

1
2
ρ∇αϕ00 − ρ∇αϕ

β
β + ρN βγ

α ϕ
βγ

D L
0 0D

K
L K −

1
2
(2n+ 3) + 1

4
ρ∂ρϕ00 +

1
2
ρ∂ρϕ

α
α + 1

8
(2n+ 3)(ρ∂ρ − 4)ϕ00

D L
0 αD

K
L K

1
8
(2n+ 3)(ρ∂ρ − 3)ϕ0α + i

4
ρ∇αϕ00 +

i
2
ρ∇αϕ

β
β −

i
2
ρN βγ

α ϕ
βγ

D L

α β
D K

L K −
1
4
(2n+ 3)h

αβ
+ 1

8
(2n+ 3)(ρ∂ρ − 2)ϕ

αβ
+ 1

8
h
αβ
ρ∂ρϕ00 +

1
4
h
αβ
ρ∂ρϕ

γ
γ

+ i
4
ρ2h

αβ
∇0ϕ00 +

i
2
ρ2h

αβ
∇0ϕ

γ
γ

D L
α βD

K
L K

1
8
(2n+ 3)(ρ∂ρ − 2)ϕαβ

Table 3.6. D L
I JD

K
L K for a normal-form ACH metric g

These identities show that all ϕij must be O(ρ2) in order EinIJ to be O(ρ2). If ϕij = O(ρ2),

then repeating this process we obtain

Ein∞∞ = 2ϕ00 +O(ρ3), Ein∞0 = O(ρ3), Ein∞α = − 3i
2 ϕ0α +O(ρ3),

Ein00 = 1
2 (2n+ 1)ϕ00 +O(ρ3), Ein0α = 3

8 (2n+ 1)ϕ0α +O(ρ3),

Ein
αβ

= ρ2R
αβ

− 2ρ2N γ
α ρN

ρ

β γ
+ 1

2 (n+ 2)ϕ
αβ

− 1
4hαβϕ00 +

1
2hαβϕ

γ
γ +O(ρ3),

Einαβ = inρ2Aαβ + ρ2(N γ
γαβ, +N γ

γβα, ) + 1
2nϕαβ +O(ρ3).

(3.13)

These identities immediately show Proposition 3.1.

4. Higher-order perturbation

Taking over the setting from the last section, we next introduce a perturbation in g and

see what happens to the Einstein tensor. Let m ≥ 1 be a fixed integer and ψij a 2-tensor
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on M with coefficients in C∞(X) such that

ψ00 = O(ρm+2), ψ0α = O(ρmax{m+1,3 }),

ψ
αβ

= O(ρm+2), ψαβ = O(ρmax{m,3 }).

Let g be a normal-form ACH metric satisfying (3.3) and consider another metric g′ with

the following components with respect to { ξI } = { ρ∂ρ, ρ
2T, ρZα, ρZα }:

(4.1) g′ij = gij + ψij .

Note that g′ also satisfies (3.3). We can read off from Lemma 3.2 the amount to which the

Einstein tensor changes, which is denoted by δEinIJ . For example we have

δ Ein∞α = − i
2 (ρ∂ρ + 1)ψ0α + 1

2ρ
2∂ρ∇

βψαβ + 1
2ρN

βγ
α ρ∂ρψβγ +O(ρm+2),

δ Ein0α = − 1
8

(

(ρ∂ρ)
2 − (2n+ 2)ρ∂ρ − 2n− 3

)

ψ0α +O(ρm+2),

δ Einαβ = − 1
8ρ∂ρ(ρ∂ρ − 2n− 2)ψαβ +O(ρm+1).

(4.2)

In the same way we can compute δ Ein∞∞, δEin∞0, δ Ein00 and δ Ein
αβ

modulo O(ρm+2).

But we want them to be given modulo one order higher. In this section we shall prove the

following.

Proposition 4.1. The components δ Ein∞∞, δ Ein∞0, δEin00, δ Einαβ of the difference

δ Ein = Ein′ −Ein between the Einstein tensors of g and g′ are given by, modulo O(ρm+3),

δ Ein∞∞ ≡ − 1
2ρ∂ρ(ρ∂ρ − 4)ψ00 − ρ∂ρ(ρ∂ρ − 2)ψ α

α

+ 1
2ρ

2(ρ∂ρ)
2(Φαβψαβ +Φαβψ

αβ
),

(4.3a)

δEin∞0 ≡ 1
2ρ(ρ∂ρ + 1)(∇αψ0α +∇αψ0α)−

1
2ρ

3∂ρ(A
αβψαβ +Aαβψ

αβ
),(4.3b)

δ Ein00 ≡ − 1
8

(

(ρ∂ρ)
2 − (2n+ 4)ρ∂ρ − 4n

)

ψ00 +
1
2 (ρ∂ρ − 2)ψ α

α

+ iρ(∇αψ0α −∇αψ0α)−
1
4ρ

3∂ρ(Φ
αβψαβ +Φαβψ

αβ
),

(4.3c)

δEin α
α ≡ 1

8n(ρ∂ρ − 4)ψ00 −
1
8

(

(ρ∂ρ)
2 − (4n+ 2)ρ∂ρ − 8

)

ψ α
α

− iρ(∇αψ0α −∇αψ0α)

− 1
8ρ

2 ((n− 2)ρ∂ρ + (2n+ 4)) (Φαβψαβ +Φαβψ
αβ

)

+ 1
2ρ

2(∇α∇βψαβ +∇α∇βψ
αβ

) + 1
2ρ

2(Nγαβ
,γ ψαβ +Nγαβ

,γ ψαβ )

+ 1
2ρ

2(Nγαβ∇γψαβ +Nγαβ∇γψαβ),

(4.3d)

tf(δ Ein
αβ

) ≡ − 1
8

(

(ρ∂ρ)
2 − (2n+ 2)ρ∂ρ − 8

)

tf(ψ
αβ

)

+ iρ tf(∇αψ0β
−∇

β
ψ0α) + ρ2 tf(Ψ

αβ
),

(4.3e)

where δ Ein α
α is the trace of δEin

αβ
with respect to h

αβ
, tf denotes the trace-free part, and

Ψ
αβ

= 1
4 (ρ∂ρ − 2)(Φ γ

α ψ
βγ

+Φ γ

β
ψαγ ) +

1
2 (∇

γ∇αψβγ +∇γ∇
β
ψαγ )

−N γσ
α ,γ ψβσ −N γσ

β ,γ
ψασ +N γσ

α (∇
β
ψγσ −∇σψβγ ) +N γσ

β
(∇αψγσ −∇σψαγ ).
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First, let

∇g′

ξJ
ξI = ∇ξJ ξI +D′ K

I JξK

and D′
IKJ := g′KLD

′ L
I J . Then δDIKJ = D′

IKJ −DIKJ is given in Table 4.1, which is

seen immediately from Table 3.1.

Type Value (modulo O(ρm+3))

δD
∞∞∞

0

δD
∞0∞ 0

δD
∞α∞

0

δD
∞∞0 0

δD
∞00

1
2
(ρ∂ρ − 4)ψ00

δD
∞α0

1
2
(ρ∂ρ − 3)ψ0α

δD
∞∞α 0

δD
∞0α

1
2
(ρ∂ρ − 3)ψ0α

δD
∞βα

1
2
(ρ∂ρ − 2)ψ

αβ

δD
∞βα

1
2
(ρ∂ρ − 2)ψαβ

δD0∞0 −
1
2
(ρ∂ρ − 4)ψ00

δD000 0

δD0α0 0

δD0∞α −
1
2
(ρ∂ρ − 3)ψ0α

δD00α 0

δD
0βα

i
2
h
αβ
ψ00 + 1

2
ρ(∇αψ0β

−∇
β
ψ0α) +

1
2
ρ2(A γ

α ψ
βγ

+ A
γ

β
ψαγ )

δD0βα
1
2
ρ(∇αψ0β −∇βψ0α −N

γ
αβ ψ0γ ) +

1
2
ρ2∇0ψαβ

δD
α∞β

−
1
2
(ρ∂ρ − 2)ψ

αβ

δD
α0β

i
2
h
αβ
ψ00 + 1

2
ρ(∇αψ0β

+∇
β
ψ0α)−

1
2
ρ2(A γ

α ψ
βγ

+ A
γ

β
ψαγ )

δD
αγβ

i
2
h
αβ
ψ0γ + i

2
hαγψ0β

+ 1
2
ρ(∇αψβγ

−N σ

βγ
ψασ )

δD
αγβ

i
2
h
αβ
ψ0γ −

i
2
h
γβ
ψ0α + 1

2
ρ(∇

β
ψαγ −N σ

αγ ψ
βσ

)

δDα∞β −
1
2
(ρ∂ρ − 2)ψαβ

δDα0β
1
2
ρ(∇αψ0β +∇βψ0α −N

γ
αβ ψ0γ )−

1
2
ρ2∇0ψαβ

δDαγβ
i
2
hαγψ0β + i

2
hβγψ0α −

1
2
ρ(∇γψαβ +N σ

αβ ψγσ)

δDαγβ
1
2
ρ(∇αψβγ +∇βψαγ −∇γψαβ )

Table 4.1. δDIKJ = D′
IKJ −DIKJ for a perturbation (4.1) of a normal-

form ACH metric
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Next we compute δD K
I J := D′ K

I J −D K
I J . To do this we need the knowledge of the

following quantities: DIKJ modulo O(ρ3), gIJ modulo O(ρ3) and δgIJ := g′
IJ

−gIJ modulo

O(ρm+3). They can be read off from Table 3.1, (3.3) and (3.11). Namely, DIKJ mod O(ρ3)

are given by

D∞∞∞ ≡ −4, D∞0∞ ≡ 0, D∞α∞ ≡ 0,

D∞∞0 ≡ 0, D∞00 ≡ −2, D∞α0 ≡ 0,

D∞∞α ≡ 0, D∞0α ≡ 0, D
∞βα

≡ −h
αβ
, D∞βα ≡ 0,

D0∞0 ≡ 2, D000 ≡ 0, D0α0 ≡ 0,

D0∞α ≡ 0, D00α ≡ 0, D
0βα

≡ i
2hαβ , D0βα ≡ ρ2Aαβ ,

Dα∞0 ≡ 0, Dα00 ≡ 0, D
αβ0

≡ i
2hαβ , Dαβ0 ≡ 0,

D
α∞β

≡ h
αβ
, D

α0β
≡ i

2hαβ, D
αγβ

≡ 0, D
αγβ

≡ 0,

Dα∞β ≡ 0, Dα0β ≡ −ρ2Aαβ , Dαγβ ≡ 0, Dαγβ ≡ −ρNαγβ ;

gIJ mod O(ρ3) are

g∞∞ ≡ 1
4 , g∞0 ≡ g∞α ≡ 0, g00 ≡ 1, g0α ≡ 0,

gαβ ≡ hαβ − ρ2Φαβ , gαβ ≡ −ρ2Φαβ ;

δgIJ mod O(ρm+3) are

δg∞∞ ≡ δg∞0 ≡ g∞α ≡ 0, δg00 ≡ −ψ00 , δg0α ≡ −ψ α
0 ,

δgαβ ≡ −ψαβ + ρ2(Φαγψ
βγ +Φβγψ

αγ),

δgαβ ≡ −ψαβ + ρ2(Φαγψ
βγ +Φβγψ

αγ).

(4.4)

Since Table 4.1 and (4.4) shows that δgIJ and δDIKJ are both O(ρmax{m,3 }), we have

δDKL · δDILJ = O(ρm+3) and hence

δD K
I J ≡ gKL · δDILJ + δgKL ·DILJ mod O(ρm+3),

where δD K
I J := D′ K

I J −D K
I J . Thus we obtain Table 4.2.

On the other hand, Table 3.2 shows that, modulo O(ρ3),

D ∞
∞ ∞ ≡ −1, D 0

∞ ∞ ≡ 0, D α
∞ ∞ ≡ 0,

D ∞
∞ 0 ≡ 0, D 0

∞ 0 ≡ −2, D α
∞ 0 ≡ 0,

D ∞
∞ α ≡ 0, D 0

∞ α ≡ 0, D β
∞ α ≡ −δ β

α + ρ2Φ β
α , D β

∞ α ≡ ρ2Φ β
α ,

D ∞
0 0 ≡ 1

2 , D 0
0 0 ≡ 0, D α

0 0 ≡ 0,

D ∞
0 α ≡ 0, D 0

0 α ≡ 0, D β
0 α ≡ i

2δ
β

α − i
2ρ

2Φ β
α , D β

0 α ≡ − i
2ρ

2Φ β
α + ρ2A β

α ,

D ∞
α 0 ≡ 0, D 0

α 0 ≡ 0, D β
α 0 ≡ i

2δ
β

α − i
2ρ

2Φ β
α , D β

α 0 ≡ − i
2ρ

2Φ β
α ,

D ∞
α β

≡ 1
4hαβ, D 0

α β
≡ i

2hαβ , D γ

α β
≡ 0, D γ

α β
≡ 0,

D ∞
α β ≡ 0, D 0

α β ≡ −ρ2Aαβ , D γ
α β ≡ 0, D γ

α β ≡ −ρN γ
α β .

(4.5)
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Type Value (modulo O(ρm+3))

δD ∞

∞ ∞
0

δD 0
∞ ∞

0

δD α
∞ ∞

0

δD ∞

∞ 0 0

δD 0
∞ 0

1
2
ρ∂ρψ00

δD α
∞ 0

1
2
(ρ∂ρ + 1)ψ α

0

δD ∞

∞ α 0

δD 0
∞ α

1
2
(ρ∂ρ − 1)ψ0α

δD β
∞ α

1
2
ρ∂ρψ

β
α −

1
2
ρ3∂ρΦ

βγψαγ − ρ2Φαγψ
βγ

δD β
∞ α

1
2
ρ∂ρψ

β
α −

1
2
ρ3∂ρΦ

γβψαγ − ρ2Φαγψ
βγ

δD ∞

0 0 −
1
8
(ρ∂ρ − 4)ψ00

δD 0
0 0 0

δD α
0 0 0

δD ∞

0 α −
1
8
(ρ∂ρ − 3)ψ0α

δD 0
0 α −

i
2
ψ0α

δD
β

0 α
i
2
δ β
α ψ00 −

i
2
ψ β

α + 1
2
ρ(∇αψ

β
0 −∇

βψ0α)

−
1
2
ρ2(Aαγψ

βγ
− Aβγψαγ ) +

i
2
ρ2(Φβγψαγ + Φαγψ

βγ)

δD
β

0 α −
i
2
ψ β

α + 1
2
ρ(∇αψ

β
0 −∇

βψ0α −N βγ
α ψ0γ ) +

1
2
ρ2∇0ψ

β
α + i

2
ρ2(Φγβψαγ + Φαγψ

βγ)

δD ∞

α β
−

1
8
(ρ∂ρ − 2)ψ

αβ

δD 0
α β

1
2
ρ(∇αψ0β

+∇
β
ψ0α)−

1
2
ρ2(A γ

α ψ
βγ

+ A
γ

β
ψαγ )

δD
γ

α β

i
2
δ γ
α ψ

0β
+ 1

2
ρ(∇αψ

γ

β
−N

γσ

β
ψασ )

δD
γ

α β
−

i
2
δ

γ

β
ψ0α + 1

2
ρ(∇

β
ψ γ

α −N γσ
α ψ

βσ
)

δD ∞

α β −
1
8
(ρ∂ρ − 2)ψαβ

δD 0
α β

1
2
ρ(∇αψ0β +∇βψ0α)−

1
2
ρ(Nγ

αβ +N
γ
βα )ψ0γ −

1
2
ρ2∇0ψαβ

δD
γ

α β
i
2
δ γ
α ψ0β + i

2
δ

γ
β ψ0α −

1
2
ρ∇γψαβ −

1
2
ρ(Nσ

αβ +Nσ
βα )ψ

γ
σ

δD
γ

α β
1
2
ρ(∇αψ

γ
β +∇βψ

γ
α −∇

γψαβ )

Table 4.2. δD K
I J = D′ K

I J −D
K
I J for a perturbation (4.1) of a normal-

form ACH metric

Using Table 4.2 and (4.5), we compute

∇K(δD K
I J ), ∇J(δD

K
I K ), D L

I K · δD K
J L, D K

I L · δD L
K L and D L

K L · δD K
I J ,
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all modulo O(ρm+3). The result is Tables 4.3–4.7. From these tables and

δ EinIJ ≡ 1
2 (n+ 2)δgIJ +∇K(δD K

I J )−∇J(δD
K
I K )

−D L
I K · δD K

J L −D L
J K · δD K

I L

+D L
I J · δD K

L K +D K
L K · δD L

I J mod O(ρm+3),

we can verify Proposition 4.1.

Type Value (modulo O(ρm+3))

∇K(δD K
∞ ∞

) 0

∇K(δD K
∞ 0)

1
2
ρ(ρ∂ρ + 1)(∇αψ0α +∇

αψ0α)

∇K(δD K
0 0) −

1
8
(ρ∂ρ − 3)(ρ∂ρ − 4)ψ00

∇K(δD K

α β
) −

1
8
(ρ∂ρ − 1)(ρ∂ρ − 2)ψ

αβ
+ i

2
ρ(∇αψ0β

−∇
β
ψ0α)

+ 1
2
ρ2∇γ(∇αψβγ

−N σ

βγ
ψασ) +

1
2
ρ2∇γ(∇

β
ψαγ −N σ

αγ ψ
βσ

)

Table 4.3. ∇K(δD K
I J ) for a perturbation (4.1) of a normal-form ACH metric

Type Value (modulo O(ρm+3))

∇
∞
(δD K

∞ K ) 1
2
ρ∂ρ(ρ∂ρ − 1)ψ00 + ρ∂ρ(ρ∂ρ − 1)ψ α

α

−
1
2
ρ2(ρ∂ρ + 1)(ρ∂ρ + 2)(Φαβψαβ + Φαβψ

αβ
)

∇0(δD
K

∞ K ) 0

∇0(δD
K

0 K ) 0

∇β(δD
K

α K ) 0

Table 4.4. ∇J(δD
K
I K ) for a perturbation (4.1) of a normal-form ACH metric

Type Value (modulo O(ρm+3))

D L
∞ K · δD K

∞ L −ρ∂ρψ00 − ρ∂ρψ
α

α + ρ2(ρ∂ρ + 1)(Φαβψαβ + Φαβψ
αβ

)

D L
∞ K · δD K

0 L −
i
2
ρ2(Φαβψαβ − Φαβψ

αβ
)

D L
0 K · δD K

∞ L
i
2
ρ2(Φαβψαβ − Φαβψ

αβ
) + 1

2
ρ2(Aαβρ∂ρψαβ +Aαβρ∂ρψαβ

)

D L
0 K · δD K

0 L
1
2
(ρ∂ρ − n− 2)ψ00 + 1

2
ψ α

α −
i
2
ρ(∇αψ0α −∇

αψ0α)

−
1
4
ρ2(Φαβψαβ + Φαβψ

αβ
)

D L
α K · δD K

β L

1
4
(ρ∂ρ − 2)ψ

αβ
+ 1

4
h
αβ
ψ00 + i

2
ρ∇

β
ψ0α −

1
4
ρ2(ρ∂ρ − 2)Φ γ

α ψ
βγ

−
i
2
ρ2(A γ

α ψ
βγ

+A
γ

β
ψαγ )−

1
2
ρ2N γσ

α (∇
β
ψγσ +∇γψβσ

−∇σψβγ
)

Table 4.5. D L
I K · δD K

J L for a perturbation (4.1) of a normal-form ACH metric
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Type Value (modulo O(ρm+3))

D K
∞ ∞

· δD L
K L −

1
2
ρ∂ρψ00 − ρ∂ρψ

α
α + 1

2
ρ2(ρ∂ρ + 2)(Φαβψαβ + Φαβψ

αβ
)

D K
∞ 0 · δD L

K L 0

D K
0 0 · δD L

K L
1
4
ρ∂ρψ00 + 1

2
ρ∂ρψ

α
α −

1
4
ρ2(ρ∂ρ + 2)(Φαβψαβ + Φαβψ

αβ
)

D K

α β
· δD L

K L
1
8
h
αβ
ρ∂ρψ00 + 1

4
h
αβ
ρ∂ρψ

γ
γ −

1
8
ρ2h

αβ
(ρ∂ρ + 2)(Φστψστ + Φστψστ )

Table 4.6. D K
I L · δD L

K L for a perturbation (4.1) of a normal-form ACH metric

Type Value (modulo O(ρm+3))

D L
K L · δD K

∞ ∞
0

D L
K L · δD K

∞ 0 0

D L
K L · δD K

0 0
1
8
(2n+ 3)(ρ∂ρ − 4)ψ00

D L
K L · δD K

α β

1
8
(2n+ 3)(ρ∂ρ − 2)ψ

αβ

Table 4.7. D L
K L · δD K

I J for a perturbation (4.1) of a normal-form ACH metric

Proposition 4.2. Let g be a normal-form ACH metric satisfying (3.3) and g′ given by

(4.1). Then,

δ Ein∞∞ = − 1
2 (m+ 2)(m− 2)ψ00 −m(m+ 2)ψ α

α

+ 1
2m

2ρ2(Φαβψαβ +Φαβψ
αβ

) +O(ρm+3),
(4.6a)

δ Ein∞0 = 1
2 (m+ 2)ρ(∇αψ0α +∇αψ0α)−

1
2mρ

2(Aαβψαβ +Aαβψ
αβ

)

+O(ρm+3),
(4.6b)

δ Ein∞α = − i
2 (m+ 2)ψ0α + 1

2mρ∇
βψαβ + 1

2mρN
βγ

α ψ
βγ

+O(ρm+2),(4.6c)

δ Ein00 = − 1
8 (m

2 − 2nm− 8n− 4)ψ00 +
1
2mψ

α
α + iρ(∇αψ0α −∇αψ0α)

− 1
4ρ

2m(Φαβψαβ +Φαβψ
αβ

) +O(ρm+3),
(4.6d)

δ Ein0α = − 1
8 (m+ 2)(m− 2n− 2)ψ0α +O(ρm+2),(4.6e)

δ Ein α
α = 1

8n(m− 2)ψ00 −
1
8

(

m2 − (4n− 2)m− 8n− 8
)

ψ α
α

+ (O(ρm+2) terms depending on ψ0α and ψαβ ) +O(ρm+3),
(4.6f)

tf(δ Ein
αβ

) = − 1
8 (m

2 − 2nm− 2n− 9) tf(ψ
αβ

)

+ (O(ρm+2) terms depending on ψ0α and ψαβ ) +O(ρm+3),
(4.6g)

δ Einαβ = − 1
8m(m− 2n− 2)ψαβ +O(ρm+1).(4.6h)

Proof. This follows from (4.2), (4.3) and the fact that the Euler vector field ρ∂ρ acts on an

O(ρm) function as, modulo O(ρm+1), a scalar multiplication by m. �
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5. Approximate solution and obstruction tensor

By using the results in §3 and §4, in this section we construct a normal-form ACH metric

whose Einstein tensor vanishes to as high order as possible. First we observe the contracted

Bianchi identity satisfied by the Einstein tensor.

Lemma 5.1. Let m ≥ 1 be a positive integer. Suppose that g is a normal-form ACH metric

satisfying

Ein∞∞ = O(ρm+2), Ein∞0 = O(ρm+2), Ein∞α = O(ρmax{m+1,3 }),

Ein00 = O(ρm+2), Ein0α = O(ρmax{m+1,3 }),

Ein
αβ

= O(ρm+2), Einαβ = O(ρmax{m,3 }).

Then we have

O(ρm+3) = (m− 4n− 2)Ein∞∞ −4(m− 2)Ein00 −8mEin α
α

+ 8ρ(∇α Ein∞α+∇α Ein∞α) + 4ρ2(m− 2)(Φαβ Einαβ +Φαβ Ein
αβ

),
(5.1a)

O(ρm+3) = (m− 2n− 2)Ein∞0 +4ρ(∇α Ein0α+∇α Ein0α)

+ 4ρ2(Aαβ Einαβ +A
αβ Ein

αβ
),

(5.1b)

O(ρm+2) = 2(m− 2n− 2)Ein∞α+4ρ∇β Einαβ −4iEin0α+4ρN βγ
α Ein

βγ
.(5.1c)

Proof. We have the contracted Bianchi identity gIJ∇g
K RicIJ = 2gIJ∇g

I RicJK , where ∇g

is the Levi-Civita connection determined by g. Since ∇g is a metric connection we further

have

gIJ∇g
K EinIJ = 2gIJ∇g

I EinJK .

In terms of the extended Tanaka–Webster connection ∇ and the tensor D, we can rewrite

this identity as

gIJ(∇K EinIJ −2D L
I K EinJL) = 2gIJ(∇I EinJK −D L

J I EinLK −D L
K I EinJL),

or equivalently,

0 = gIJ(∇K EinIJ −2∇I EinJK +2D L
I J EinKL−2Θ

L

IK EinJL),

where Θ is the torsion form of ∇. Since g0α = O(ρ3) and EinIJ = O(ρm), we obtain

O(ρm+3) = g∞∞(∇K Ein∞∞ −2∇∞ Ein∞K +2D L
∞ ∞ EinKL−2Θ

L

∞K Ein∞L)

+ g00(∇K Ein00 −2∇0 Ein0K +2D L
0 0 EinKL−2Θ

L

0K Ein0L)

+ 2gβγ
(

∇K Einβγ −∇β EinγK −∇γ EinβK +(D L
β γ +D L

γ β) EinKL

−Θ
L

βK EinγL−Θ
L

γK EinβL
)

+ gβγ(∇K Einβγ −2∇β EinγK +2D L
β γ EinKL−2Θ

L

βK EinγL)

+ gβγ(∇K Ein
βγ

−2∇β EinγK +2D L
β γ

EinKL−2Θ
L

βK EinγL).
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Substituting K = ∞, K = 0 and K = α into this formula, in view of (3.7), (3.9) and (4.5)

we find that

O(ρm+3) = (ρ∂ρ − 4n− 4)Ein∞∞ −4(ρ∂ρ − 4)Ein00 −8(ρ∂ρ − 2)Ein α
α

+ 8ρ(∇α Ein∞α+∇α Ein∞α)

+ 4ρ2(ρ∂ρ − 2)(Φαβ Einαβ +Φαβ Ein
αβ

),

(5.2a)

O(ρm+3) = (ρ∂ρ − 2n− 4)Ein∞0 +4ρ(∇αEin0α+∇α Ein0α)

+ 4ρ2(Aαβ Einαβ +A
αβ Ein

αβ
),

(5.2b)

O(ρm+2) = 2(ρ∂ρ − 2n− 3)Ein∞α+4ρ∇β Einαβ −4iEin0α+4ρN βγ
α Ein

βγ
,(5.2c)

which imply (5.1). �

Let

a(I, J) =















3, (I, J) = (∞,∞), (∞, 0), (0, 0), (α, β),

2, (I, J) = (∞, α), (0, α),

1, (I, J) = (α, β).

The next theorem proves Theorem 0.1.

Theorem 5.2. Let (M,T 1,0) be a nondegenerate partially integrable almost CR manifold, θ

any pseudohermitian structure and X an open neighborhood ofM =M×{ 0 } inM×[0,∞).

Then there exists a normal-form ACH metric g on X which satisfies

(5.3) EinIJ = O(ρ2n+1+a(I,J))

with respect to the frame (3.1) of TXΘ . For such a metric, each gij is uniquely determined

modulo O(ρ2n+1+a(i,j)).

Proof. By Proposition 3.1 we already have a normal-formACHmetric g(0) satisfying EinIJ =

O(ρ3) for every I, J , with O(ρ3) ambiguity in each component g
(0)
ij . We shall inductively

show that there exists a normal-form ACH metric g(m) satisfying

(5.4) EinIJ = O(ρmax{m+a(I,J),3 }).

for each m, m = 1, . . . , 2n+ 1, and for such g(m) its components g
(m)
ij are unique modulo

O(ρmax{m+a(i,j),3 }).

Suppose we have a normal-form ACH metric g(m−1) that satisfies (5.4) for m − 1 as

well as (3.3). Consider a new ACH metric g(m) given by g
(m)
ij = g

(m−1)
ij + ψij , where

ψij is such that ψij = O(ρmax{m−1+a(i,j),3 }). Then the difference δ Ein = Ein′ −Ein

between the Einstein tensors is given in Proposition 4.2. In view of (4.6e) and (4.6h) we

can determine ψ0α mod O(ρm+2) and ψαβ mod O(ρmax{m+1,3 }) so that Ein
(m)
0α = O(ρm+2)

and Ein
(m)
αβ = O(ρmax{m+1,3 }) hold, because the exponents − 1

8 (m + 2)(m − 2n − 2) and

− 1
8m(m−2n−2) are nonzero form = 1, . . . , 2n+1. After that, by a similar reasoning using

(4.6g), we can determine tf(ψ
αβ

) mod O(ρm+3) so that tf(Ein
(m)

αβ
) = O(ρm+3) hold. Next

we see (4.6d) and (4.6f) as a system of linear equations for ψ00 and ψ α
α . The determinant
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of the coefficients is
∣

∣

∣

∣

− 1
8 (m

2 − 2nm− 8n− 4) 1
2m

1
8n(m− 2) − 1

8

(

m2 − (4n− 2)m− 8n− 8
)

∣

∣

∣

∣

= 1
64 (m+ 2)(m+ 4)(m− 2n− 2)(m− 4n− 2),

(5.5)

which shows that this system is nondegenerate for m = 1, . . . , 2n + 1. Hence we can

determine ψ00 and ψ α
α , both modulo O(ρm+3), so that Ein

(m)
00 = O(ρm+3) and Ein(m) α

α =

O(ρm+3) hold. Thus we have attained Einij = O(ρmax{m+a(i,j),3 }), and if g
(m−1)
ij are unique

up to O(ρmax{m−1+a(i,j),3 }), the desired uniqueness result holds for g
(m)
ij .

Finally we check that g(m) is determined in such a way that it satisfies (5.4) for I = ∞,

too. This is done by using Lemma 5.1. In fact, for g(m), Ein
(m)
∞0 = O(ρm+3) and Ein(m)

∞α =

O(ρm+2) should hold, because in (5.1b) and (5.1c) the terms on the right-hand sides are,

except the first terms in each identity, already O(ρm+3) and O(ρm+2), respectively, and

the coefficients of the first terms are both nonzero. Similarly (5.1a) shows that Ein(m)
∞∞ =

O(ρm+3). Hence the induction is complete. �

In spite of the success of the inductive determination of gij up to the stage in the theorem

above, the next step cannot be executed, as (4.6e) and (4.6h) indicate; the freedom of the

choice of g satisfying (5.3) does not affect the ρ2n+2-term coefficient of Einαβ and the

ρ2n+3-term coefficient of Ein0α. So we define

(5.6) Oαβ :=
(

ρ−2n−2 Einαβ
)∣

∣

ρ=0

and call it the obstruction tensor associated with (M,T 1,0, θ). In fact, the condition Ein
αβ

=

O(ρ2n+4) on the metric from which Oαβ is computed can be weakened to Ein
αβ

= O(ρ2n+3),

for the O(ρ2n+3) ambiguity in tf(g
αβ

) emerging from that does not have any effect on ρ2n+2-

term coefficient of Einαβ as (4.6h) shows. This fact further implies that we can use any

approximately Einstein ACH metric g that Theorem 0.1 claims its existence, because if ρ

is a model boundary defining function for g and θ, then there is a boundary-fixing [Θ]-

preserving diffeomorphism Φ such that Φ∗g is a normal-form ACH metric for which the

second coordinate function is equal to Φ∗ρ, and its Einstein tensor vanishes to the same

order as that of g does.

The ρ2n+3-term coefficient of Ein0α is not a new obstruction, since by (5.1c) we have

(5.7)
(

ρ−2n−3 Ein0α
)∣

∣

M
= −i∇βOαβ − iN βγ

α O
βγ
.

Proposition 5.3. Let θ and θ̂ = e2uθ, u ∈ C∞(M), be two pseudohermitian structures on

M . Then

(5.8) Ôαβ = e−2nuOαβ ,

where Oαβ is the obstruction tensor for (M,T 1,0, θ) and Ôαβ is that for (M,T 1,0, θ̂).

Proof. Let (X, [Θ]) be a manifold-with-boundary with a conformal Θ-structure such that

∂X = M and ι∗[Θ] is the conformal class of the pseudohermitian structures on M , and

take any ACH metric g satisfying the condition in Theorem 0.1. If ρ is a model boundary

defining function for θ and ρ̂ = eψρ, ψ ∈ C∞(X), is one for θ̂, then we have ψ|M = u by the
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condition ι∗(ρ̂4g) = θ̂2. Hence, if {Zα } is any extension of a local frame of T 1,0, we have

Ôαβ =
(

ρ̂−2n−2 Ein(ρ̂Zα, ρ̂Zβ)
)∣

∣

M
= e−2nu

(

ρ−2n−2 Ein(ρZα, ρZβ)
)∣

∣

M
= e−2nuOαβ . �

The proposition above implies that the density-weighted version of the obstruction tensor

Oαβ := Oαβ ⊗ |ζ|2n/(n+2) ∈ E(αβ) (−n,−n)

is a CR-invariant tensor, where E(αβ) denotes the space of local sections of Sym2(T 1,0)∗.

Next we recall (5.7). Let us also look at a similar result
(

ρ−2n−3(∇α Ein0α+∇αEin0α)
)∣

∣

M
= −AαβOαβ − AαβO

αβ
,

which follows from (5.1b). Combining these identities we obtain

(5.9) PαβOαβ − PαβO
αβ

= 0,

where

(5.10) Pαβ = ∇α∇β − iAαβ −Nγαβ∇γ −Nγαβ
,γ .

Replacing N , A with N , A and taking contractions with respect not to h but to h,

we may also interpret Pαβ as a differential operator E(αβ) (−n,−n) → E(−n − 2,−n − 2)

between density-weighted bundles. Then we have PαβOαβ−P
αβ

O
αβ

= 0. Furthermore, in

this setting, the operator Pαβ belongs to a one-parameter family of CR-invariant differential

operators, as we shall describe in the following proposition.

Proposition 5.4. Let (M,T 1,0) be a nondegenerate partially integrable almost CR mani-

fold. Let

Pαβt : E(αβ) (−n,−n) → E(−n− 2,−n− 2), t ∈ C

be a one-parameter family of differential operators defined by, in terms of any pseudoher-

mitian structure θ,

(5.11) Pαβt = ∇α∇β − iAαβ − (1 + tn)Nγαβ∇γ − (1 + t(n+ 1))Nγαβ
,γ .

Then this is well-defined, i.e., the right-hand side of (5.11) is independent of θ.

Proof. This can be checked by using equation (2.7) and Proposition 2.3 of [GoGr], as we

have discussed in §2. The details are left to the reader. �

The next proposition finishes the proof of Proposition 0.2.

Proposition 5.5. The obstruction tensor Oαβ for a nondegenerate (integrable) CR mani-

fold vanishes.

Proof. Since Oαβ is a certain polynomial of derivatives of pseudohermitian torsion and

curvature, using the formal embedding we can reduce the problem to the case of a (small

piece of) nondegenerate real hypersurface M ⊂ Cn+1. In this proof we use indices j, k for

components with respect to the complex coordinates (z1, . . . , zn+1).

Let r be Fefferman’s approximate solution of the complex Monge–Ampère equation [Fe],

i.e., a smooth defining function of M such that J(r) = 1 +O(rn+2), where

J(r) := (−1)n+1 det

(

r ∂r/∂zk

∂r/∂zj ∂2r/∂zj∂zk

)

.
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We set θ̃ := i
2 (∂r − ∂r) and θ := ι∗θ̃, where ι : M →֒ Cn+1 is the inclusion. Let g0 be the

Kähler metric on Ω = { r > 0 } associated with Kähler form i ∂∂(log(1/r)) as in Example

1.1. Then it is easily verified that det((g0)jk) = r−(n+2)J(r), and the usual formula for the

Ricci tensor of Kähler metric shows that

Ric(g0)jk = − 1
2 (n+ 2)(g0)jk +

∂2

∂zj∂zk
log J(r).

Observe that, if we set log J(r) = rn+2f ,

∂∂ log J(r) = (n+ 2)(n+ 1)rnf∂r ∧ ∂r + (n+ 2)rn+1(f∂∂r + ∂f ∧ ∂r + ∂r ∧ ∂f)

+ rn+2∂∂f.
(5.12)

Let ξ be the unique (1, 0) vector field satisfying

ξ ⌋ ∂∂r = 0 mod ∂r, ∂r(ξ) = 1

and N := Re ξ, T̃ := 2 Im ξ. We set ξ ⌋ ∂∂r = τ∂r, or τ = ∂∂r(ξ, ξ). Then, since τ is

a real-valued function, T̃ ⌋ ∂∂r = −i(ξ − ξ) ⌋ ∂∂r = −i(τ∂r + τ∂r) = −iτdr. Therefore

T ⌋ dθ = T ⌋ ι∗(−i∂∂r) = ι∗(−τdr) = 0, where T is the restriction of T̃ to M . This shows

that T is the Reeb vector field on M associated with θ.

Let ξ1, . . . , ξn be (1, 0) vector fields spanning ker ∂r ⊂ T 1,0Cn+1 near M . Restricted on

M , they form a local frame {Z1, . . . , Zn } of T 1,0M .

We identify a (one-sided) neighborhood of M in Ω with M × [0, ǫ) by

M × [0, ǫ) → Ω, (p, s) 7→ Fls(p),

where Fls is the flow generated by N . In view of the fact that s is equal to the pullback of r,

we write r instead of s in the sequel. The constant extensions of T and Zα in the r-direction

are also denoted by the same symbols. Then obviously T = T̃ +O(r), Zα = ξα +O(r). By

(5.12) we have

Ein(g0)(N,N) = Ein(g0)
(

1
2 (ξ + ξ), 12 (ξ + ξ)

)

= 1
2 Ein(g0)(ξ, ξ) = O(rn),

Ein(g0)(T̃ , T̃ ) = Ein(g0)(−i(ξ − ξ),−i(ξ − ξ)) = 2Ein(g0)(ξ, ξ) = O(rn),

Ein(g0)(N, T̃ ) = 0, Ein(g0)(N, ξα) = O(rn+1), Ein(g0)(T̃ , ξα) = O(rn+1),

Ein(g0)(ξα, ξβ) = O(rn+1), Ein(g0)(ξα, ξβ) = 0.

Hence, with respect to the local frame { ∂r = N, T, Zα, Zα } of TC(M × [0, ǫ)), we have

Ein(g0)∞∞ = O(rn), Ein(g0)∞0 = O(rn+1), Ein(g0)∞α = O(rn+1),

Ein(g0)00 = O(rn), Ein(g0)0α = O(rn+1),

Ein(g0)αβ = O(rn+1), Ein(g0)αβ = O(rn+2).

Therefore the Einstein tensor of the induced ACH metric g on the square root of M × [0, ǫ)

in the sense of [EMM] satisfies, with respect to the frame { ρ∂ρ, ρ
2T, ρZα, ρZα },

Ein∞∞ = O(ρ2n+4), Ein∞0 = O(ρ2n+6), Ein∞α = O(ρ2n+5),

Ein00 = O(ρ2n+4), Ein0α = O(ρ2n+5),

Ein
αβ

= O(ρ2n+4), Einαβ = O(ρ2n+6).
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Hence g satisfies the condition (5.3). Moreover, since Einαβ = O(ρ2n+3), it follows that

Oαβ = 0. �

6. On first variation

In this section, we calculate the first-order term of the obstruction tensor with respect

to a variation from the standard CR sphere. First we introduce a tensor that describes a

modification of partially integrable almost CR structures.

Proposition 6.1. Let (M,T 1,0) be a nondegenerate partially integrable almost CR manifold

and {Zα } a local frame of the bundle T 1,0. Let µ β
α ∈ E β

α and set

Ẑα := Zα + µ β
α Zβ ;

{ Ẑα } defines a new almost CR structure on M without changing the contact distribution

H. Then this is partially integrable if and only if

µαβ = µβα,

where the upper index is lowered by the Levi form of (M,T 1,0) associated to any pseudoher-

mitian structure.

Proof. The new almost CR structure is partially integrable if and only if

θ([Ẑα, Ẑβ]) = θ([Zα + µ σ
α Zσ, Zβ + µ τ

β Zτ ]) = 0,

where θ is any pseudohermitian structure for (M,T 1,0). Since θ([Zα, Zβ]) = θ([Zσ, Zτ ]) = 0,

this is equivalent to

θ([Zσ, Zβ ])µ
σ
α + θ([Zα, Zτ ])µ

τ
β = 0,

or µαβ − µβα = 0. �

Let M = S2n+1 be the (2n + 1)-dimensional sphere and θ the standard contact form.

Then the obstruction tensor Oαβ with respect to θ is a function of partially integrable

almost CR structures on ker θ. For the standard CR structure we have Oαβ = 0. We shall

compute the derivative of Oαβ at the standard CR structure in the direction of µαβ , where

the second index of µαβ is understood to be lowered by the Levi form of the standard CR

sphere associated to θ. In this section, the differentials of various quantities will be indicated

by the bullet •.

Proposition 6.2. Consider h
αβ

, Nαβγ , Aαβ and R
αβ

associated to the standard contact

form θ on the sphere. Then, their differentials at the standard CR structure are as follows:

h•
αβ

= 0, N•
αβγ = ∇αµβγ −∇βµαγ ,

A•
αβ = −∇0µαβ , R•

αβ
= −∇α∇

σµ
βσ

−∇
β
∇τµατ .

Proof. Since the both sides of all four equalities are tensorial, we may take any frame to

derive them. Let {Zα } be a local frame of T 1,0 of the standard CR sphere such that

[Zα, Zβ] = −ih
αβ
T, [Zα, Zβ] = [Zα, T ] = 0

and

h
αβ

=

{

1, if α = β,

0, otherwise,
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where T is the Reeb vector field associated with θ. Then the differentials of the Lie brackets

are given by

[Ẑα, Ẑβ]
• = (∇αµ

σ
β

)Zσ − (∇
β
µ τ
α )Zτ ,

[Ẑα, Ẑβ]
• = (∇αµ

γ
β −∇

β
µ γ
α )Zγ ,

[Ẑα, T ]
• = −(∇0µ

γ
α )Zγ .

They immediately show that h•
αβ

= 0 and N• γ
αβ = ∇αµ

γ
β − ∇βµ

γ
α . The first structure

equation (2.3) implies

A• β
α = θβ([Ẑα, T ]

•) = −∇0µ
β
α .

Similarly we have

ω• β
α (Zγ) = −∇αµ

β
γ , ω• β

α (T ) = 0,

and this together with ω•
αβ

+ ω•
βα

= (dh
αβ

)• = 0 implies ω• β
α (Zγ) = ∇βµαγ . From (2.7)

we have

R•
αβ

= Zαω
• γ
γ (Zβ)− Zβω

• γ
γ (Zα)− ω• γ

γ ([Zα, Zβ ]) = −∇α∇
γµ

βγ
−∇

β
∇γµαγ .

This completes the proof. �

Let g be a normal-form ACH metric for θ satisfying the condition in Theorem 5.2. Let

g00 = 1 + ϕ00, g0α = ϕ0α, g
αβ

= h
αβ

+ ϕ
αβ
, gαβ = ϕαβ .

Then, as seen in Theorem 5.2,

ϕ[m]ij :=
1

m!

(

∂mρ ϕij
)∣

∣

ρ=0
, m ≤ 2n+ 1 + a(i, j)

are uniquely determined. For the standard CR structure they completely vanish. We shall

observe the differentials ϕ[m]•ij of ϕ[m]ij . For notational convenience, we set ϕ[m]ij := 0

for m ≤ 0 and

χk(m) :=

{

1, m = k,

0, otherwise.

Lemma 6.3. The differentials ϕ[m]•ij of ϕ[m]ij at the standard CR structure satisfy

0 = − 1
8

(

m2 − (2n+ 4)m− 4n
)

ϕ[m]•00 +
1
2 (m− 2)ϕ[m]• α

α

+ i(∇αϕ[m− 1]•0α −∇αϕ[m− 1]•0α) +
1
2∆bϕ[m− 2]•00

+ (∇0∇
αϕ[m− 3]•0α +∇0∇

αϕ[m− 3]•0α)−∇0∇0ϕ[m− 4]• α
α ,

0 = −χ3(m)∇0∇
βµαβ − 1

8 (m+ 1)(m− 2n− 3)ϕ[m]•0α

+ 3i
4 ∇αϕ[m− 1]•00 +

i
2∇αϕ[m− 1]• β

β − i∇βϕ[m− 1]•
αβ

+ 1
2∆bϕ[m− 2]•0α − i

2∇0ϕ[m− 2]•0α + 1
2 (∇α∇

βϕ[m− 2]•0β +∇α∇
βϕ[m− 2]•

0β
)

−∇0∇αϕ[m− 3]• β
β + 1

2 (∇0∇
βϕ[m− 3]•

αβ
+∇0∇

βϕ[m− 3]•αβ),
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0 = −χ2(m)(∇α∇
γµ

βγ
+∇

β
∇γµαγ)−

1
8

(

m2 − (2n+ 2)m− 8
)

ϕ[m]•
αβ

+ 1
8hαβ(m− 4)ϕ[m]•00 +

1
4hαβmϕ[m]• γ

γ

+ i(∇αϕ[m− 1]•
0β

−∇
β
ϕ[m− 1]•0α)−

i
4hαβ∇0ϕ[m− 2]•00 −

i
2hαβ∇0ϕ[m− 2]• γ

γ

− 1
2∇α∇β

ϕ[m− 2]•00 −∇α∇β
ϕ[m− 2]• γ

γ + 1
2∆bϕ[m− 2]•

αβ

+ 1
2 (∇α∇

γϕ[m− 2]•
βγ

+∇α∇
γϕ[m− 2]•

βγ
+∇

β
∇γϕ[m− 2]•αγ +∇

β
∇γϕ[m− 2]•αγ)

+ 1
2 (∇0∇αϕ[m− 3]•

0β
+∇0∇β

ϕ[m− 3]•0α)−
1
2∇0∇0ϕ[m− 4]•

αβ
,

0 = −χ2(m)(∆bµαβ +∇α∇
γµβγ +∇β∇

γµαγ + 2i∇0µαβ) + χ4(m)∇0∇0µαβ

− 1
8m(m− 2n− 2)ϕ[m]•αβ − 1

2∇α∇βϕ[m− 2]•00 −∇α∇βϕ[m− 2]• γ
γ + 1

2∆bϕ[m− 2]•αβ

+ 1
2 (∇α∇

γϕ[m− 2]•βγ +∇α∇
γϕ[m− 2]•βγ +∇β∇

γϕ[m− 2]•αγ +∇β∇
γϕ[m− 2]•αγ)

+ i∇0ϕ[m− 2]•αβ + 1
2 (∇0∇αϕ[m− 3]•0β +∇0∇βϕ[m− 3]•0α)−

1
2∇0∇0ϕ[m− 4]•αβ ,

where in each equality m takes any nonnegative integer and ∇ denotes the Tanaka–Webster

connection for the standard CR sphere with θ.

Proof. This follows from Lemma 3.2, because terms of type (N1)–(N3), which are neglected

in the formulae recorded in that lemma, are at least quadratic in µαβ . By setting EinIJ =

O(ρ2n+1+a(I,J)), the Taylor expansions of the last four equalities in Lemma 3.2 give the

claimed formulae, thanks to Proposition 6.2. �

In principle we can calculate all ϕ[m]•ij using the recurrence formulae above. It is easy

to see that ϕ[m]•00 = ϕ[m]•
αβ

= ϕ[m]•αβ = 0 for m odd and ϕ[m]•0α = 0 for m even, and

each nonzero ϕ[m]•ij is a linear combination over C of covariant derivatives of µαβ which

are given in Table 6.1. As a result the differential O•
αβ of the obstruction tensor is a linear

combination of

∆k
b∇

n+1−k
0 µαβ , ∆k

b∇
n−k
0 ∇(α∇

σµβ)σ,

∆k
b∇

n−1−k
0 ∇α∇β∇

σ∇τµστ and ∆k
b∇

n−1−k
0 ∇α∇β∇

σ∇τµστ ,

which are linearly independent if n ≥ 2.

Proposition 6.4. Let n ≥ 2 and

O•
αβ =

n+1
∑

k=0

ak∆
k
b∇

n+1−k
0 µαβ +

n
∑

k=0

bk∆
k
b∇

n−k
0 ∇(α∇

σµβ)σ

+

n−1
∑

k=0

ck∆
k
b∇

n−1−k
0 ∇α∇β∇

σ∇τµστ +

n−1
∑

k=0

dk∆
k
b∇

n−1−k
0 ∇α∇β∇

σ∇τµστ .

Then an+1 = (−1)n/(n!)2.

Proof. The last equality in Lemma 6.3 and Table 6.1 show

0 ≡ −χ2(2l)∆bµαβ − 1
2 l(l− n− 1)ϕ[2l]•αβ + 1

2∆bϕ[2l− 2]•αβ

modulo ∆k
b∇

l−k
0 µαβ , k < l, and

∆k
b∇

l−1−k
0 ∇(α∇

σµβ)σ, ∆k
b∇

l−2−k
0 ∇α∇β∇

σ∇τµστ , ∆k
b∇

l−2−k
0 ∇α∇β∇

σ∇τµστ .
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Type Linear combination of

ϕ[2l]•00 ∆k
b∇

l−1−k
0 ∇

α
∇

βµαβ , ∆k
b∇

l−1−k
0 ∇

α
∇

βµ
αβ

ϕ[2l + 1]•0α ∆k
b∇

l−k
0 ∇

βµαβ, ∆k
b∇

l−1−k
0 ∇α∇

σ
∇

τµστ , ∆k
b∇

l−1−k
0 ∇α∇

σ
∇

τµστ

ϕ[2l]•
αβ

∆k
b∇

l−1−k
0 ∇α∇

σµ
βσ

, ∆k
b∇

l−1−k
0 ∇

β
∇

σµασ,

∆k
b∇

l−2−k
0 ∇α∇β

∇
σ
∇

τµστ , ∆k
b∇

l−2−k
0 ∇

β
∇α∇

σ
∇

τµστ ,

h
αβ

∆k
b∇

l−1−k
0 ∇

σ
∇

τµστ , h
αβ

∆k
b∇

l−1−k
0 ∇

σ
∇

τµστ

ϕ[2l]•αβ ∆k
b∇

l−k
0 µαβ , ∆k

b∇
l−1−k
0 ∇(α∇

σµβ)σ,

∆k
b∇

l−2−k
0 ∇α∇β∇

σ
∇

τµστ , ∆k
b∇

l−2−k
0 ∇α∇β∇

σ
∇

τµστ

Table 6.1. Terms appearing in the differentials ϕ[m]•ij of the coefficients

of the approximate normal-form ACH-Einstein metric at the standard CR

structure on the sphere

Hence we have ϕ[2]•αβ ≡ (2/n)∆bµαβ and

ϕ[2l]•αβ ≡ −
1

l(n+ 1− l)
∆bϕ[2l− 2]•αβ .

This immediately shows that

ϕ[2l]•αβ ≡
2

n
·

−1

2(n− 1)
·

−1

3(n− 2)
· · · · ·

−1

l(n+ 1− l)
∆l
bµαβ , l = 1, 2, . . . , n.

Then we use the last equality in Lemma 3.2 to see

O•
αβ ≡ −

1

2
∆bϕ[2n]

•
αβ ≡ −

1

2
·
2

n
·

−1

2(n− 1)
·

−1

3(n− 2)
· · · · ·

−1

n · 1
∆n+1
b µαβ ≡

(−1)n

(n!)2
∆n+1
b µαβ ,

which implies the claim. �

Corollary 6.5. Let n ≥ 2. Then there is a partially integrable almost CR structure on the

(2n+1)-dimensional sphere, arbitrarily close to the standard one, for which the obstruction

tensor does not vanish.

7. Formal solution involving logarithmic singularity

Let X be a manifold-with-boundary and ρ a boundary defining function. We say that

a function f ∈ C0(X) ∩ C∞(X̊) belongs to A(X), or simply A, if it admits an asymptotic

expansion of the form (0.6). By this we mean that for any m ≥ 0,

rN := f −

N
∑

q=0

f (q)(log ρ)q ∈ Cm(X) and rN = O(ρm)

holds for sufficiently large N . The Taylor expansions of f (q) at ∂X are uniquely determined;

we write f ∈ Am if f (q) ∈ O(ρm), q ≥ 0, and A∞ := ∩∞
m=0A

m. One can show that A is

closed under multiplication, and that if f ∈ A, f |∂X 6= 0 then f−1 ∈ A. Furthermore,

A is closed under the action of a totally characteristic linear differential operator, i.e., a

noncommutative polynomial of C∞ vector fields tangent to the boundary.
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As in §§3–5, again in this section X is an open neighborhood of M in M × [0,∞), where

(M,T 1,0) a nondegenerate partially integrable almost CR manifold. We fix a pseudoher-

mitian structure θ and consider (nonsmooth) Θ-metrics of the form (1.9) with gij ∈ A

satisfying (1.10), which we call singular normal-form ACH metrics.

All the calculations regarding the Ricci tensor go in the same way as in §3 and §4 except

that, while on the space of smooth O(ρm) functions ρ∂ρ behaves as a mere “m times”

operator modulo O(ρm+1), it is no longer the case when O(ρm) and O(ρm+1) are replaced

by Am and Am+1. Nevertheless, since A is closed under the action of totally characteristic

operators, the Ricci tensors for singular normal-form ACH metrics have expansions of the

form (0.6) with respect to the frame { ρ∂ρ, ρ
2T, ρZα, ρZα }.

Proposition 7.1. There exists a singular normal-form ACH metric g satisfying

(7.1) EinIJ = A2n+1+a(I,J).

The components gij are uniquely determined, and do not contain logarithmic terms, modulo

A2n+1+a(i,j).

Proof. This is proved by following the argument in §3, §4 and the first half of §5 again.

We shall include here a detailed account of the following fact only, which is a version of

Proposition 3.1: EinIJ = A3 if and only if

g00 = 1 +A3, g0α = A3, g
αβ

= h
αβ

+ ρ2Φ
αβ

+A3, gαβ = ρ2Φαβ +A3,

where Φ
αβ

and Φαβ are defined by (3.4). Then the rest of the proof goes similarly.

If we define ϕij by (3.5), then Lemma 3.2 is again valid. Take N ≥ 1 large enough so

that ϕij and EinIJ for given g are of the form

ϕij =

N
∑

q=0

ϕ
(q)
ij (log ρ)q +A3, ϕ

(q)
ij ∈ C∞(X),

and

EinIJ =

N
∑

q=0

Ein
(q)
IJ (log ρ)

q +A3, Ein
(q)
IJ ∈ C∞(X).

Then by Lemma 3.2 we have the same identities as (3.12) between Ein
(N)
IJ and ϕ

(N)
ij ; namely,

the following holds for q = N :

Ein(q)∞∞ = 3
2ϕ

(q)
00 + ϕ(q) α

α +O(ρ2),

Ein
(q)
∞0 = O(ρ2), Ein(q)∞α = −iϕ

(q)
0α +O(ρ2),

Ein
(q)
00 = 3

8 (2n+ 1)ϕ
(q)
00 − 1

2ϕ
(q) α
α +O(ρ2), Ein

(q)
0α = 1

2 (n+ 1)ϕ
(q)
0α +O(ρ2),

Ein
(q)

αβ
= 1

8 (2n+ 9)ϕ
(q)

αβ
− 3

8hαβϕ
(q)
00 + 1

4hαβϕ
(q) γ
γ +O(ρ2),

Ein
(q)
αβ = 1

8 (2n+ 1)ϕ
(q)
αβ +O(ρ2).

Hence ϕ
(N)
ij must be O(ρ2) so as to make Ein

(N)
IJ = O(ρ2). If ϕ

(q)
ij = O(ρ2), q0 +1 ≤ q ≤ N ,

then the identities above hold for q = q0, which shows that Ein
(q0)
IJ = O(ρ2) is equivalent to

ϕ
(q0)
ij = O(ρ2). Hence we conclude that EinIJ = A2 if and only if ϕij = A2.
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Next, again by Lemma 3.2 we see that the following is true for q = N :

Ein(q)∞∞ = 2ϕ
(q)
00 +O(ρ3), Ein

(q)
∞0 = O(ρ3), Ein(q)∞α = − 3i

2 ϕ
(q)
0α +O(ρ3),

Ein
(q)
00 = 1

2 (2n+ 1)ϕ
(q)
00 +O(ρ3), Ein

(q)
0α = 3

8 (2n+ 1)ϕ
(q)
0α +O(ρ3),

Ein
(q)

αβ
= 1

2 (n+ 2)ϕ
(q)

αβ
− 1

4hαβϕ
(q)
00 + 1

2hαβϕ
(q) γ
γ +O(ρ3),

Ein
(q)
αβ = 1

2nϕ
(q)
αβ +O(ρ3).

An inductive argument shows that Ein
(q)
IJ = O(ρ3), 1 ≤ q ≤ N , if and only if ϕ

(q)
ij = O(ρ3),

1 ≤ q ≤ N . Finally, the same identities as (3.13) hold for Ein
(0)
IJ and ϕ

(0)
ij , which imply

that ϕ
(0)
ij must satisfy ϕ

(0)
00 = O(ρ3), ϕ

(0)
0α = O(ρ3), ϕ

(0)

αβ
= ρ2Φ

αβ
+ O(ρ3) and ϕ

(0)
ij =

ρ2Φαβ +O(ρ3) as desired. �

Let g0 be such a normal-form ACH metric, and for specificity, let its components (g0)ij
be polynomials of order 2n + a(i, j) in ρ, which are uniquely determined by the condition

(7.1). We set

(7.2) (Ein0)IJ = ρ2n+1+a(I,J)EIJ +O(ρ2n+2+a(I,J)),

where EIJ is constant in the ρ-direction. The tensor EIJ is also seen as a composition

(E∞∞ , E∞i , Eij ) of a function and tensors onM , which are universally-defined polynomials

of pseudohermitian invariants of (M, θ). We already know that Eαβ = Oαβ and E0α =

−i∇βOαβ − iN βγ
α O

βγ
. Set

u := −
1

n+ 1
(iE∞0 +∇αE∞α −∇αE∞α).

Theorem 7.2. Let κ be a smooth function and λαβ a tensor satisfying

(7.3) Pαβλαβ + Pαβλ
αβ

= u.

Then there is a singular normal-form ACH metric g satisfying EinIJ = A∞ and

(7.4)
1

(2n+ 4)!

(

∂2n+4
ρ g

(0)
00

)∣

∣

∣

M
= κ,

1

(2n+ 2)!

(

∂2n+2
ρ g

(0)
αβ

)∣

∣

∣

M
= λαβ ,

where gij ∼
∑∞
q=0 g

(q)
ij (log ρ)q is the asymptotic expansion of gij . The components gij are

uniquely determined modulo A∞ by the condition above.

As is clear from the proof below, Theorem 7.2 also holds in the following formal sense.

Let p ∈M , κ a smooth function and λαβ a tensor satisfying (7.3) to the infinite order at p.

Then there exists a singular normal-form ACH metric g satisfying (7.4) and EinIJ = A∞ to

the infinite order at p, and the Taylor expansions of g
(q)
ij at p are unique. On the other hand,

we can find a formal power series solution to (7.3) by the Cauchy–Kovalevskaya theorem.

Hence, by Borel’s Lemma, we have λαβ solving (7.3) to the infinite order at p and prove the

first statement of Theorem 0.3. We do not know whether (7.3) is solvable in the category

of smooth tensors.

The first step to prove Theorem 7.2 is the following.
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Lemma 7.3. There exists a singular normal-form ACH metric g satisfying

Ein∞∞ = A2n+4, Ein∞0 = A2n+4, Ein∞α = A2n+3,

Ein00 = A2n+4, Ein0α = A2n+4, Ein
αβ

= A2n+4 Einαβ = A2n+3

and Ein∞0 mod A2n+5, Ein∞α mod A2n+4, Ein00 mod A2n+5, Ein
αβ

mod A2n+5 do not

contain logarithmic terms. Such a metric g is of the form

g00 = (g0)00 + ψ
(0)
00 + ψ

(1)
00 log ρ+ ψ

(2)
00 (log ρ)2 +A2n+5,

g0α = (g0)0α + ψ
(0)
0α + ψ

(1)
0α log ρ+A2n+4,

g
αβ

= (g0)αβ + ψ
(0)

αβ
+ ψ

(1)

αβ
log ρ+ ψ

(2)

αβ
(log ρ)2 +A2n+5,

gαβ = (g0)αβ + ψ
(0)
αβ + ψ

(1)
αβ log ρ+A2n+3,

where ψ
(q)
ij = O(ρ2n+1+a(i,j)). Furthermore, among ψ

(q)
ij ,

ψ
(2)
00 , ψ

(2)

αβ
, ψ

(1)
0α , tf(ψ

(1)

αβ
), ψ

(1)
αβ and 1

2nψ
(1)
00 + (n+ 1)ψ(1) α

α

are determined modulo O(ρ2n+2+a(i,j)). In particular, if Oαβ = 0 then they are zero modulo

O(ρ2n+2+a(i,j)).

Proof. We set

(7.5) gij = (g0)ij +

N
∑

q=0

ψ
(q)
ij (log ρ)q, ψ

(q)
ij = O(ρ2n+1+a(i,j)).

By (4.2) and (4.3), which are also valid here if O(ρm
′

) is replaced by Am′

, the difference

δ EinIJ between the Einstein tensor of g0 and that of g is of the form

δ EinIJ =

N
∑

q=0

δEin
(q)
IJ (log ρ)

q +A2n+2+a(I,J).

We may assume N ≥ 3. Then, by (4.2) we have δ Ein
(N)
0α = O(ρ2n+4) and δ Ein

(q−1)
αβ =

O(ρ2n+3), which imply that Ein
(N)
0α = O(ρ2n+4), Ein

(q−1)
αβ = O(ρ2n+3) already hold, and

δ Ein
(q−1)
0α = − 1

4q(n+ 2)ψ
(q)
0α +O(ρ2n+4),

δ Ein
(q−1)
αβ = − 1

4q(n+ 1)ψ
(q)
αβ +O(ρ2n+3)

(7.6)

for q = N . This shows that Ein
(N−1)
0α = O(ρ2n+4), Ein

(N−1)
αβ = O(ρ2n+3) if and only if

ψ
(N)
0α = O(ρ2n+4), ψ

(N)
αβ = O(ρ2n+3), for Ein0 contains no logarithmic terms. Since (7.6)

holds for q = q0 if ψ
(q)
0α = O(ρ2n+4) and ψ

(q)
αβ = O(ρ2n+3) for q0+1 ≤ q ≤ N , inductively we

verify that Ein0α = A2n+4, Einαβ = A2n+3 if and only if ψ
(q)
0α = O(ρ2n+4), ψ

(q)
αβ = O(ρ2n+3),

2 ≤ q ≤ N and

(7.7) ψ
(1)
0α =

4

n+ 2
ρ2n+3E0α +O(ρ2n+4), ψ

(1)
αβ =

4

n+ 1
ρ2n+2Eαβ +O(ρ2n+3).
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Next, from (4.3c)–(4.3e) we have nδ Ein
(N)
00 −2δEin(N) α

α = O(ρ2n+5) and

δ Ein
(q)
00 = 1

2nψ
(q)
00 + (n+ 1)ψ(q) α

α +O(ρ2n+5),

tf(δ Ein
(q)

αβ
) = − 1

2n tf(ψ
(q)

αβ
) +O(ρ2n+5),

nδ Ein
(q−1)
00 −2δEin(q−1) α

α = − 1
4q(n+ 3)(nψ

(q)
00 − 2ψ(q) α

α ) +O(ρ2n+5)

for q = N . Hence both ψ
(N)
00 and ψ

(N)

αβ
must be O(ρ2n+5). Inductively the same must hold for

all ψ
(q)
00 , ψ

(q)

αβ
, 3 ≤ q ≤ N , and 1

2nψ
(2)
00 +(n+1)ψ

(2) α
α = O(ρ2n+5) and tf(ψ

(2)

αβ
) = O(ρ2n+5),

in order for us to have Ein
(q)
00 = O(ρ2n+5), Ein

(q)

αβ
= O(ρ2n+5), 2 ≤ q ≤ N .

Again by (4.3c)–(4.3e), modulo O(ρ2n+4) terms which linearly depend on ψ
(2)
00 , ψ

(1)
0α and

ψ
(1)
αβ ,

δ Ein
(1)
00 ≡ 1

2nψ
(1)
00 + (n+ 1)ψ(1) α

α +O(ρ2n+5),

tf(δ Ein
(1)

αβ
) ≡ − 1

2n tf(ψ
(1)

αβ
) +O(ρ2n+5),

nδ Ein
(1)
00 −2δEin(1) α

α ≡ − 1
2 (n+ 3)(nψ

(2)
00 − 2ψ(2) α

α ) +O(ρ2n+5).

Therefore ψ
(2)
00 , ψ

(2) α
α , tf(ψ

(1)

αβ
) and 1

2nψ
(1)
00 +(n+1)ψ

(1) α
α are uniquely determined modulo

O(ρ2n+5) by the requirement Ein
(1)
00 = O(ρ2n+5), Ein

(1)

αβ
= O(ρ2n+5).

For gij that we have constructed, (5.2b) and (5.2c), or (5.9), show that Ein∞0 and Ein∞α

do not contain logarithmic terms modulo A2n+5 and A2n+4, respectively. If Oαβ = 0, (7.7)

implies that ψ
(1)
0α and ψ

(1)
αβ are zero, and hence ψ

(2)
00 , ψ

(2) α
α , tf(ψ

(1)

αβ
) and 1

2nψ
(1)
00 + (n +

1)ψ
(1) α
α are also zero. �

The rest of the proof of Theorem 7.2 consists of two parts, in the first of which we finish

constructing a singular ACH metric satisfying EinIJ = A2n+2+a(I,J), and in the second we

go through the inductive argument to achieve EinIJ = A∞.

Proof of Theorem 7.2. Let g be a singular normal-form ACH metric we have obtained in

Lemma 7.3. By (4.3b), (4.2) and (7.7) we have

δ Ein
(0)
∞0 = (n+ 2)ρ(∇αψ

(0)
0α +∇αψ

(0)
0α )− (n+ 1)ρ2(Aαβψ

(0)
αβ +Aαβψ

(0)

αβ
)

+ ρ2n+4
[

2
n+2 (∇

αE0α +∇αE0α)−
2

n+1 (A
αβEαβ +AαβE

αβ
)
]

+O(ρ2n+5),

δ Ein(0)∞α = −i(n+ 2)ψ
(0)
0α + (n+ 1)ρ∇βψ

(0)
αβ + (n+ 1)ρN βγ

α ψ
(0)

βγ

− ρ2n+3
[

2i
n+2E0α − 2

n+1 (∇
βEαβ +N βγ

α E
βγ

)
]

+O(ρ2n+4).

If we set ψ
(0)
0α = ρ2n+3να + O(ρ2n+4) and ψ

(0)
αβ = ρ2n+2µαβ + O(ρ2n+3), then to attain

Ein∞0 = O(ρ2n+5) and Ein∞α = O(ρ2n+4) is equivalent to solve the following system of
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PDEs:

(7.8)



























(n+ 2)(∇ανα +∇ανα )− (n+ 1)(Aαβµαβ +Aαβµ
αβ

)

= −E∞0 − 2
n+2 (∇

αE0α +∇αE0α ) +
2

n+1 (A
αβEαβ +AαβE

αβ
),

−i(n+ 2)να + (n+ 1)∇βµαβ + (n+ 1)N βγ
α µ

βγ

= −E∞α + 2i
n+2E0α − 2

n+1 (∇
βEαβ +N βγ

α E
βγ

).

If we substitute the second equation into the first one and use Eαβ = Oαβ and (5.9), the

system is reduced to Pαβµαβ−P
αβµ

αβ
= u. Hence, by setting µαβ = λαβ and determining

να by (7.8) we achieve Ein∞0 = O(ρ2n+5) and Ein∞α = O(ρ2n+4).

Having fixed ψ
(0)
0α and ψ

(0)
αβ , now we may determine ψ

(1)
00 , ψ

(1) α
α , tf(ψ

(0)

αβ
) and 1

2nψ
(0)
00 +(n+

1)ψ
(0) α
α modulo O(ρ2n+5) so that Ein

(0)
00 , Ein

(0)

αβ
are O(ρ2n+5) by observing (4.3c)–(4.3e).

It automatically holds that Ein∞∞ = A2n+5 by (5.2a). Although 1
2nψ

(0)
00 +(n+1)ψ

(0) α
α is

fixed, ψ
(0)
00 (or ψ

(0) α
α ) remains to be free, so we prescribe it by ψ

(0)
00 = ρ2n+4κ+ O(ρ2n+5).

We have shown that there is a singular normal-form ACH metric satisfying EinIJ =

A2n+2+a(I,J). If we impose the condition (7.4) then gij are unique modulo A2n+2+a(i,j).

Let m ≥ 2n + 3 and suppose that g is a singular normal-form ACH metric satisfying

EinIJ = Am−1+a(I,J). We set

g′ij = gij +

N
∑

q=0

ψ
(q)
ij (log ρ)q,

where ψ
(q)
ij = O(ρm−1+a(i,j)), and prove that ψ

(q)
ij mod O(ρm+a(i,j)) may be uniquely de-

termined so that EinIJ = Am+a(I,J) holds.

By replacing N with larger one if necessary, the difference δ Ein = Ein′ −Ein between

the Einstein tensors is of the form

δ EinIJ =
N
∑

q=0

δ Ein
(q)
IJ (log ρ)

q +Am+a(I,J).

Then by (4.2) and (4.3) we have, modulo terms linearly depending on ψ
(q+2)
ij or ψ

(q+1)
ij ,

δEin
(q)
00 ≡ − 1

8 (m
2 − 2nm− 8n− 4)ψ

(q)
00 + 1

2mψ
(q) α
α

+ (O(ρm+2) terms depending on ψ
(q)
0α and ψ

(q)
αβ ) +O(ρm+3)

(7.9a)

δEin
(q)
0α ≡ − 1

8 (m+ 2)(m− 2n− 2)ψ
(q)
0α +O(ρm+2),(7.9b)

δ Ein(q) α
α ≡ 1

8n(m− 2)ψ
(q)
00 − 1

8

(

m2 − (4n− 2)m− 8n− 8
)

ψ(q) α
α

+ (O(ρm+2) terms depending on ψ
(q)
0α and ψ

(q)
αβ ) +O(ρm+3),

(7.9c)

tf(δ Ein
(q)

αβ
) ≡ − 1

8 (m
2 − 2nm− 2n− 9) tf(ψ

(q)

αβ
)

+ (O(ρm+2) terms depending on ψ
(q)
0α and ψ

(q)
αβ ) +O(ρm+3),

(7.9d)

δEin
(q)
αβ ≡ − 1

8m(m− 2n− 2)ψ
(q)
αβ +O(ρm+1).(7.9e)
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By (5.5), if m 6= 4n + 2, we may determine ψ
(N)
ij , ψ

(N−1)
ij , . . . , ψ

(0)
ij inductively so that

Ein′ij = Am+a(i,j) hold. Then by (5.2) it automatically holds that Ein′∞∞ = Am+3,

Ein′∞0 = Am+3 and Ein′∞α = Am+2. If m = 4n+ 2, instead of (7.9c) we use

δ Ein(q)∞∞ ≡ −8n(n+ 1)ψ
(q)
00 − 8(n+ 1)(2n+ 1)ψ(q) α

α

+ (O(ρ4n+4) terms depending on ψ
(q)
αβ ) +O(ρ4n+5),

which holds modulo ψ
(q+2)
ij and ψ

(q+1)
ij . We may determine ψ

(N)
ij , ψ

(N−1)
ij , . . . , ψ

(0)
ij induc-

tively so that Ein′∞∞ = A4n+5, Ein′00 = A4n+5, Ein′0α = A4n+4, tf(Ein′αβ) = A4n+5 and

Ein′αβ = A4n+4. By (5.2), we obtain Ein′
α
α = A4n+3, Ein′∞0 = A4n+5 and Ein′∞α =

A4n+4. Hence the induction works and we obtain the theorem. �

Finally we shall discuss constructing a completely log-free solution when the Oαβ = 0.

We set

v : = −E00 + 2
nE

α
α − 1

n (∇
αE∞α +∇αE∞α) +

2i
n(n+2) (∇

αE0α −∇αE0α )

− 2
n(n+1) (∇

α∇βEαβ +∇α∇βE
αβ

+Nγαβ∇γEαβ +Nγαβ∇γEαβ

+Nγαβ
,γEαβ +Nγαβ

,γEαβ ).

Theorem 7.4. Suppose that Oαβ = 0. Let κ be a smooth function and λαβ a tensor

satisfying

(7.10)







Pαβλαβ − Pαβλ
αβ

= u,

Pαβ−2/nλαβ + Pαβ−2/nλαβ = v.

Then there is a normal-form ACH metric g, which is free of logarithmic terms, satisfying

EinIJ = A∞ and

(7.11)
1

(2n+ 4)!

(

∂2n+4
ρ g00

)∣

∣

M
= κ,

1

(2n+ 2)!

(

∂2n+2
ρ gαβ

)∣

∣

M
= λαβ .

The components gij are unique.

Again this theorem also holds in the formal sense. Since the principal parts of Pαβ

and Pαβ−2/n agree, the Cauchy–Kovalevskaya theorem guarantees that the system (7.10) is

formally solvable at any given point. Thus we show the second statement of Theorem 0.3.

Proof. If Oαβ = 0, then a (potentially) singular normal-form ACH metric g satisfying the

conditions in the statement of Lemma 7.3 is of the form

g00 = (g0)00 + ψ
(0)
00 + ψ

(1)
00 log ρ+A2n+5,

g0α = (g0)0α + ψ
(0)
0α +A2n+4,

g
αβ

= (g0)αβ + ψ
(0)

αβ
+ 1

nhαβψ
(1) γ
γ log ρ+A2n+5,

gαβ = (g0)αβ + ψ
(0)
αβ +A2n+3.

Here 1
2nψ

(1)
00 + (n+ 1)ψ

(1) α
α = O(ρ2n+5) should hold. After prescribing ψ

(0)
αβ , the potential

log-term coefficients ψ
(1)
00 and ψ

(1) α
α are determined by requiring nEin

(0)
00 −2Ein(0) α

α =
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O(ρ2n+5). So let us look at the dependence of nEin′
(0)
00 − 2Ein′

(0) α
α on ψ

(0)
αβ . Using (4.3c)

and (4.3d) again, we obtain

nδ Ein
(0)
00 −2δEin(0) α

α = − 1
2 (n+ 2)(nψ

(1)
00 − 2ψ(1) α

α )

+ i(n+ 2)ρ(∇αψ
(0)
0α −∇αψ

(0)
0α )−

1
2nρ

2(Φαβψ
(0)
αβ +Φαβψ

(0)

αβ
)

− ρ2(∇α∇βψ
(0)
αβ +∇α∇βψ

(0)

αβ
+Nγαβ∇γψ

(0)
αβ +Nγαβ∇γψ

(0)

αβ

+Nγαβ
,γψ

(0)
αβ +Nγαβ

,γψ
(0)

αβ
) +O(ρ2n+5).

Hence if we can set ψ
(0)
αβ and ψ

(0)
0α appropriately, then ψ

(1)
00 − 2ψ

(1) α
α must be O(ρ2n+5) and

so are ψ
(1)
00 and ψ

(1) α
α . Let ψ

(0)
0α = ρ2n+3να + O(ρ2n+4) and ψ

(0)
αβ = ρ2n+2µαβ + O(ρ2n+3).

Combined with (7.8), the equations to be solved are


























































(n+ 2)(∇ανα +∇ανα)− (n+ 1)(Aαβµαβ +Aαβµ
αβ

)

= −E∞0 − 2
n+2 (∇

αE0α +∇αE0α ) +
2

n+1 (A
αβEαβ +AαβE

αβ
),

−i(n+ 2)να + (n+ 1)∇βµαβ + (n+ 1)N βγ
α µ

βγ

= −E∞α + 2i
n+2E0α − 2

n+1 (∇
βEαβ +N βγ

α E
βγ

),

i(n+ 2)(∇ανα −∇ανα )−
1
2n(Φ

αβµαβ +Φαβµ
αβ

)

−∇α∇βµαβ −∇α∇βµ
αβ

−Nγαβ∇γµαβ −Nγαβ∇γµαβ −Nγαβ
,γ µαβ −Nγαβ

,γ µαβ
= −nE00 + 2E α

α .

By substituting the second equation into the other two and using (3.4), the system is reduced

to






Pαβµαβ − Pαβµ
αβ

= u,

Pαβ−2/nµαβ + Pαβ−2/nµαβ = v.

So we set µαβ = λαβ and determine να by the equations above. Then ψ
(1)
00 = O(ρ2n+5),

ψ
(1) α
α = O(ρ2n+5) solve Ein∞0 = A2n+5, Ein∞α = A2n+4 and nEin00 −2Ein α

α = A2n+5.

As before, tf(ψ
(0)

αβ
) mod O(ρ2n+5) and 1

2nψ
(0)
00 + (n + 1)ψ

(0) α
α mod O(ρ2n+5) are uniquely

determined so that Ein00 = A2n+5, Ein
αβ

= A2n+5. We set ψ
(0)
00 = ρ2n+4κ+O(ρ2n+5). By

(5.2a) we have Ein∞∞ = A2n+5.

Now we have uniquely constructed a normal-form ACH metric g, which is log-free, sat-

isfying EinIJ = A2n+2+a(I,J) and (7.11). After that we once again follow the latter half of

the proof of Theorem 7.2 to determine all the higher-order terms of gij . No logarithmic

terms occur in this process. �
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