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ASYMPTOTICS OF ACH-EINSTEIN METRIC

YOSHIHIKO MATSUMOTO

ABSTRACT. We study the boundary asymptotics of asymptotically complex hyperbolic
(ACH) solution of the Einstein equation in terms of the induced partially integrable
almost CR structure 70 on the boundary. Once we prescribe a conformal class [©]
of ©-structures compatible with given 700, an approximate smooth solution is con-
structed, which is unique modulo high-order terms and [O]-preserving diffeomorphism
actions fixing the boundary. A new local CR-invariant tensor naturally arises as the
obstruction to construct a better approximation; it vanishes when the boundary struc-
ture is integrable. It is shown that there always exist formal solutions to the Einstein
equation if we allow logarithmic terms.
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INTRODUCTION

Asymptotically complex hyperbolic metrics, or ACH metrics in short, that we study here
were introduced by C. L. Epstein, R. B. Melrose and G. A. Mendoza [EMM)] as generaliza-
tions of complete Kihler metrics of the form 99 log(1/r) on strictly pseudoconvex domains,
where 7 is a boundary defining function. Recently the Einstein equation for ACH metrics
is investigated by O. Biquard and M. Herzlich [Bil [BiH]. The purpose of this paper is to
discuss the behavior of ACH-Einstein metrics near the boundary.

The boundary behavior of the complete Kéahler—Einstein metric on a bounded strictly
pseudoconvex domain © C C"*!, whose existence was established by S. Y. Cheng and
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S. T. Yau [CY], is studied by several authors. Following the pioneering work of C. L. Feffer-
man [Fe], J. M. Lee and R. Melrose [LM] proved that the solution of the zero boundary value
problem of the complex Monge-Ampere equation admits at the boundary an asymptotic
expansion including logarithmic terms. C. R. Graham [Gr] showed that this expansion is
determined by the local CR geometry of the boundary up to the ambiguity of one scalar-
valued function on 9f).

In the ACH case, the induced almost CR structure on the boundary is no longer integrable
in general; however, it satisfies what S. Tanno [Tno| called the partial integrability condition.
By definition a (2n + 1)-dimensional almost CR manifold (M, T%°) is partially integrable if
and only if

(0.1) [Co°(M, T, C>(M,T"°)] c C>(M, He), where He := T*% @ TO.L,

The bundle Hc is the complexification of a certain real subbundle of 7'M, which is denoted
by H. We may also describe an almost CR, structure on M by its real expression (H,J),
where J € End H and J|71.0 = iidp1.0.

The nonintegrablility of (M, T*?) is measured by the Nijenhuis tensor N € C*°(M, Hi®
H{E ® He) defined by

(0.2)  N(X,Y):=0tomh0x, mt0y] + m'OMhox, moy),  X,Y € C~(M, He),

where II'0 and II'0 are the projections onto 7% and T10, respectively. Equation @2
shows that N is real. Given a local frame { Z, } = { Z;,...,Z, } of T'°, we put Zs = Z,
and write N(Za, Z3) = N, Z5.

A partially integrable almost CR manifold (M, T'?) is said to be nondegenerate if H is
a contact distribution, or equivalently, 8 A (df)™ is a volume form on M for some (hence
for any) nowhere vanishing 1-form 6 annihilating H. In this case the conormal bundle
E C T*M of H is orientable as well as TM. Hence E* := E'\ (zero section) splits into two
R*-bundles; we fix one of them and call its sections pseudohermitian structures. A choice
of a pseudohermitian structure 6 defines the Levi form h on H¢ by

(0.3) hX,Y):=df(X,JY), X,Y eC>(M, He).

Thanks to the nondegeneracy and the partial integrability, the Levi form h is a nondegen-
erate hermitian form. Furthermore, its signature (p,q), p + ¢ = n, is independent of the
choice of #. Once we fix a pseudohermitian structure 6, the Levi form haE = h(Z,, ZE) and

its dual h°? allows us to lower and raise indices.

There are several versions of the definition of ACH metric in the literature. We use the
one by C. Guillarmou and A. S4 Barreto [GuS4]; this is a reformulation of the conditions
which [EMM)] imposed to ©-metrics in a study of the resolvent of the Laplacian. Let X
be a (2n + 2)-dimensional smooth manifold-with-boundary with a fixed conformal class
[O] of O-structures, and ¢: X < X the inclusion map. According to the definition by
Guillarmou and S& Barreto, ACH metrics on X are fiber metrics of a modified tangent
bundle, which is denoted by ®T X, satisfying certain conditions. Over the boundary 09X,
there is a natural filtration Ky C K1 C G)TX|(9X by subbundles, where K is of rank 2n+ 1
and K, of rank 1. Any ACH metric g induces a decomposition ®TX|px = R® Ko @ L,
K, = K5 & L into subbundles and a complex structure J € End L, which is identified with
a partially integrable almost CR structure endomorphism J € End H on H = ker (*[0]. By
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a distinguished local frame { s, &0,€a,&x Y We mean a local frame of ©T'X near X such
that, if restricted to ©T,X, p € 0X, (£x)p generates Ry, (&), generates Kap, (&1)py - - -,
(€.)p span the i-eigenspace of .J, € End L,, and & = &,. For details see {11

One of the main theorems of this paper is the following one on the existence of an
approximate solution of the Einstein equation. For any ACH metric g, its Ricci tensor Ric
is naturally defined as a symmetric 2-tensor over ©T'X. We define the Einstein tensor Ein
by Ein := Ric+4(n +2)g. A boundary defining function p of a manifold-with-boundary X
is a real-valued smooth function satisfying p > 0 in X , p=0o0n 0X and dp # 0 everywhere
on 0X.

Theorem 0.1. Let X be a (2n + 2)-dimensional smooth manifold-with-boundary, (0] a
conformal class of ©-structures, and T° a nondegenerate partially integrable almost CR
structure on 0X such that 1*[0] determines a conformal class of pseudohermitian structures
of (0X,TY°). Then there exists an ACH metric g satisfying

Ein,., = 0(p*"*1),  Eingy=O0(p*"™"),  Ein
(04) EinOO = O(p2n+4)7 EinOa = O(p2n+3)a
Einaﬁ _ O(p2n+3)7 EinaB _ O(p2n+2)

=0(p™""?),

oo

with respect to any distinguished local frame {&so, 0,0, éa} of ©TX near the boundary,
where p is any boundary defining function of X.

Note that the condition (04) is independent of the choice of a distinguished local frame
{€x0,%0,&0,&x } and a boundary defining function p.

The construction of better approximate solutions is obstructed by a tensor field O, 5 on
the boundary, which is called the obstruction tensor. Let g be any ACH metric satisfying
the condition of Theorem[Jland 6 € ¢*[©] a pseudohermitian structure on 9X. Then there
is a special boundary defining function p for 6, which satisfies ||dp/pl|, = 1/2 near X and
*(p*g) = 6°. By these ingredients O, 5 is defined by

Oaﬁ = (p_2"_2 Einaﬁ) |8X

in terms of the Einstein tensor of g. This is well-defined, i.e., this does not depend on the
choice of g, and is a universal polynomial of pseudohermitian invariants of (M, T ). As
expected O,; has some CR-invariant properties. Let ¢ be F. Farris’ section of the CR
canonical bundle K of 0X associated to 6, i.e., a section of K satisfying

(0.5) O A (dO)" =i nl(—=1)20 A (T | ) A(T | O),

where the signature of the Levi form is (p, ¢), and define the density-weighted version of the
obstruction tensor by

oaﬂ = Oaﬂ ® |<|2n/(n+2) c g(aﬁ) (_n, _n)
Then we have the following results.

Proposition 0.2. (1) The density-weighted obstruction tensor O, 4 is a CR invariant.
(2) For an integrable CR manifold, the obstruction tensor vanishes.
(3) Let PP be a differential operator Elap) (=1, —n) = E(=n — 2, —n — 2) defined by

PP =vovP — AP — NPy — NP
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where A is the pseudohermitian torsion tensor. Then this is a CR-invariant operator and
we have Po‘ﬁ(’)aﬁ — Paﬁ(’)aﬁ =0.

In spite of (2) above, there actually is a partially integrable almost CR manifold for which
O, is nonzero. This indicates the importance of studying partially integrable almost CR
structures.

We shall also investigate how well the solution is improved if we introduce logarithmic
terms to ACH metrics. A function f € C°(X) N C°°(X) is said to be an element of A(X)
if it admits an asymptotic expansion of the form

(0.6) [~ fjf@ (logp)?,  f19eC™(X)
q=0

for any boundary defining function p. If f € A(X), then the Taylor expansions of f(%)
at 0X are uniquely determined. A singular ACH metric is a fiber metric g of ©TX with
g7 € A(X) satisfying the same condition for usual ACH metrics. Then the components
of its Ricci tensor also belong to A(X), and hence so are those of the Einstein tensor. We
have the following theorem for such metrics. For any boundary point p € X, we say that
f € A(X) vanishes to the infinite order at p if and only if all the coefficients (@) have the
vanishing Taylor expansions at p. A tensor over ©T'X vanishes to the infinite order at p if
and only if all of its components vanish to the infinite order at p.

Theorem 0.3. Let X, T'°, [O] as in Theorem [0 and p € X. Then there exists a
singular ACH metric whose Einstein tensor vanishes to the infinite order at p. Furthermore,
if O,p =0, where O, is the obstruction tensor for (0X,T'Y), then there exists such an
ACH metric with no logarithmic terms.

A particularly noteworthy case is when the boundary almost CR structure is integrable.
By Proposition (2), the second assertion of the theorem above applies to this case.
Although Graham [Gr| showed that there is a nontrivial scalar-valued obstruction for the
existence of a complete Kéhler-Einstein metric on a bounded strictly pseudoconvex domain
which is smooth up to the boundary, our result says that in the ACH category we can always
erase the logarithmic terms. The author predicts that there is a Kéahler-like condition to
ACH metrics which revives the scalar-valued obstruction; it might be an interesting topic
of further study.

Our result contradicts a work of N. Seshadri [Se], which states that there are a “primary”
scalar-valued obstruction function and a “secondary” 1-tensor obstruction to the existence
of ACH-Einstein metrics without logarithmic terms. Despite the fact that there is a slight
difference in the definition of ACH metrics, the conflict is not because of it. The work [Se]
contains some crucial calculation errors in §4, where the computation of the Ricci tensor
is carried out. Nevertheless, the influence of Seshadri’s paper on our treatment of ACH-
Einstein metrics is obvious; if it were not for it, this work should have been much harder to
complete.

The paper is organized as follows. We first recall the notion of ©-structure on a manifold-
with-boundary X, the definition of ACH metric and relevant basic facts in §Il In §2] we
quickly develop a theory of pseudohermitian geometry for partially integrable almost CR
structures. After studying how the Ricci tensor depends on the metric in §3] and §4 we
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prove Theorem [Tl and Proposition[0.2in §5l In §6 we calculate the first variation of O,
with respect to the modification of partially integrable almost CR structure from the flat
one and verify that there are abundant examples for which the obstruction tensor does not
vanish. The last section §7lis devoted to an investigation of singular ACH metrics and the
proof of Theorem [0.3]

In this paper the word “smooth” means infinite differentiability. The Einstein sum-
mation convention is used throughout. Parentheses surrounding indices indicate the sym-
metrization. Our convention for the exterior product w A n of 1-forms is (w A 7)(X,Y) =
w(X)M(Y) — w(¥Y)n(X), while for the symmetric product wn we observe (wn)(X,Y) =
Lw(X)n(Y) +w(¥)n(X)).

The author would like to express his gratitude to Kengo Hirachi for guidance to this
interesting research area and continuous encouragement. He also wishes to thank Takao
Akahori, Charles Fefferman, Robin Graham, Colin Guillarmou, Hiraku Nozawa, Raphaél
Ponge and Neil Seshadri for useful advice and discussions.

1. ©-STRUCTURE AND ACH METRIC

Let X be a smooth manifold-with-boundary. Consider a 1-form © € C*(0X,T*X|sx)
defined only on the boundary such that :*© is nowhere vanishing, where ¢: 0X — X is
the inclusion map. Then a Lie subalgebra Vg of C°(X,TX) is defined as follows: for any
boundary defining function p, a vector field V is an element of Vg if and only if

Ve pC®(X,TX), ©O(V)e p*C>®(X).

Here © € C®°(X,T*X) is any extension of ©. It is clear that the algebra Ve depends only
on the conformal class of ©. Hence it is reasonable to focus on the conformal class of O,
which we call a conformal ©-structure.

Now let X be a (2n + 2)-dimensional manifold-with-boundary with a conformal ©-
structure [©]. There is a canonical vector bundle ®TX of rank 2n + 2 over X, whose
sections are the elements of Vg. Over the interior of X it is identified with the usual tangent
bundle TX. To illustrate the structure near p € 0X, let { N,T,Y; } = {N,T.Y1,..., Y2, }
be a local frame of TX in a neighborhood of p dual to a certain local coframe of the form
{dp,é,aj }, where © is an extension of some © € [©]. Then any V € Vg is, near p,
expressed as

(1.1) V = apN + bp?T + ¢ pYj, a, b, € C*(X).

Hence { pN, p*T, pY; } extends to a local frame of ®T'X near p € 9X. The dual local frame
of the bundle ®T*X := (°TX)* is {dp/p,0/p* &’ /p}. A fiber metric of ©T X is called a
©-metric; we consider those of arbitrary signatures.

Example 1.1. Let Q C C"*! be a bounded strictly pseudoconvex domain. Then the bound-
ary 0 carries a strictly pseudoconvex CR structure. If » € C*°(Q) is a boundary defining
function and 6 := %(87" — Or), then 6 := 10 is a pseudohermitian structure on 9, where
t: 002 —  is the inclusion map. We consider the complete Kéhler metric gg on 2 with
Kiihler form i 99(log(1/7)), which is regarded as a Riemannian metric on ) as follows:
2
go = 2;; % (log %) (d2 @ dzF + dz" @ d27) = Tizdﬁ + f—292 + %B.
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Here we set b := —(02r/82997")(d27 ® dz* + dz* ® dz7); note that this is an extension of
the Levi form on the boundary. Let X := 2 be the square root of Q in the sense of
[EMM] and ¢1/2: X — € the identity map. We define © := (1] ,0)|ox and take p := \/1r/2
as a boundary defining function on X. Then gq lifts to the following metric on X:

. 4 1~ 1 - . )
(1.2) g:=17/290 = dez + F@Q + FH7 O =175, H=1j)h
The expression ([[Z2) shows that g extends to a positive-definite ©-metric on X.

Let F,, p € 90X, be the set of vector fields of the form () with a(p) = b(p) = ¢?(p) = 0.
Then there is a natural identification between the fiber ©T, X of ®T'X at p and the quotient
vector space Vo/F,. Since F, is an ideal, the fiber @TpX is a Lie algebra, which is called
the tangent algebra at p. In the sequel we always further assume that

t*[©] is a conformal class of a contact form on 0X;
then the derived series of ©T}, X consists of the following subalgebras:
Kl,p = <p2T7pY'177va2n> /Fpu K?,p = <p2T> /F;D

Collecting these subspaces we obtain the subbundles K7 and K5 of oTX lox -

ACH metrics generalize the ©-metrics coming from complete Kéhler metrics as illus-
trated in Example[[.T] The characterizing features are completely described in terms of the
boundary value of g. Our first two assumptions are that

d 1

(1.3) Pl == over 0X
plly 2

and

(1.4) g is positive-definite on K.

It is clear that (L3) is independent of the choice of a boundary defining function p. The
condition (I4) implies that if we pull pg, regarded as a section of Sym? T*X, back to
0X then it is equal to the square of some contact form in ¢*[©]. If there is a fixed ©-
metric g satisfying these two conditions, then for any p € X there is a unique orthogonal
decomposition

(1.5) T, X =R, ® K2, ® L, Kip=Kop®L,

The subbundle of ®T X |sx whose fiber at p is L,, is denoted by L.
Let H C T(9X) be the kernel of .*[0]. Given a boundary defining function p, there is a
vector-bundle isomorphism

(1.6) Nt H— L, Y, — mp(pY mod F,),

where Y € C°(X,TX) is any extension of Y, € H, C T,(0X) and m,: K, — L, is the
projection with respect to the decomposition (ILH). By a compatible almost CR structure
for [©] we mean any almost CR structure 7% on dX such that T%° @ T10 = Hg, where
Hc is the complexification of H.

Definition 1.2. Let (X, [0]) a manifold-with-boundary with a conformal ©-structure. An
ACH metric on X is a O-metric g satisfying (I3]), (I.4) and the following additional con-
ditions:
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(i) For any p € 0X, if r, € R, is the vector such that (dp/p),(rp) = 1, then the map
L, — ®T,X, Z, ~ [rp, Zp), is equal to the identity onto Ly;

(ii) There is a compatible nondegenerate partially integrable almost CR structure 7'1:°
such that, for some (hence for any) boundary defining function p and a pseudoher-
mitian structure § € 1*[0] characterized by ¢*(p*g) = 62, via (L8] g|. agrees with
the Levi form on H determined by 6.

The condition () above is independent of the choice of p. On (i), the assumptions of par-
tial integrability and nondegeneracy are not restrictive here, since if A\(g|r) = (d0)|u (-, J-)
holds for a compatible almost CR structure (H,J) on 90X, then (df)|g (-, J-) is symmetric
and hence hermitian, which implies that (H,J) is partially integrable, and its nondegen-
eracy is nothing but the contact condition for +*[0] that we keep imposing. Furthermore,
because of the contact condition, (H, J) is unique. We say that this nondegenerate partially
integrable almost CR structure is induced by g.

Remark 1.3. Let g be a ©-metric on (X, [0©]) satisfying (L3) and (L4). We further assume
that we have fixed a local frame { N, T,Y; } around p € X, which is dual to { dp, 0, o’ } for
an extension © of some © € [0], such that R, = (pN) /F, and [N, T] = [N,Y;] = 0. Then,
since 7, = (pN), and [pN, p*T] = 2p*T, [pN, pY;] = pY; mod F,, the map L, — °T,X,
Zy v [rp, Zp| is the identity if and only if L, = (pY1,..., pYa,) /F)p.

A distinguished local frame { £xo, €0, €y Ex } for an ACH metric g is a local frame of ©T X
near a point on 0X such that, if restricted on each p € 90X, ({x)p generates Ry, (o)p
generates Ko p, (€1)p, .-+, (&n)p span TpY C (Hy)c of the induced almost CR structure,
where H and L are identified via (L6), and && = &,.

Proposition 1.4. Let @ C C*"! be a bounded strictly pseudoconvexr domain. Then, for
any choice of boundary defining function r € C>(Q), the ©-metric (L2)) on the square root
X of Q is an ACH metric.

Proof. The first two conditions (L3) and (L4) are clear from (L2). To check the other
conditions, we identify an open neighborhood of dQ C Q with 9Q x [0,2¢2), where the
coordinate function for the second factor is equal to ». Then an open neighborhood of
dX C X is identified with dX x [0, €),, where 2p? = r. Since § = 8+O(r) and h = h+O(r),
where 6 and h are extended in such a way that 6(9,) = 0, h(dy, ) = 0 and constantly in the
r-direction, we have © = 0+ O(p?) and H = h+ O(p?). Let T be a vector field on dX such
that (T) =1 and Y7, ..., Y3, alocal frame of ker §, and we extend them in the p-direction
constantly. If we further set N := 0,, then { N,T,Y; } is a local frame of T(0X x [0,€),)
satisfying [N, T| = [N,Y;] = 0. We can see that (pN), is orthogonal to ker(dp/p), for each
p € 0X. Hence, by Remark[[3] () of Definition [22holds if and only if (p*>T'), is orthogonal
to (pY1,...,pYa,) /F,, which is also easily verified. Finally, again from (L2) we see that
gl is identified with the Levi form determined by 6 via (6. O

For a ©-metric on X satisfying ([L3)) and (L), there is a special boundary defining
function, which is called a model boundary defining function, as shown below.

Lemma 1.5. Let (X, [B]) be a manifold-with-boundary with a conformal ©-structure and
g a ©-metric on X satisfying (L3), (L4). Then, for any 0 € 1*[O], there exists a boundary
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defining function p such that

d 1
(1.7) H;p =3 near 0X

and 1*(p*g) = 6%. The germ of p along 0X is unique.

Proof. This is given in [GuSd], but for readers’ convenience we include a proof. Let p’ be
any boundary defining function and set p = e¥p’. Then ||dp/pl| s = 1/2 is equivalent to

-0

where X, = f#,(dp’/p’) is the dual of dp’/p’ with respect to g. If we express X, in
the form (), then the assumption (3] implies that @ = 1/4 on 0X. Hence (L) is
a noncharacteristic first-order PDE. After prescribing the boundary value of i so that
t*(p*g) = 07 is satisfied, we obtain a unique solution of (L8] near X. O

2Xp

(1.8)

o]

Fix any contact form 6 € :*[©] on 0X. Let p be a model boundary defining function and
X, = t4(dp/p). We consider the smooth map induced by the flow Fl; of the vector field
4X,/p, which is transverse to 0.X:

®: (an open neighborhood of X x {0} in 90X x [0,00)) — X, (p,t) — Fli(p).

This is a diffeomorphism onto its image fixing the boundary (where 9X x {0} is iden-
tified with 0X). The map ® can be seen as a map between manifolds-with-boundary
carrying conformal O-structures; X X [0,00); carries a standard O-structure, which is
also denoted by 6 and is given by extending 6 in such a way that 6(9;) = 0. Since
O(4X,/p) = 4pg(dp/p,0/p*) = O(p), we conclude that & preserves the conformal ©-
structures. By this construction ¢9; is orthogonal to ker(dt/t) with respect to the induced
O-metric P*g, and we also remark here the fact that t = ®*p, which implies that the func-
tion ¢ is a model boundary defining function for ®*g and . In particular, any ACH metric
is identified, via a boundary-fixing diffeomorphism preserving conformal ©-structures, with
an ACH metric g defined near the boundary of 9X x [0,00), for which pd, L4 ker(dp/p)
and the second coordinate function p is a model boundary defining function. Hence it is
enough to consider the ACH metrics of the following form.

Definition 1.6. Let (M, T%° 6) be a nondegenerate partially integrable almost CR man-
ifold with a fixed pseudohermitian structure, i.e., a pseudohermitian manifold. Then M x
[0,00), carries the standard ©-structure. Let ¢: M = M x {0} — M X [0,00) be the
inclusion map. A normal-form ACH metric g is an ACH metric defined near the boundary
of M x [0,00), satisfying the following conditions:

(i) p0, is orthogonal to ker(dp/p) with respect to g;
(ii) p is a model boundary defining function for g and 6;
(iii) g induces the partially integrable CR structure 7% on M = M x {0 }.

Proposition 1.7. Let (M, T 0) be a pseudohermitian manifold and X an open neighbor-
hood of M = M x{0} in M x[0,00) carrying the standard ©-structure. Let { Zy } in general
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denote a local frame of TY and {0} a family of 1-forms on M satisfying 0°(Z,) = 0,°.
Then a ©-metric g on X is a normal-form ACH metric if and only if it is of the form
(1.9)

g—4<@>2+g (£)2+29 ie_a_;’_Qg if.;’_zg 6‘_&@_’_9 6‘_‘1%_’_9 ff
p 00\ p? 0p2 p T2 T eB DTSy TR
where 0 and 6% are extended in such a way that (9,) = 0, 0%(9,) = 0 and constantly in
the p-direction, and satisfies

(1.10) 9oolp=0 =1, Yoalp=0 =0, gag|p:0 = hag and  goplp=0 =0,

where haE is the Levi form associated to 0.

Proof. The condition pd, L4 ker(dp/p), together with (I3), implies that g is of the form
([T39). The second coordinate p is a model boundary defining function for g and 6 if and
only if gyglp=o = 1. By Remark [[3] the condition (i) in Definition is equivalent to
9oulp=0 = 0 in the current setting. Since g induces 7', the condition () in Definition
is equivalent to ga§|p:0 = haE and g,5lp=0 = 0. Conversely, if ga3| p=0 = haE and
ga6| o=0 = 0 then g induces T1° by the uniqueness of induced partially integrable almost
CR structures. O

2. PSEUDOHERMITIAN GEOMETRY

Let (M, T'°) be a nondegenerate partially integrable almost CR manifold. In the pres-
ence of a fixed pseudohermitian structure @, there is a canonical direct sum decomposition
of T(cM:

TeM =CT T o 7%
Here T', the Reeb vector field, is characterized by
(T) =1, T |do=0.

If {Z,} is a local frame of T, the admissible coframe {0} is defined in such a way
that 0%(Zs) = 05" and 6%|crgror = 0. This makes {6,667 } into the dual coframe of
{T,Z.,Z5}. The index 0 is used for components corresponding with 7" or 6.

The Tanaka—Webster connection is described by the following proposition. The proof
goes in the same manner as in the integrable case, e.g., Proposition 3.1 in [Tnk].

Proposition 2.1. On a nondegenerate partially integrable almost CR manifold (M, T°)
with a fized pseudohermitian structure 0, there is a unique connection V on T M satisfying
the following conditions:

(i) H, T, J, h are all parallel with respect to V;
(ii) The torsion tensor O(X,Y) := VxY — Vy X — [X,Y] satisfies

21 {@(X, Y)+0(JX,JY) =2d0(X,Y)T, X,Y €T(H),

o(T, JX) = —JO(T, X), X e I(H).



10 YOSHIHIKO MATSUMOTO

The components © 50, o, ﬂ'y, @a; of the torsion are not visible in ([Z1]). Following the
argument in the integrable case the first two are shown to be zero. One immediately sees
from the definition that the last one is related to the Nijenhuis tensor by

0,5 =—N,s5" (and ©_." = —NEEW).
The other nonzero components of the torsion are
0 _ . B8 _ B_. 48
0.5 =ihz  Ou =0, =4,°
and their complex conjugates. We call AQB the Tanaka—Webster torsion tensor.

Remark 2.2. There is another generalization of the Tanaka—Webster connection to the
partially integrable case given by Tanno [Tno|, which is also used in [BaD], [BID] and [Se].
Our generalization is different from it in that ours preserves J, which facilitates the whole

argument below, and that @MV is generally nonzero instead. It seems that our connection
is first considered by R. I. Mizner [Mi].

The first structure equation is as follows:
(2.2) do = ih, 50 N 07,
(2.3) dO7 = 6% Nw,” — A6 NG — IN_T6% A 0°.

Let {w,”} be the connection forms of the Tanaka-Webster connection. Without any
modification the proof of Lemma 2.1 in [L2] applies to the partially integrable case and we
obtain the following lemma.

Lemma 2.3. In a neighborhood of any point p € M there exists a frame { Zo } of T for
which w,?(p) = 0 holds.

With such a local frame, it is easy to relate exterior derivatives with covariant derivatives.
For example, one immediately sees that the exterior derivative of a (1,0)-form o = 7,60 is
given by

do =04 30° NO* + 0, 507 N0 + 0400 NOY — Az%,07 NG — %Nﬁaaaeﬁ AT,

Here covariant derivatives of tensors are denoted by indices after commas. This notation
will be used in the sequel. In the case of covariant derivatives of a scalar-valued function

we omit the comma; e.g., V, u = u, and ngau = U,z

Proposition 2.4. We have
(24) Aaﬁ == ABQ,
(25) NO‘B'Y +Nﬂ0¢’y :O, Na,@v +NB'YO¢ +N’Yaﬂ :O

Proof. By differentiating ([2.2)) and considering types we obtain (Z4]) and N, gy =0 (where
the square brackets denotes skew-symmetrization). The first identity of (28] is obvious from
the definition of the Nijenhuis tensor, and it thereby proves the second one. 0

Lemma 2.5. The second covariant derivatives of a scalar-valued function w satisfy the
following:

(2.6) U5~ Ug, = th, guo, Ugg = Ugq = —N, 5 Uy, Ugg — Uao = Aaﬁug.
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Proof. The same argument as the one in [L2] applies to our case. O

Next we shall study the curvature RTW(X, Y)=VxVy —VyVx — Vix,y]- If we set
0.5 =dw,® —w,” A wvﬂ, it holds that RTW(X,Y)Z, =11,°(X,Y)Zs. We put

R _ o T - Y - Y - o T - = T
(@7) T g =R 5 07 NG+ W, o 07 NO+W, o 0T AO+V, o 07 A0 +V o 07 AT,
where V| 5(07) =V, 5(?) = 0. Since VA = 0 we have HaE + HEa =0, and hence
(28) Raﬁa’? = Rgoﬁa" Wagﬁ = _Wﬁaﬁ’ VOLEUT = _VEQUT '

We substitute (Z7) into the exterior derivative of (23] and compare the coefficients to
obtain
(29&) aBoT " ‘oBaT = _NQUVNﬁE’

(2.9b) WO‘E'Y = Aa’%E — N’YO’O[ AEU7 VOLEG’T = %(hO’EAaT — hTEAO‘U) + %NO’TQ,E'

The component RaEpE is called the Tanaka—Webster curvature tensor. We put RaE =

RW’YQB and R := R,*. Tt is seen from the first identity of (2.8) that R 5= Rﬁa’ and from

[29a)) we have

Y — _ TOo
(2.10) R) 2=R 5~ Noor N5

As we have discussed above, a choice of a pseudohermitian structure 6 defines the Tanaka—
Webster connection and supplies various pseudohermitian invariants. If a certain pseudo-
hermitian invariant is also conserved by any change of pseudohermitian structure, it is
called a CR invariant (rigorously speaking we should say “partially-integrable-almost-CR,
invariant,” but we prefer the shorter expression). To investigate such invariants, we need
the transformation law of the connection and relevant quantities.

Proposition 2.6. Let 6 and 6 = €20, u € C>® (M), be two pseudohermitian structures
on a nondegenerate partially integrable almost CR manifold (M, T1?). Then, the Tanaka—
Webster connection forms, the torsions and the Ricci tensors are related as follows:

(2.11) O =w, +2uy 8 —uPe,) + 250['811797 + 2i(u®, + 2u uf + 25a6u7u7)6‘,

(212) Aaﬂ = AO(B + Z(UQB + UBa) — 4.'Luau6 + z(NvaB + N’Yﬂa )U’Y,
(2.13) Rz=R.5— (n+ 2)(ua§ + UEQ) - (uﬂ +u”, +4(n + l)uvu'y) h.5

Proof. The new Reeb vector field is T' = e=2“(T — 2iu®Z,, + 2iu®Zg) and the admissible
coframe dual to { Z, } is {0* = 0% 4+ 2iu®0 }. To establish (ZI1I)) and (ZI2)), it is enough
to check that

and

dOY = 6% N, — WP A_G0T NG — GN 767 1 6P,

They are shown straightforward using ([2.6]).
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We compute fLY’Y = dw,” modulo 6 A éﬁ, 6% A 9?7 é, or equivalently, modulo 8% A 67,
67 A 67, 6. By the first identity of (Z0) we obtain that, modulo 8 A 6%, 6% A 67, 6,

=17 - [(n + 2)(uaE + “Ea) + (uwv + u; +4(n+ 1)uvm) haﬁ} 0~ A 68
= [Raﬁ —(n+ 2)(ua§ +ug,) - (UV'Y + uﬁﬁ +4(n+ 1)u7u’Y) haﬁ] 6~ N 6°.
This proves 213)). O

Finally we sketch the concept of density bundles following [GoGr]. Let us assume that
we have fixed a complex line bundle F(1,0) over M together with a duality between
E(1,0)2™+2) and the canonical bundle K. Such a choice may not exist globally, but
locally it does; when we use density bundles we restrict our scope to the local theory. Then
E(w,0) is the w'™ tensor power of E(1,0), and we set

E(w,vw") = E(w,0) ® E(0,w'), w, w' €Z,

where E(0,w’) := E(w’,0). We call E(w,w") the density bundle of biweight (w,w’). Since
there is a specified isomorphism E(—n — 2,0) = K, we can define a connection V on
E(w,w") so that it is compatible with the Tanaka—Webster connection on K. The space
of local sections of F(w,w’) is denoted by £(w,w’). (However we use the density bundles
of integral biweights only, one can also consider those of complex biweights (w,w’) with
w—w' € Z. See [GoGr] or [CGal.)

F. Farris [Fa] observed that, if ¢ is a locally defined nonvanishing section of K, there
is a unique pseudohermitian structure 6 satisfying (@B). If we replace ¢ with A(, A €
C*(M,C*), then 6 is replaced by |\[?/("+29. We set

|C|2/(n+2) _ Cl/(n+2) ®Zl/(n+2) €&(—1,-1),

which is independent of the choice of the (n -+ 2)™? root of ¢ and is in one-to-one correspon-
dence with 0, and define |¢|72/("*2) € £(1,1) as its dual. Then we obtain a CR-invariant
section @ := 0 @ [¢|~2/("+2) of T*M ® E(1,1).

The Levi form h is a section of the bundle (T1°)* @ (T%!)*, which is also denoted
by Eaﬁ using abstract indices a and (. Since haE and 6 have the same scaling factor,

h, 5= ha§®|§|*2/(”+2> € £ 5(1,1) is a CR-invariant section of £ ~(1,1) := E -®E(1,1).

Its dual is h®? € £98(—1,—1). Indices of density-weighted tensors are lowered and raised
by h_; and hoB,

One can show that VO and Vh are both zero. To see this it is enough to show that
V|¢|? = 0, which follows from VA = 0. For details see the proof of Proposition 2.1 in
[GoGr].

The density-weighted versions of the Nijenhuis tensor, the Tanaka—Webster torsion tensor
and the curvature tensor are defined by

NO‘ﬁ’Y = aﬁ'yegaﬁ'Y, AO‘B = AO‘B Egaﬁ’
R =Rz o™ ee - _(1,1)

aBoT afoT
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When dealing with density-weighted tensors, we let V,, V~ and V, denote the compo-
nents of V relative to 0%, % and 6. Since the transformation law (Z.II) of the Tanaka—
Webster connection forms does not contain the Nijenhuis tensor, equation (2.7) and Propo-
sition 2.3 in [GoGr] also hold in the partially integrable case. Using them we can derive the
transformation law of any covariant derivative of any density-weighted tensor.

3. RICCI TENSOR AND SOME LOW-ORDER TERMS

Let M be a nondegenerate partially integrable almost CR manifold with a fixed pseudo-
hermitian structure § and X an open neighborhood of M = M x {0} in M x [0,00),. We
take a local frame

(3.1) {p0p, P*T, pZas pZax }
of ®T X, where T is the Reeb vector field associated to 6 and { Z,, } is a local frame of T,
both extended constantly in the p-direction. The corresponding indices are co, 0, 1, ..., n,

1, ..., . The local frame (3.)) is denoted by {&; } if needed.

Rule for the index notation. The following rule is observed for the index notation in the
sequel, except in the proof of Proposition

ea B, v,o0,rrun{1,....n}and @, 3,7, 7 7run {1,..., 7 };

e i j,krun {0,1,...,n,1,...,7 };

e [, J, K, Ltun {0c0,0,1,...,n,1,...,7}.
Lowercase Greek indices and their complex conjugates are raised and lowered by the Levi
form unless otherwise stated.

We consider a normal-form ACH metric on X, i.e., a ©-metric g satisfying

Joooo = 47 90 = 07 Jooa = 07

3.2
(3.2) 900 =1+0(p),  90a=0(p),  9,53=n5+0(),  gas=0(p),

where haE is the Levi form. Note that {&; } is a distinguished local frame for g, 8. We shall

compute the Ricci tensor of g and the Einstein tensor Ein := Ric —l—%(n + 2)g. Our goal in
this section is the following proposition. By abuse of notation, in what follows we use the
same symbol for a tensor on M and its constant extension in the p-direction.

Proposition 3.1. The Einstein tensor Ein;; of a normal-form ACH metric g is O(p3) if
and only if

900 = 1+ O(pg)a Yoo — O(pg)a

(3.3)
9.5 =g P25+ 0(%),  Gap ="+ 0(p"),
where
_ 2 R ON __ N-T° ! (R—2N., . N"7)h
(3.4) oF T Tpg2 \teB “eer G T 50T )
. . 5
Pop=—2iA05 — E(N'yaﬁ.,v + N’Yﬁaﬁv)'
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The functions ¢,; are defined by

(3.5) Yoo = 1+ ©oos 9o = Poas 908 = hag + ¢ Jap = Pap-

The totality of (,;) is seen as a symmetric 2-tensor on M with coefficients in C°°(X) using
the frame { T, Z,, Zz }. Hence the action of the Tanaka—Webster connection operator V on
(¢;;) is naturally defined.

We define a connection V on T'X, which is “the trivial extension of V,” by setting
VW = VW for vector fields Z, W on M and

Vap =0, vapT = vapZa =0.

The connection forms of V with respect to the frame { &7 } are given by

_ dp _ dp _ dp
(36) woooo = ?a wOO = 27; Waﬁ = WQB + 6(1677
where w,,? are the connection forms of V with respect to { Z,, }. The torsion © of V is
5 ©° = 0 =0 = v =1 _ =58 _= 7 = 7
(3 7) GIJ = Goooo = @OI = Yol — @OO = 60(1 = @aﬁ = Gaﬁ - 05
. 0 _ 3 _ _
af — Zhaﬁ’ 60(1 - p2Ao¢ﬁ’ Gaﬂ - pNaﬁ )

the Ricci tensor of V, defined by R, := RIKKJ, is given by
R =R = ROI = EIO =0,

R =Ry~ Nape N;7), Rop=p7 (i(n — 1) Ay + Nwaﬁ) .

We sometimes reinterpret a tensor on X as a set of tensors on M with coefficient in
C*>(X). For example, a symmetric 2-tensor S; ; is also regarded as the composed object
of a scalar-valued function S, a 1-tensor S, and a 2-tensor S,;, with coefficients in
C*(X). Thus V can be applied to S;; = (S SoeinSij) Let #(I1,...,IN) == N +
(the number of 0’s in Iy, ..., I). Then, from [B.4) we have the following formulae:

(3.9) vooSIJ = (Pap —#(I, J))SIJa vOSIJ = p2VOSIJ7 vaSlJ =pVaSiss

(3.8)

o000 ?

on the left-hand sides of the equalities { pd,, p?T, pZa, pZa } is used for covariant differen-
tiation, while on the right-hand sides { T, Z,, Zz } is used.

We set VgJ& = V¢, & + D5 €k, where V9 is the Levi-Civita connection of g. Then
the Ricci tensor of g is given by

(3.10) Ric;; =Ry + VD™, =V, D" = D" D;% + D", D"
Thus the calculation of the Ricci tensor essentially reduces to that of D% 7- We can compute
Dy = 9r D", by the formula

Dixy=35(V195x +Vi9ixk = Vidrs + Ok +Osxr +Orik);

where O, ;5 = gKL@UL. The result is given in Table Bl

To prove Proposition B] it is enough to calculate everything modulo O(p®). However,
for later use, we shall carry out more precise computation. What we allow ourselves to
neglect are

(N1) any term at least quadratic in ¢,; , ~with O(1) coefficients,
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Type Value
D o000 4
Dooss O
Doass O
Dooo O
D00 -2+ 3(p8, — 4)poo
Dooao %(Pap = 3)¢0a
Doooa O
D 0 %(Pap = 3)¢0a
D s, —h,s+3(00—2)p,5
Deoga  3(p0r —2)0ns
Dyoco 2- %(Pap — 4)poo
Dqoo %PQVOQOOO
Doao —3Va%00 + P*(Vowoa + Aaaﬁog)
Doyooa —%(Pap = 3)¢0a
Dqoa %PVMDOO
Dygo  3hus + 30,5000 + 3(Vavys — Vg90a) + 50° (Vow,z + AdT 055 + A5 0ay)
Doga P*Aos + 3p(Vaos — VPoa — Na;j‘Pw) + 30" (Vovas + A s + A[ﬁ‘ﬁaﬁ)
D00 —%(Pap = 3)¢0a
Daoo %PVMPOO - PQAQESOOB
D,go  3has+ 3h,5%00 + 30(Vavys — Vg90a) + 50°(Vow,s = Ad 9055 + A5 0ay)
D.g0 50(Vaos — VsPoa — N@,@»Zﬂow) + 350" (Voas — Aa s + A;ﬁ%ﬁ)
Daoog hag - %(Pap - 2)%%3
D o5 $hos + 305900 + 50(Va¥ez + VzP0a) — 30 (Vop,5 + Aaﬁ@ﬁ; + A5 Pay)
D 5 %(haﬁ‘%g + h,5P0y) + %P(Vasogg + Vgas = Vi0,5 — Ng. % Pas)
DOWE —%(hWEQOOa - hagSOOW) + %P(VMOWE + Vg‘ﬁa’y - waag - Nwﬁ‘ﬁg;)
Duoosp 3P0 = 2)Pagp
Dop —p* A + 50(Vaos + Vsroa + Na;j‘Pw) — 30*(Voas + A ppm + A[ﬁ‘ﬁoﬁ)
Damg  3(haxyos + hgzoa) + 52(VaPsy + VePary = Vpas = Nap” 7o)
Dayg  =PNasg + 5°(Va¥sy + VsPay = Voap = Nag”Prs = Nay"0s7 = Ny Paz)

TABLE 3.1. D;p; for a normal-form ACH metric g. Dy, and D
are omitted; we have D, = D ko and D

aKoo

aKoo — DooK(y
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(N2) any term linear in wo 1, Poak..» Poak.. OF P Bk with O(p) coefficients which
vanish in the case of the CR sphere with standard pseudohermitian structure, and

(N3) any term linear in ¢, 5, or Y5, With O(p?) coefficients which vanish in the
case of the CR sphere with standard pseudohermitian structure.

Modulo terms of type (N1), g/ is given by

[ee]e )

— o000 — ooaio
- - - 3

g g
(311) 00 O @ OLE OLE QE
g =1=pg, g =—¢" gV =T -, g =g

By these formulae and Table[ 1] we compute D,;® ; modulo terms of type (N1)-(N3) using
the equality D, * ; = g% D,, ;. Table is the result.

Finally we can show the following formulae for the Einstein tensor. We define the sub-
laplacian by A, := —(V2V,, + VoV..).

Lemma 3.2. The Finstein tensor of an ACH metric g is, modulo terms of type (N1)—(N3),
Einy o = —500,(pp — 4)po0 — p9(pdp — 2) 00",

Eingg = 50(09, + 1)(V* @00 + V¥00a) = p°(p8, + 1) Vo9,

Ein, = =500, + 1)ga — 3000 — DV o000 — P°0,V 005"

+30%0,(VP0 5+ VP0u5) + 5020,N Tog + 307 (09, — 1)V Ppas
Eingy = —§ ((p9,)* = (2n +4)pd, — 4n) oo + 3(p9, — 2)p,

+ip(V%0a — Vi%0a) + 50°Dbpoo + 1° (Vo Vo0 + VoVi00a) — 0"V Vopa”
Eing, = p* A, + 9N, 77 Az — 1(p0, +1)(p0, — 2n — 3)y,

+ 2oV 00 + 5PVa0s” = i0V70 5+ 107 Bupo — 50°Voroa
+ 30 (Va V005 + VaV005) = 1°VoVar,” + 50° (Vo V0,5 + VoV 00s).
Ein 5 = pQRQE -2p°N,7, Nﬁg = 2 ((pdy)* = (2n +2)pd, — 8) .5
+ 50,500, — oo + 11,500, +ip(Vayz — V5400
- %chagvo%o - %p%aBVOsoﬂ - %P2vavgsﬁ’oo - pQVQVBSO'y’Y
+ 507 (Bvp,5+ VaVi0s + Vo Vg + V5V 00 + V3V,
+ %PS(VOVQ‘POE +VoV5#0a) = 37 VoVoo 5
Ein,s = inp* A, + 0" (Nyop " + Noga ) = 0 Aup o — 500,(00, — 20— 2)i0,5
= 3P"Va V00 — 0° Vo Ve,
+ 307 (Bepus + Vo VT0gm + Vo V705 + VeV 0m 4+ ViV 0, + 2iV0p,s)
+ %PB(VOVOM’OB +VoVs00a) — %P4V0Vo%¢ﬂ-
Proof. Using Table we compute, modulo terms of type (N1)—-(N3),
vKZ)IKJv vJDIKK’ DILKDJKL and DILJDLKK

to obtain Tables B3H3:6l Then, from (B.8) and B.I0)), the lemma follows. O
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Type Value (modulo terms of type (N1)—(N3))
D=, -1
Dl 0
D% 0
oo 0
D% -2+ %PapSOoo
D% %(Pap + Dpo”
D%, 0
Doooa %(Pap — 1¢oa
D%y =0, + 3p0pp.”
Do’o 3p0ppa”
Dy™, % - %(Pap —4)p00
DOOO %P2V0<ﬂoo
Dy% — 30V %00 + p° Voo™
Dy, _é(/)ap = 3)¢P0a
Dy, — %00 + 3PV P00

DOBQ édaﬁ + %6aﬁ§000 - %Soaﬁ + %p(vawoﬁ - VBQOO(X) + %pQVOSO(xﬁ

DOBQ p214(¥ﬁe - %@(zﬁ + %P(V(ﬁ%ﬁ - VBSDO(,!) + %p2v0§0a6

D(XOOO _é(pap - 3)§00a

DaOO _%QOO(X + %pvaSDOO

D(XBO édaﬁ + %6aﬁ§00 - %Soaﬁ + %p(vawoﬁ - VBQOO(X) + %pQVOSO(xﬁ

D(x 0 _%Qaaﬁ + %p(vtﬁaoﬁ - vﬁWOa) + %p2VOLPaB
DQOOB %hag - %(Pap - 2)90&5
Daog sh,s+ %P(Vawog + Vz¥oa) — %PQVMPQE

DQ’YE %604’“'005 + %p(vasog’y + Vﬁwa’y - V’YQDQE) - %pNB’yowao’

D =505 %00+ 5p(Vapy +Vg0a" = V70 5) = 5pN "5

D5 —5(p9 — 2)pas

D%  —p*Aus + 20(Vaos + Vapoa) — 2pN, 57005 — 20°Vous

Da’yﬁ %(%75005 + 857 poa) + %P(Vcﬁ%v + V0" = V7pa5) — %PNaBEQ%V
D) —pN,75 4+ 3p(Vaps' + Ve = Vpas)

TABLE 3.2. D, for a normal-form ACH metric g. Dy¥_ and D%
are omitted; we have Dy* = D%, and D X = D_X,
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Type Value (modulo terms of type (N1)—(N3))
vK DooKoo 1

VKDOOKO %p38pvog000 + %P(Pap + (Voo + Va@oa)
1
2

ViDoXo  20%(p8p — D)Vopoa + 20205(VP 0 = + VP 0us)

VDo =3 — 2(p8, — 3)(pBp — 4) 000 + 50" Dbpoo + p° (Vo V*Poa + Vo VT 003)
+%P4V0V08000

VeDo®o =300, = 2)(p0y = 3)@0a + 50V a00 — 5p(V7 0.5 + Vi 0us)

+%p2Ab¢Oa + %p2(vav6¢0ﬁ + V(xvﬁWOE) -
+PSA@5,B + 30°VoVaoo + 30*(VoVPpas + VOVB‘P,XE)

VKDQKB —ihag - %(Pap —1)(pdy — 2)90an %P(Vcﬁ%gi— Vg@()a)
507 (Do 5+ Va Vs +VaVips + V5V 00 + V5V 00,)
+%p3(v0va¢0§ + VOVFSOO(,!) - %p4v0v030a§

VD55 PN, " —p'Auso - 5(p9p = 1)(pd, — 2)¢ap + £p(Vaos + VsPoa)
+302(Abas + VaV 0pr + VoV 0s5 + VsV 00z + VsV 700, ) 4 i0°Vopas
+30°(VoVaos + VoVsPoa) — 50'VoVopas

TABLE 3.3. VDX, for a normal-form ACH metric g

Type Value (modulo terms of type (N1)—(N3))

VoD i 20434 300,(p8, — 1)poo + pp(pdp — 1)pa®
vODOQKK %Psapvosﬁoo + Pgapvoé%a

VoD Xk 20°0,Vaoo + p°0,Vas”
VoDo" i %P4V0V0<P00 + 0 Vo Vo
VaDo" i 30°VoVapoo + PBVOVMP,@»B

VaD. "k %szavg<ﬂ()() + PQVQVEQ%W + ip? h.zVopoo + ip2hagvo<ﬂwﬂ/

VD, "k %PQVaVBSOOO + P2vavg<ﬁﬂ

TABLE 3.4. V ;D% for a normal-form ACH metric g

Since by definition ¢,; is O(p), from Lemma 3.2 we have

Einoooo = %SDOO + spaa + O(pQ)’ EinooO = O(p2)7 Einooa = _Z’(pOa + O(p2)7
(3 12) EinOO = %(2TL + 1)()000 - %@aa + O(p2)’ EinOa = %(n + 1)@00( + O(p2)a
. EinaB = %(271 + 9)<paB — %hag‘ﬁoo + %h(yﬁ%ﬂ 4 O(p2)7
Ein,g = 1(2n+ 1)p,s + O(p%).
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Type Value (modulo terms of type (N1)—(N3))

Doo" kD™ 2045 —2pd,000 — 2p0p 00"

DooLKDOKL —P2V0<P00 - PQVOSOaQ

DooLKDaKL %(pap + 1)5006 - pv(ﬁOOO - pv(¥<p/8ﬁ - %P(Pap - 2)Na BWSOEW

D"k D" 1, —%(n +4) + (p9y — 1 — 2)poo + P — ip(V*oa — V¥ 0ux)
Do*k Do, —RfsNa BWAEW + (300, — 2n — 5)poa + %(VBQDQE - Vﬁ(ﬂaﬁ) — 3pNa '(W‘PEW
+%P2vo<ﬂoa

DaLKDEKL P2N¢ﬁp Ng’% + %(Pap - 2)9%5 + %hQESOOO - %P(VQW@ - Vg‘ﬂm)

DaLKDBKL %Paps%ﬁ + iP2Aaﬁ + %P(VMOOB + V00a)

TABLE 3.5. D%, D%, for a normal-form ACH metric g

Type Value (modulo terms of type (N1)—(N3))

Dot D% 2n+3— 200pP00 — PO’
DooLODLKK _p2v09000 - 2P2V0<Paa

Do"oDrXx  —3pVapoo — PVQQ%’B + pN, [W‘ng

Do oDk —5(2n+3) + 3005000 + 3P0pa” + 5 (21 + 3)(p8p — 4) 00

Do"aDr i 320 +3)(p0p — 3)0a + 1PVa00 + 5pVaps” — 50N o5

D "5D %k —%(Qn +3)h 5+ %(Qn +3)(pdp — 2)¢ .5 + 5, 5P0p P00 + 1P ,5P00 0y
+50°h 5Vop0o + 50°h,5Vop,”
D,"sDp 320+ 3)(p8p — 2)pag

TABLE 3.6. DX, D, ¥, for a normal-form ACH metric g

These identities show that all ¢;; must be O(p?) in order Ein; ; to be O(p?). If p,; = O(p?),
then repeating this process we obtain

Ein, . = 2¢4, + O(p%), Ein__, = O(p?), Ein,, = — 3¢, + 0(p?),
Eing, = %(271 + D)oo + O(p*), Eingy, = %(271 + D)y, + O(p*),
Ein 5 = pQRQE — 2p2N(ﬁp NBPW + 2(n+ 2)<,0aB - %hog‘%’oo + %hoﬁcpﬂ +0(p?),

Ein,; = ianAaﬁ + pQ(NW!&

(3.13)

! + Nv,@a,’y) + %n(paﬁ + O(pg)

These identities immediately show Proposition [3.11

4. HIGHER-ORDER PERTURBATION

Taking over the setting from the last section, we next introduce a perturbation in g and
see what happens to the Einstein tensor. Let m > 1 be a fixed integer and 1);; a 2-tensor
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on M with coefficients in C*°(X) such that
¢OO = O(pm+2)7 1/}004 = O(pmax{ m+1,3})7
big = O™, s = Oy,

Let g be a normal-form ACH metric satisfying (B3] and consider another metric g’ with
the following components with respect to { &1} = { pd,, p*T, pZa, pZz }:

(4.1) 9'i; = 9ij + ¥ij-

Note that ¢’ also satisfies (83]). We can read off from Lemma 32 the amount to which the
Einstein tensor changes, which is denoted by § Ein; ;. For example we have

0Bing,, = _%(Pap + Dtboq + %P2apv'8¢a5 + %PNagﬁpapi%ﬁ +0(p™*?),
(4.2) §Eing, = —4 ((p9,) = (2n 4 2)pd, — 2n — 3) P, + O(p™"?),
Bingg = —gpd,(pd, — 2n — 2)tas + O(p™ ).

d Eing, 0 Eingg and § Ein 5 modulo O(p™*?).
But we want them to be given modulo one order higher. In this sectlon we shall prove the

In the same way we can compute J Ein

0000 000>

following.

Proposition 4.1. The components § Ein

0000 7 0007

0 Ein 0 Eing), 5Eina§ of the difference
§Ein = Ein’ — Ein between the Einstein tensors of g and g’ are given by, modulo O(p™*3),

0 Bin o, = 2/’5 (POp — 4) o0 — PO, (P9 — 2)1,*
1 (pap> (@5 + D™y ),

(4.3b) 6 Bingg = $p(pdy + 1)(V 0gu + V7Ug) — 30°0,(A% s + AT 9_),
§Eingy = —5 ((09,)* = (2 + 4)pd, — 4n) Yoy + 5(p — 2)10,

+ip(V %00 — V7W0a) = §0°05(8° g5 + 7Y ),
§Ein,® = tn(pd, — 4)hgy — & ((09,)* — (4n + 2)pd, — 8) 1,

—ip(V o0 = V%0g)
(4.3d) — 102 (0= 2)pd, + (2n + 4)) (8% 45 + T7_2)

(4.3a)

(4.3¢)

+ 302 (VOV s + VOV ) + 302 (N e + N7 100 )
+ 30’ (NWBV Yas + NPV ),
tf(d Ein, 5) = — ((09, (2n +2)pd), — 8) t(¥,5)

+ Zp tf(vawog - vaOQ) + p tf(qjaﬁ)u

[e3%

where § Ein “ is the trace of § Einag with respect to haB’ tf denotes the trace-free part, and

v == i( a - 2)((1) ’Y‘/’ﬂv + o ’Y/l/}a'y) %(vﬁvawﬁﬁ + V’ngi/)ary)
_ ~yo _ yo ~No ol T _al yo _
Na K djﬁa NE -~ djag + Na’Y (v,@w'yo Vg@/’ﬁ) + NE (vadj'yo vowa'y)'
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First, let
g < 1 K
Ve &1 =Ve, &+ D' €k

and D' ey = ¢ . D';" ;. Then 6D, = D jpey — D, is given in Table A1l which is
seen immediately from Table B.11

Type Value (modulo O(p™*?))
0D 60000
0D 0000
0D 600
6D

(=28 Il el M)

cooo0

8D oo
0D o0
0D soo0a
0D 00
0D

(POp — 4)tho0
(paﬂ - S)w()a

(ol FNTT NI

(POp = 3)0a

(POp = 2) 5

cofa (pOp — 2)77/1.1(3

0Dooc0 _%(Pap —4)tboo

8 Dgoo 0

6Doao 0

0Dosca —3(P9p — 3)0a

6 Dooe 0

8Dy,  shagtoo T 30(Vatys — Vgthoa) + 50°(Ad 05 + AT 0,
3Dosa  5P(Vathos = Vathoa = Nog %o5) + 50°Votag

5Daoo§ _%(Pap - 2)77%5

0D,z shygteo + 3p(Vathys + Vatoa) — 302 (A U5 + AT ay)
0D,z sh,gle; + hastg + 5p(Vaty — No-"ta,)

0D, 5 sh,z%oy — 5h 3%0a + 5p(Vg¥ay = Nay “¥5,)

aocofl _%(Pap = 2)¢Yas

0Daop $p(Vatbos + Voo — Nog ¥ov) — 30°Votbas

0Dozp  Shastos + shextoa — 5P(Vetas + Nap”trz)

6Durs  3p(Vatpy + Vitay — Votbag)

TABLE 4.1. Dy ; = D' 15— D for a perturbation (1)) of a normal-
form ACH metric

coBa

S RN E NI

oD

oD
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Next we compute 6D, % ; = D’IKJ — D, . To do this we need the knowledge of the
following quantities: D, -, modulo O(p?), g’/ modulo O(p?) and §g’7 := g'”—g” modulo
O(p™*3). They can be read off from Table B} (B3) and EII)). Namely, D;,; mod O(p?)

are given by

D oo = —4, D_ g =0, D poo =0,
Do =0, D_ 00 = —2, D 00 =0,
D oo =0, D o =0, DOOBQ = _ha,B’ D50 =0,
Dyoo = 2, Dyyo =0, Dy, =0,
Dyooe =0, Dyoo =0, Dz, = 3h,3 Doga = P Aug,
D0 =0, D o0 =0, Daﬁo = %haﬁv DaBO =0,
B = Papr Dagp = 205 Do =0, Doy =0,
Doop =0, Doos = —p Ay D55 =0, Do = —pNynss
g'’ mod O(p?) are
o000 — 1 000 coa 00 Ocx

5’7 mod O(p™*3) are
590000 = 59000 = gooa =0, 5900 = _1/}005 5gOo¢ = _w0a7
af _ aB 2 a By B [
(4.4) 59°7 = =7 + p* (27T + &7 ),
697 = 47 4 (@7 + 87 ).

Since Table B1] and (@&4) shows that dg’/ and 6D, are both O(p™>{™3}) " we have
§DEL . §D;; ; = O(p™*3) and hence

8D;%; =g"" Dy +39"" - Dyp; mod O(p™+?),

where 6D, X | = D5, - DX ;. Thus we obtain Table [£2]
On the other hand, Table shows that, modulo O(p?),
D .~ =-1, D' =0 D_*_ =0,
D *,=0, D °%=-2 D,_%=0,

o0

D.*, =0, D.° =0, D.° =-5/+p0 D, =P,

Dy*y =3, Dy’ =0, Dy =0,
(4.5) Dy, =0, DS =0, D, =57 —ip0.f DS, =-1p*0P+p*A7
D, % =0, D% =0, D =45 -0 D =-ip*dp
D% = th.5 DQOE =sh,g D5=0, D =0,
D,*3=0, D, =-p"A,s, D,)5=0, D,)5=-pN, .
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Type Value (modulo O(p™13))

6D00 OOOC

5D 0

6D00 aOC

o |l oo | o

6Do<>000

6Do<>00 POptoo

0D % (p0p + 1)1ho”

[e=X ENTTE T

6D00 oo(X

6Doooa (pap - 1)7/10.1

(S I

6Do<>6a 5/)8/31/}&6 - %pga/)@ﬁ’ywa'y - p2@a'\/'¢}6’y

D 300500 = 10°0,97 ey — P05t
D™ —é(Pap = 4)voo

§Do’% 0

6 D% 0

D™ _%(Pap = 3)%0a

5Dy’ —$%0a

6D0ﬁa %5a6w00 - %77%5 + %p(vawoﬁ - vaOa)
_%p2(A(x’ywﬁ’y - Aﬁww(x’y) + épQ (éﬁ’ywa'y + (Pa'ywﬁ’y)

6D0Ba _%w(xﬁ + %P(V(ﬂ/foﬁ - Vﬁl/fo(x - Na BW"/}OW) + %pQVO'l/}aB + %p2(®75wa7 + (I)aﬁwﬁﬁ)

5Dam§ - % (PO, — Q)T/JQE

0D,%  3p(Vatbys + Vsthoa) = 30° (ATt + AT 00

6Da’yB %5Q’Y¢OB + %p(vawg’y - Ng’yod)ac)

0D75 =505 Yoa + 3p(Vga” — Na77t5,)

0D,%s  —5(pd — 2)¥us

6D,% 3P(Vatos + Vstoa) = 5p(N7ag + NTso )05 = 50" Volas
D5 56,705 + 50, Voa — 20V Wap — 30(N%us + N0 ),
0Dy 3p(Vat” + Vsta” = V7ihas)

TABLE 4.2. §D/5, = D - DX, for a perturbation ([@I)) of a normal-
form ACH metric

Using Table 2] and ([@3]), we compute

vK((SDIKJ)v v‘]((SZ)IKK)a DILK'(SDJKLv DIKL'5DKLL and DKLL'5DIKJ7
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all modulo O(p™*3). The result is Tables From these tables and
§Ein; = 5(n+2)3g;; + Vi (6D;%;) =V ;6D ")
— Dy 0D, % = Dby 6D,
+ D/ 0D 5 e + D5 g D5, mod O(p™ 3,

we can verify Proposition [£.]

Type Value (modulo O(p™*?))

(
Vi(6D"0)  3p(p0p + 1)(V*hoa + V¥im)
Vk(©Do™o)  —3(pdp — 3)(pdy — 400
(

Vi 5DQKE) _%(papi_ 1)(p0, — 2)¢a§ + %p(Va%g - Vﬁ/’oa) B
PP (Vs — N ) + 50V (Vi = No )

TABLE 4.3. V(0D ;) for a perturbation (ZI)) of a normal-form ACH metric

Type Value (modulo O(p™*?))
006D % i) %Pap(Pap = Dvboo + p0p(p0p — 1)1p* B
—302(p0p + 1) (8, + 2)(2* o + D0 2)
Vo(6D ") 0
Vo(6Dy" k) 0
V500D, "g) 0

<

TABLE 4.4. V ;(6D,% ) for a perturbation (@) of a normal-form ACH metric

Type Value (modulo O(p™*?))

Dok 0D —pBpthon — pOpta + p*(p0, + 1)(@ o s + BPh_s)

DooLK : 5D0KL —%PQ(CI’Qﬁwaﬁ - ‘Paﬁwag)

Do"x 0D L 5pH (P ey — O ) + 507 (AP pOythas + AT pOpth )

3

DOLK : 5D0KL %(Pap —1n —2)go j‘_%ﬁ}aa - %p(V“on - Vg%a)
— 1@, + 2Py )

DaLK : 5D3KL i(_ﬂap - 2_)1%3 + %hagl/foo + %Pvgw&y - %PQ (PO — 2)¢’(jl/137
—%PQ (Aawwgﬁ + Aﬁ”waw) - %P2Na v (ngw + Vﬂ%g - Vﬂbg;)

TABLE 4.5. D%y - 6D %, for a perturbation (@I of a normal-form ACH metric
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Type Value (modulo O(p™3))
DooX oo - 0Dg"L —%Papwoo — PO + %Pz(Pap + 2)(<I>O‘Bwag + <I>a§wag)
Do 6Dk 0
Doy - 0Dk "y, ipa/ﬂ/)oo + %Pa/ﬂ/)aa - l Q(Pa + 2)(‘13’&5,1/@,6 + ‘I)EEQ/)EE)
DQKB : 5DKLL %hagpapwoo + 4 agpapw—y - hag(Pap +2)(7 Yy + CI’F"/}F)

TABLE 4.6. D;X, - 6D, ", for a perturbation ([E]) of a normal-form ACH metric

Type Value (modulo O(p™"3))
Ditp 6D K 0
Dg"L-6D%0 0
Dg"p - 6D, %(Qn +3)(p0p — 4)%0o
Dg"p - 5DaK§ 5(2n +3)(p0, — 2)Y, 5

TABLE 4.7. DL, - 6D, %; for a perturbation (@I)) of a normal-form ACH metric

Proposition 4.2. Let g be a normal-form ACH metric satisfying B3) and g' given by

). Then,

(4.6a) §Einygoe = —5(m +2)(m — 2)1/’007__ m(m +2)Y,"
+3m? A (B 5 + DY) + O (0 ),
oy O = B+ 00V e + V) — b4 b+ A )
£ 0>,
(4.6¢) §Eing, = —5(m + 2)Yga + 3mpV74h,, + $mpN, %5_ +0(p™?),
(4.60) d Eingg = —%(m —2nm — 8n — 4)g + 3mY,~ + ip(V* oo — V¥Uig)
= 10Pm(®P 5 + BT ) + O(p™ ),
(16c)  0Bing, = —L(m+2)(m 20— 2, + ("),
(46) §Ein,® = tn(m — 2)v5 — 5 (m® — (4n — 2)m — 8n — 8) 1,*
+ (O(p™*?) terms depending on vy, and 1yz) + O(p™ ),
(4.6¢) tf(d Bin 5) = —2(m* = 2nm — 2n — 9) t£(¢,.5)
+ (O(p™*?) terms depending on ¥y, and ,5) + O(p™"?)
(4.6h) §Eingg = —gm(m — 2n — 2)¢,5 + O(p™ ).

Proof. This follows from ([.2), (@3]) and the fact that the Euler vector field pd, acts on an
O(p™) function as, modulo O(p™*1), a scalar multiplication by m. O



26 YOSHIHIKO MATSUMOTO

5. APPROXIMATE SOLUTION AND OBSTRUCTION TENSOR

By using the results in §3land §4] in this section we construct a normal-form ACH metric
whose Einstein tensor vanishes to as high order as possible. First we observe the contracted
Bianchi identity satisfied by the Einstein tensor.

Lemma 5.1. Let m > 1 be a positive integer. Suppose that g is a normal-form ACH metric
satisfying
Einoooo = O(pm-l-?), EinooO — O(pm-i-2)7 Ein _ O(pmax{ m+1,3}),
Bingy = O("*?),  Eing, = O(p™(m 131,
Bin, = O™ *%),  Biny = 0p<(m)),
Then we have

O(p™*3) = (m — 4n — 2) Bin___ —4(m — 2) Eing, —8m Ein,“

(5.1a) _ —
+8p(V* Eing, +V* Eingg) + 4p*(m — 2)(9” Ein, 5 + 0™ Ein_5),

O(p™*?) = (m — 2n — 2) Ein, +4p(V® Ein,,, +V® Eing)

(5.1b) _
+4p*(A°P Bin, 5 +A4% Ein_),

(5.1¢)  O(p™*?) = 2(m — 2n — 2) Bin_, +4pV” Bin,,; —4i Biny,, +4pN, "7 Bing_.

Proof. We have the contracted Bianchi identity g/’ V9 Ric;; = 2¢'7 V9, Ric, x, where V9

is the Levi-Civita connection determined by ¢. Since VY is a metric connection we further

have

In terms of the extended Tanaka—Webster connection V and the tensor D, we can rewrite
this identity as

9" (Vi Eing; —2D;" i Bin ) = 29" (V; Bing i =D ;% Bing e =Dgc"y Bing ),
or equivalently,
0= g¢"(V Ein,, —2V, Ein, x +2D,~, Bing, —20, " Ein,,),
where © is the torsion form of V. Since ¢°® = O(p?®) and Ein;; = O(p™), we obtain
O(p™*+3) = ¢°°(V Bin,_, —2V._ Bin s +2D, F. Eing, —20._ " Ein_,)
+ g% (V i Bingy —2V, Eing e +2D,% Einge; —20, " Eing;)
+ 29”7 (Vg Eings —V 3 Bing e —V Eingye +(Dg"s + D5"5) Eing
— @M(L Eing, —@WKL Eingp, )
+¢7(V Bing, 2V, Bin_; +2D," Eingp —20,," Ein, ;)

+ 977(V i Bing_ 2V Bing e +2D5"_ Bing, —205 « Einy).
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Substituting K = oo, K =0 and K = « into this formula, in view of 1), (39) and @35)
we find that
O(p™*?) = (pd, — 4n — 4) Ein o, —4(pd, — 4) Eingg —8(pd, — 2) Ein,*
(5.2a) + 8p(V* Ein,,, +V* Ein_5)
+4p2(p0, — 2)(2°” Bin,yy +0 Bin_),
O(p™*3) = (pd, — 2n — 4) Ein o +4p(V* Einy, +V* Eingg)
(5.2b) _
+4p* (A% Eing g +A%7 Ein ),
(5.20)  O(p™*?) = 2(pd, — 2n — 3) Bin, +4pV” Ein,,; —4i Eing, +4pN, " Eing_,
which imply (G.I)). O

Let
3, (I,J) = (00,00), (00,0), (0,0), (e, B),
al,J) =42, (I,J)=(c0,a), (0,a),
L (1,J) = (a,B).
The next theorem proves Theorem [0.1}

Theorem 5.2. Let (M, T*Y) be a nondegenerate partially integrable almost CR manifold, 0
any pseudohermitian structure and X an open neighborhood of M = M x {0} in M x [0, c0).
Then there exists a normal-form ACH metric g on X which satisfies

(53) EinIJ — O(p2n+1+a(I,J))

with respect to the frame (1) of ©TX . For such a metric, each g;; s uniquely determined
modulo O(p?n+1+alii),

Proof. By PropositionBdlwe already have a normal-form ACH metric ¢(9) satisfying Ein;; =
(0)

O(p?) for every I, J, with O(p®) ambiguity in each component g;;”. We shall inductively

show that there exists a normal-form ACH metric (™) satisfying
(5.4) Ein,, = O(pmax{ m+a(I7J)73})'
(m)

for each m, m =1, ..., 2n + 1, and for such g™ its components 9ij

O(pmax{ m+a(,5),3 })

are unique modulo

Suppose we have a normal-form ACH metric g(™~1) that satisfies (5.4) for m — 1 as
well as ([33). Consider a new ACH metric g("™ given by gg-n) = gg-n_l) + 1;;, where
t;; is such that ¢;; = O(pmax{m=1+a(i.3),3})  Then the difference §Ein = Ein’ — Ein
between the Einstein tensors is given in Proposition In view of ([A6d) and (LEN) we
can determine 1, mod O(p™*+?) and ¢, 5 mod O(p™>{m+1:3}) 50 that Ein{™ = O(pm+2)
and Ein{™ = O(pmax{m+13}) hold, because the exponents —2(m +2)(m — 2n — 2) and

aff
—ém(m—2n—2) are nonzero form =1, ..., 2n+1. After that, by a similar reasoning using
, we can determine t£(¢) —) mod O(p™*3) so that tf(Ein™) = O(p™*3) hold. Next
af af

we see (£.6d) and (4.6I) as a system of linear equations for 1y, and ¥,“. The determinant
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of the coefficients is

—%(mQ—an—Sn—él) %m
(5.5) in(m —2) —L(m? — (4n — 2)m — 8n — 8)

= &(m+2)(m + 4)(m — 2n — 2)(m — 4n — 2),

which shows that this system is nondegenerate for m = 1, ..., 2n + 1. Hence we can
determine 1)y, and v,%, both modulo O(p™*+3), so that Ein” = O(p™*3) and Ein™ * =
O(p™*3) hold. Thus we have attained Ein;; = O(pmax{m+a(.1),3}1) "and if gg-nfl) are unique

up to O(pmax{m_l"’“(i’j)’?’}), the desired uniqueness result holds for gg;n).

Finally we check that ¢("™) is determined in such a way that it satisfies E4) for T = oo,
too. This is done by using Lemma 5.1l In fact, for g(™), Eing?o) = O(p™*3) and Ein(™) =
O(p™*2) should hold, because in (5.1B) and (5.Id) the terms on the right-hand sides are,
except the first terms in each identity, already O(p™*3) and O(p™*2), respectively, and
the coefficients of the first terms are both nonzero. Similarly (5.1a) shows that Ein(™) =

O(p™*3). Hence the induction is complete. |

In spite of the success of the inductive determination of g;; up to the stage in the theorem
above, the next step cannot be executed, as ([£6d) and (46L) indicate; the freedom of the
choice of g satisfying (5.3) does not affect the p?"*2-term coefficient of Ein,s and the
p*"T3-term coefficient of Einy,. So we define

(5.6) Oup:= (p72"72 Eina6)|p20

and call it the obstruction tensor associated with (M, T1° 6). In fact, the condition EinaE =
O(p*™™) on the metric from which O, s is computed can be weakened to Ein 5 = O(p*+3),
for the O(p***3) ambiguity in tf (gaﬁ) emerging from that does not have any effect on p?"+2-
term coefficient of Ein,z as (4.6h) shows. This fact further implies that we can use any
approximately Einstein ACH metric g that Theorem [0.1] claims its existence, because if p
is a model boundary defining function for g and 6, then there is a boundary-fixing [©)]-
preserving diffeomorphism ® such that ®*g is a normal-form ACH metric for which the
second coordinate function is equal to ®*p, and its Einstein tensor vanishes to the same
order as that of g does.
The p?"+3-term coefficient of Ein,,, is not a new obstruction, since by (5.1d) we have

(5.7) (p™2" "3 Bing, )|, = =iV 0,5 —iN, P05 .

Proposition 5.3. Let 0 and 6 = %0, u € C®(M), be two pseudohermitian structures on
M. Then

(5.8) Opp =€ 20,4,

where O, 5 is the obstruction tensor for (M, T 0) and @aﬁ is that for (M, T°,0).

Proof. Let (X, [O]) be a manifold-with-boundary with a conformal ©-structure such that
0X = M and *[O] is the conformal class of the pseudohermitian structures on M, and
take any ACH metric g satisfying the condition in Theorem If p is a model boundary
defining function for § and p = e¥p, ¢ € C>°(X), is one for 6, then we have ¥|p = u by the



ASYMPTOTICS OF ACH-EINSTEIN METRIC 29

condition ¢*(p%g) = 62. Hence, if { Z, } is any extension of a local frame of T"°, we have
OaB _ ([)727172 Ein(jpZ,, [)Zﬁ)) |M — ¢—2nu (p72n72 Ein(pZa, pZﬁ)) |M _ 672nu0a6. O]

The proposition above implies that the density-weighted version of the obstruction tensor
Oa,@ = Oa,@ ® |<|2n/(n+2) € 5((1,8) (_na _n)

is a CR-invariant tensor, where £ ;) denotes the space of local sections of Sym?(T1:0)*.
Next we recall (B.7). Let us also look at a similar result

(p~2"3(V* Eing, +V* Eingg))|,, = =A% 05 — AEBOEB’

which follows from (5.11). Combining these identities we obtain

(5.9) PO, — PaﬁoaB =0,
where

af _ gagB _ i goB of of
(5.10) PP =vovP — A" — NPy — NYeR

Replacing N, A with IN, A and taking contractions with respect not to A but to h,
we may also interpret P as a differential operator Eap) (—m,—n) = E(—n — 2,—n — 2)
between density-weighted bundles. Then we have P*# O, 58— PEEOEB = 0. Furthermore, in

this setting, the operator P*? belongs to a one-parameter family of CR-invariant differential
operators, as we shall describe in the following proposition.

Proposition 5.4. Let (M, T1°) be a nondegenerate partially integrable almost CR mani-
fold. Let

PP Eapy(—n,—n) > E(-n—=2,—n-2), teC
be a one-parameter family of differential operators defined by, in terms of any pseudoher-
mitian structure 6,

(5.11) P =VoVP A% — (1 4+tn)NTPV — (1 +t(n+1)) NP _.
Then this is well-defined, i.e., the right-hand side of ([B.I1) is independent of 6.

Proof. This can be checked by using equation (2.7) and Proposition 2.3 of [GoGi], as we
have discussed in §21 The details are left to the reader. O

The next proposition finishes the proof of Proposition

Proposition 5.5. The obstruction tensor Oa,@ for a nondegenerate (integrable) CR mani-
fold vanishes.

Proof. Since 0,5 is a certain polynomial of derivatives of pseudohermitian torsion and
curvature, using the formal embedding we can reduce the problem to the case of a (small
piece of) nondegenerate real hypersurface M C C"*!. In this proof we use indices j, k for
components with respect to the complex coordinates (z1,..., z"T1).

Let r be Fefferman’s approximate solution of the complex Monge-Ampere equation [Fe],
i.e., a smooth defining function of M such that J(r) = 1+ O(r"*2), where

o 1\nl r or)oz*
) i= (=17 det <8r/8zj 9%r /92997 )
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We set 0 := L(0r —0r) and 6 := 1*0, where 1: M < C™*! is the inclusion. Let go be the
Kihler metric on Q = {r > 0} associated with Kihler form i 99(log(1/r)) as in Example
LT Then it is easily verified that det((go),z) = r~("*2) J(r), and the usual formula for the

Ricci tensor of Kahler metric shows that
2

i - log J(r).

Ric(go) 5 = —5(n +2)(g0) 5 +
Observe that, if we set log J(r) = r"T2f,
) 00log J(r) = (n+2)(n + 1)r" fOr Adr + (n+2)r" "1 (£09r + 0f A dr + dr A Of)

5.12 _
( + 209 f,

Let ¢ be the unique (1, 0) vector field satisfying
€]00r=0 mod Or, or€) =1

and N := Re¢, T := 2Im¢&. We set & | 90r = 70r, or 7 = A9r(£,€). Then, since 7 is
a real-valued function, T' | 99r = —i(€ — €) | ddr = —i(7Or + 70r) = —irdr. Therefore
T |do =T | *(—iddr) = o*(—7dr) = 0, where T is the restriction of T to M. This shows
that T is the Reeb vector field on M associated with 6.

Let &1, ..., &, be (1,0) vector fields spanning ker 9r C THC"*! near M. Restricted on
M, they form a local frame { Z1,...,Z, } of T"OM.

We identify a (one-sided) neighborhood of M in Q with M x [0, €) by

Mx[0,6) = Q,  (p,s) = Fly(p),
where Fl; is the flow generated by N. In view of the fact that s is equal to the pullback of r,

we write r instead of s in the sequel. The constant extensions of T" and Z,, in the r-direction
are also denoted by the same symbols. Then obviously T =T + O(r), Zo = &o + O(r). By

(EI2) we have

Ein(go)(N, N) = Ein(go) (5(§ +€), 3(§ +&)) = 5 Ein(g0)(&,) = O(™),
Ein(go)(T, T) = Ein(go)(—i(§ — &), =i(¢ — €)) = 2Ein(go) (&, €) = O(™),
Ein(go)(N,T) =0,  Ein(go)(N,&) = O(™*),  Ein(go)(T, &) = O™ ),
Ein(go)(éa, &5) = O™ ™"),  Ein(go)(£a,€s) = 0.

Hence, with respect to the local frame {0, = N, T, Z,, Zz } of Tc(M x [0,¢)), we have
Ein(go)seo = O(™),  Ein(go)oo = O™FY),  Ein(go)sea = O™,
Ein(go)oo = O(r"), Ein(g0)on = O(TnH)v
Ein(go),5 = OG™1),  Ein(go)es = O *?).
Therefore the Einstein tensor of the induced ACH metric g on the square root of M x [0, €)
in the sense of [EMM] satisfies, with respect to the frame { pd,, p°T, pZw, pZ= },
Ein . = O(p*" ™), Ein,, = O(p*"9), Ein,, = O(p*"*"?),
Eing = O(p*"*1), Eing, = O(p*"*?),
Ein 5 = O(p* ), Ein,z = O(p*"*°).
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Hence g satisfies the condition (5.3). Moreover, since Ein,z = O(p*"?), it follows that
0,5 =0. 0

6. ON FIRST VARIATION

In this section, we calculate the first-order term of the obstruction tensor with respect
to a variation from the standard CR sphere. First we introduce a tensor that describes a
modification of partially integrable almost CR structures.

Proposition 6.1. Let (M, T1°) be a nondegenerate partially integrable almost CR manifold
and { Zo } a local frame of the bundle T™C. Let p,® € £,° and set

Lo = Lo+ ;LQEZE;

{Za} defines a new almost CR structure on M without changing the contact distribution
H. Then this is partially integrable if and only if

:uaﬁ = /Lﬁaa
where the upper index is lowered by the Levi form of (M, T*°) associated to any pseudoher-
mitian structure.

Proof. The new almost CR structure is partially integrable if and only if
0([Zas Zp]) = 0([Za + 1" Zz, Zp + 1" Z7]) = 0,
where 6 is any pseudohermitian structure for (M, T1?). Since 0([Za, Z5)) = 0([Z=, Z=]) = 0,
this is equivalent to
0([Zz, Zs)) 1" + 0([Za, Z=])pg" =0,

O flog — Hgo = 0. O

Let M = S?"*! be the (2n + 1)-dimensional sphere and 6 the standard contact form.
Then the obstruction tensor 0,5 with respect to 6 is a function of partially integrable
almost CR structures on ker . For the standard CR structure we have O, 5 = 0. We shall
compute the derivative of O, 5 at the standard CR structure in the direction of y,, 5, where
the second index of (1,5 is understood to be lowered by the Levi form of the standard CR
sphere associated to 6. In this section, the differentials of various quantities will be indicated
by the bullet e.

o

Proposition 6.2. Consider h —, N_, , A_, and R - associated to the standard contact
af By af [+

form 0 on the sphere. Then, their differentials at the standard CR structure are as follows:
hes =0, Nagy = Valigy = Vahary
A(.lﬁ = _vouaﬁu R;E = _VQVUNBE - VBVT/'LOLT'
Proof. Since the both sides of all four equalities are tensorial, we may take any frame to
derive them. Let { Z, } be a local frame of 710 of the standard CR sphere such that
[ZQ,ZE] = _ihQET’ Za,Zg] = [Z4,T] =0

and
1, ifa=24,

h 3=
* 0, otherwise,
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where T is the Reeb vector field associated with 6. Then the differentials of the Lie brackets
are given by
[Zaa E]. = (VQMEU)ZO’ - (VE,UQ?)Z?,
[ZOH Zﬁ]. = (Vouuﬁ’y - VEMQV)Z77
[Za, 1" = ~(Vopa") Zs.

They immediately show that h;E =0 and N'O[B7 = Vg = Vgp,”. The first structure
equation (23] implies
AP = 07((Za, T1%) = =V,
Similarly we have
w.aﬁ(z7> = _valuﬁﬁv w.aﬁ(T) = Oa
and this together with w;B + wéa = (dhaé). = 0 implies w*,*(Z,) = V'Bua,y. From (2.7)
we have
R} 5 = Zoaw®,(Z5) — Zgw*, (Za) = w*, ((Za, Z5]) = =V oV lige = V5V ligs.
This completes the proof. O

Let g be a normal-form ACH metric for 6 satisfying the condition in Theorem 5.2l Let

9oo = 1+ ¢gos Yoo = Poa> 908 = hag + Pap’ Gap = Pap-
Then, as seen in Theorem [5.2]

1

plmliy = — (97"0y)] m < 2n+1+a(i,j)

p=0"

are uniquely determined. For the standard CR structure they completely vanish. We shall
observe the differentials ¢[m|$; of ¢[m]

b For notational convenience, we set ¢[m];; := 0
for m < 0 and

ij

() = {1, m =k,

0, otherwise.

Lemma 6.3. The differentials p[m|$; of ¢[m],; at the standard CR structure satisfy

,

0=—1(m? = 2n+4)m —4n) p[ml3, + 3(m — 2)pm]*,°
+i(Vop[m — 13, — VTlm — 155) + 3 Auplm — 215,
+ (VoV¥%[m = 3]5,, + Vo VT[m — 3]55) — VoVoelm —4]°,°,
0= —x3(m)VoV: a5 — §(m +1)(m — 2n = 3)plml,
+ 8V plm = 1o + §Vaplm — 1%, —iVPelm — 1]25
+ 5 8uplm = 2J5, — §Voplm — 215, + 5(V,VPp[m — 2055 + V,VPe[m — 2]57)

— VoVaielm =3 + 3(VoVPelm — 3]25 + Vo Vip[m — 3]2,),

L]
(e
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0= —)(z(m)(VO[VjuE7 + VEV'YMM) — 1 (m* - (2n+2)m —38) w[m];g
L (m — A)elmlay + Sh_meplm]*
+i(Vye[m — 1]53 - Vg‘P[m —1J8,) — ihQ—VOW[m —2]go — %hagvo¢[m -2]°.7
— 3V Velm =205 — Vo Vaplm — 2,7 + §App[m — 2]25
+5(VaViplm =205 +V, Vipm =215+ V5V pm — 25, + V5V7olm - 2)1,,)
+ 3(VoVagplm — 3]53 + Vovgéﬁ[m = 3J8a) — 3VoVowlm — 4];ga
0= —x2(m)(Appiap + Vo Vg, + VgV oy +2iV05) + xa(m)Vo Vi ies
— gm(m —2n = 2)p[m]5s — 5V Vaplm — 250 — Vo Vgelm — 2]°.7 + App[m — 2]54
+ L (Vo VTolm = 2]% + V,V¢[m — 2%, + VsV p[m — 2]55 + VV7¢[m — 2]2,,)
+iVop[m = 255 + 5(VoVaplm = 3]55 + Vo Vgelm = 3]5,) — 3VoVoplm — 4]54,
where in each equality m takes any nonnegative integer and V denotes the Tanaka—Webster
connection for the standard CR sphere with 6.

Proof. This follows from Lemma[32] because terms of type (N1)—(N3), which are neglected
in the formulae recorded in that lemma, are at least quadratic in Popg- By setting Eing; =
O(p*+1+e(.7))  the Taylor expansions of the last four equalities in Lemma give the

claimed formulae, thanks to Proposition [6.2} |
In principle we can calculate all gp[m];j using the recurrence formulae above. It is easy
to see that ¢[m]gy = ¢[m]?, = ¢[m]5; = 0 for m odd and ¢[m]§, = 0 for m even, and

each nonzero p[m]s;
are given in Table[6Il As a result the differential O3 of the obstruction tensor is a linear

is a linear combination over C of covariant derivatives of 5 which

combination of

AV P g APVETIV (V)0

ARV TRV Ve VIV, and  AYVETTRY VYTV g,
which are linearly independent if n > 2.

Proposition 6.4. Let n > 2 and

n+1 n
b= D ATV g + D ATV (Vg
k=0 k=0
n—1 n—1 o
RS A VATl VA g% VA VA TN S N AV v i A V%) Vi v i
k=0 k=0

Then ant+1 = (=1)"/(n!)2.
Proof. The last equality in Lemma and Table [6.1] show
0= —x2(20)Appiag — 51— = D)p[20]55 + 5Ap0[20 — 2]35
modulo AFVE ™ 11, k <1, and
JANAR v/ VA VA 7SS V4l VA AN VA VA% VA vl VAR U v/ S VO V%% vl v
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Type Linear combination of

A v e VA A POV S VA A TR

PRI+ 18. ANV Vs, APVE VYOIV e, APVETTRVL VIV s

90[21];3 Afvéilikvavguﬁgv Allfvg)ilikvﬁvguazﬂ
A’gvg*%kvavgvavmm A’gvg*%kvgvav?vmﬁ,
[ 7AVA VA S VA VAN TR JEVAV A v VA AR T

o208 ALV Fpas, AV TV GV 1,
ARV VeV e, APVE 2RV VsV L

TABLE 6.1. Terms appearing in the differentials ¢[m|$; of the coefficients

%]
of the approximate normal-form ACH-Einstein metric at the standard CR
structure on the sphere

Hence we have ¢[2]8 53 = (2/n)App, 5 and

L[] 1 L[]
e[20]55 = —mﬁw[?l - 255
This immediately shows that
2 -1 -1 -1
205=~- Ce— A} 1=1,2...,n
(p[ ]a[} n 2(”—1) 3(”—2) l(n+1—l) b:ua[ja y 4y , n
Then we use the last equality in Lemma [B.2] to see
1 1 2 -1 -1 -1 (=)™
P ——A 2 e =__.2. . n+1 = An+l
o8 = T3 Buelnles = =5 oy 3y n-17b Hes ="Gpz o Has
which implies the claim. 0

Corollary 6.5. Let n > 2. Then there is a partially integrable almost CR structure on the
(2n+ 1)-dimensional sphere, arbitrarily close to the standard one, for which the obstruction
tensor does not vanish.

7. FORMAL SOLUTION INVOLVING LOGARITHMIC SINGULARITY

Let X be a manifold-with-boundary and p a boundary defining function. We say that
a function f € C°(X) N C*>(X) belongs to A(X), or simply A, if it admits an asymptotic
expansion of the form (0.6]). By this we mean that for any m > 0,

N
rni=f—y fD(logp)? € C™(X) and ry =O0(p")
q=0

holds for sufficiently large N. The Taylor expansions of f(?) at X are uniquely determined;
we write f € A™ if f(@ € O(p™), ¢ > 0, and A® := NZ_,A™. One can show that A is
closed under multiplication, and that if f € A, flox # 0 then f~! € A. Furthermore,
A is closed under the action of a totally characteristic linear differential operator, i.e., a
noncommutative polynomial of C'* vector fields tangent to the boundary.
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As in §§3HBL again in this section X is an open neighborhood of M in M X [0, c0), where
(M, T'?) a nondegenerate partially integrable almost CR manifold. We fix a pseudoher-
mitian structure ¢ and consider (nonsmooth) ©-metrics of the form (L9) with g;; € A
satisfying (LI0), which we call singular normal-form ACH metrics.

All the calculations regarding the Ricci tensor go in the same way as in §3] and §4] except
that, while on the space of smooth O(p™) functions pd, behaves as a mere “m times”
operator modulo O(p™*1), it is no longer the case when O(p™) and O(p™*!) are replaced
by A™ and A™*1. Nevertheless, since A is closed under the action of totally characteristic
operators, the Ricci tensors for singular normal-form ACH metrics have expansions of the
form (@.6) with respect to the frame { pd,, p°T, pZw, pZ= }.

Proposition 7.1. There exists a singular normal-form ACH metric g satisfying
(7.1) Ein,, = A Hitald. ),
The components g,;; are uniquely determined, and do not contain logarithmic terms, modulo

A2n+1+a(i,j) .

Proof. This is proved by following the argument in §3] §4] and the first half of §5] again.
We shall include here a detailed account of the following fact only, which is a version of
Proposition B} Ein;; = A3 if and only if

Yoo = 1+A35 Joa :Aga gaﬁ = h’a5+p2q)a§+~’435 gaﬂ :/)2(1)(1,8 +A37
where (I)aE and @5 are defined by (Z.4)). Then the rest of the proof goes similarly.

If we define ¢;; by (3.3, then Lemma is again valid. Take N > 1 large enough so
that ¢,; and Ein;; for given g are of the form

N
=Y P (logp)? + A2, ¥ € C=(X),
q=0

and
Ein;; = ZEm(‘” (log p)? + A%, Ein\?) € C=(X).
q=0

Then by Lemma[3.2 we have the same identities as (3.12)) between Eing) and gpgjv); namely,
the following holds for ¢ = N:

Einl?, = 3o + 0@, + 0(p?),
Einl?), = 0(p?), Em@ = —wgzz +0(p?),

Einl) = 2(2n+1)pll) — “ 4 0(p?), Emg:zz = Ln+ 1)@ + 0(p?),
Ein® = 1(2n+9)p'% — 2h ﬂwé%) + 3h, 5007 + 0%,
Elng]g = %(2n+ e, () 5+ O(p )

Hence gogj ) must be O(p?) so as to make Eingj}[) =0(p?). If cpz(-;]) =0(p*), g +1<qg<N,
then the identities above hold for ¢ = qo, which shows that Ein(;f}’) = O(p?) is equivalent to
<p1(;1°) = O(p*). Hence we conclude that Ein;; = A if and only if ¢,; = A*.
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Next, again by Lemma we see that the following is true for ¢ = N:
Ein. = 26 +0(s"), By =0(*),  Ein, = =3l + 0(s"),
Binf) = L1(2n+ 1)l + 0(p%),  EinY) = 2(2n + 1)¢fl) + 0(p*),
Ein® = 1(n +2)p'% — 3 06l + 3h 5097 +0(s%),

aB o5
9 = 10l + 0(p%).

NI)—' N[=

(a

Ein

An inductive argument shows that Ein%) =0(p?), 1 < q < N, if and only if cp(Q) O(p?),

1 < ¢ < N. Finally, the same identities as (313) hold for Eing J) and <pl(-j), which imply

that o!” must satisfy <pg%) = 0(p?), <p0a = 0(p?®), ¢ (O) = p2<1> + O(p?) and o0 =

@ @

P*®,5+ O(p®) as desired. O

Let gg be such a normal-form ACH metric, and for specificity, let its components (QO)ij
be polynomials of order 2n + a(i, j) in p, which are uniquely determined by the condition

[I). We set
(7.2) (Eing),, = pRrtHal) gy o2y,

where E;; is constant in the p-direction. The tensor E;; is also seen as a composition
(Bocoos Eoois Eyj) of a function and tensors on M, which are universally-defined polynomials

of pseudohermitian invariants of (M,#). We already know that E, ; = O,5 and E,, =
—iVPO, 5 —iN,FTO__. Set
B

1 : a a
u.——n+1(zEm0+V E_,—V°E_ s)-

Theorem 7.2. Let k be a smooth function and A5 a tensor satisfying
op oF] —
(7.3) PP X5+ P /\EE =

Then there is a singular normal-form ACH metric g satisfying Einy; = A>® and

1 1
7.4 82n+4 (0) ‘ — 82n+2 (0) ‘ =\
(7.4) (2n + 4)! ( g gOO) v 2nt2) ( g gaﬁ) M oP

where g;; ~ Ego Ogl(]q) (log p)9 is the asymptotic expansion of g;;- The components g;; are
uniquely determined modulo A> by the condition above.

As is clear from the proof below, Theorem also holds in the following formal sense.
Let p € M, k a smooth function and A4 a tensor satisfying ([@3) to the infinite order at p.
Then there exists a singular normal-form ACH metric g satisfying (Z4) and Ein; ; = A to
the infinite order at p, and the Taylor expansions of gfg) at p are unique. On the other hand,
we can find a formal power series solution to ([Z3)) by the Cauchy—Kovalevskaya theorem.
Hence, by Borel’s Lemma, we have A, solving [@3) to the infinite order at p and prove the
first statement of Theorem We do not know whether (73] is solvable in the category
of smooth tensors.

The first step to prove Theorem is the following.
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Lemma 7.3. There exists a singular normal-form ACH metric g satisfying

_ 2n+3
AT,

oo T

Einy, = A", Ein 5= A" Ein,z = A*"*°

Ein__ = A>T, Ein,, = A>T, Ein

[e.e]e o}

. . 2n+4
Eing, = A ,

and Ein_, mod A?"*5, Ein, mod A*"** Einy, mod A*"*5, Ein 5 mod A2"F5 do not

contain logarithmic terms. Such a metric g is of the form

= (90 + 1y log p+ i) (log p)? + A2+,

(90) 00
= (Qo)o + L) log p + A2+,
5= (90)p + ¢(O + 0! D log p+ ¥ (log p)* + AT,
5= (90)as + ) + 9 ) logp+ A2"+3

where 7,/11(;1) = O(p?>nt1+e(d)y . Purthermore, among 7,/}1(;1),

b v Wk ). Wy and gy + (1,

are determined modulo O(p2"+2+“(i’j)). In particular, if Oa,@ = 0 then they are zero modulo
O(p2n+2+a(i,j))'

Proof. We set
(7.5) i+ Z¢(q) (log p)4 1/)1(;1) _ O(p2n+1+a(i,j))_

By [@2) and ([@3), which are also valid here if O(p™') is replaced by A™ | the difference
0 Ein; ; between the Einstein tensor of gy and that of g is of the form

N
Ein;, = > §Ein{?) (log p)? + A+ 2Fall.)),
q=0
We may assume N > 3. Then, by [@2) we have §Eingy) = O(s*"*) and §Eingfy " =
O(p*"+3), which imply that Ein(Y) = O(p?n+4), Eingqﬁ_ Y = 0(p+3) already hold, and

SEmS Y = —Lg(n+2)ui) + 0(p* 1),
(7.6) 1
1

SEn " = ~fq(n + 1>¢§3g +0(p*"+)

for ¢ = N. This shows that Einégfl) = O(p>t4), Ein(%fl) = O(p?"*+3) if and only if

ég) O(p*nt4), 7,/) = O(p?"*+3), for Eing contains no logarithmic terms. Since (Z.6])
holds for q = qq if 1/)0a = O(p**+4) and 1/}(q) = O0(p*"+3) for qo +1 < ¢ < N, inductively we
verify that Ein,, = A*"*4, Bin,; = A>"*? if and only if ¢(q) O(p*nt4), ¢(q) O(p*+3),
2<g< N and

4

_ 2n+2E O 2n+3 .

W _ 4 o 2n+4
(77) 0a — n+2p EOa +O(p )7 w
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Next, from ([@3d)-([@3€) we have nd Einéjov) —26 Ein(N)a‘l = O(p*"*5) and

SEinGl) = 1nuff) + (n+ i@, + 0(p*+),
tf(éEini‘%) = ntf(w )+O( 2n+5),

1
32
nd Einfl " —20 Bin@=) * = —Lg(n + 3)(nyplf) — 20(D,%) + O(p**+%)

for ¢ = N. Hence both ¢((Jév) and %i%f) must be O(p?"*+9). Inductively the same must hold for
Al U, 2, 3< g < N, and Sngll) + (n+ 0P = 00+ and t(2) = O(p+%),
in order for us to have Einll) = O(p?n+?), Ein(q) — O(p?"5), 2 < ¢ < N.
Again by [@3d)-([#3d), modulo O(p*"*+4) terms which linearly depend on ¢, 1Y) and
<),
§Eingy) = dnuly) + (n+ DY, + 0> ),
tf(0 Ein((l%) = —%ntf(wag) +O(p* ),

nd Einyy) —26 Bin™ @ = —1(n 4 3)(nyly) — 203 %) + O(p>"*9).

Therefore 1/)0 1/1(2 oyt 1)) and m/)o +(n+ 1)1/1(1)aa are uniquely determined modulo
O(p*" ™) by the requirement Eméo = O(p*" ™), EinSE) = O(p*" ™).

For g;; that we have constructed, (5.2H) and (5.2d), or (5.9), show that Ein, and Ein,,
do not contain logarithmic terms modulo A**** and A*"**, respectively. If O, 5 = 0, (1)

implies that 1/)(()2 and 1/)&1 are zero, and hence 1/100 , P e tf(w(l_)) and %m/)éé) + (n +

1)1/)(1)(10‘ are also zero. O

The rest of the proof of Theorem [7.2] consists of two parts, in the first of which we finish

on+2+a(I,J
A2n+ +a( )’

constructing a singular ACH metric satisfying Ein;; = and in the second we

go through the inductive argument to achieve Ein;; = A

Proof of Theorem[7.2 Let g be a singular normal-form ACH metric we have obtained in

Lemma [73 By (£31h), (£2) and (7)) we have

SEIY = (n+ 2)p(VU, + VU — (0 + DA} + A7)

(Ve
+ Pt [,ﬁ (Vg + V™ Eg) — 525 (A By + A E_3)| + 0(p™+°),

OB, = —i(n +2)%() + (n+ 1)V ) + (n + 1)pN, T4

et [

(VPB4 +N,TEy_ )} +O(p?H.

n+2 - n+1

If we set gb(gg) = p?"By + O(p?"**) and ¢gg = " 2,5 + O(p*"3), then to attain
Ein., = O(p*"*5) and Ein,, = O(p*"™) is equivalent to solve the following system of
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PDEs:

(n+2) (Vv + V1) = (n+ 1)(A gy + AP p )
(7 8) = _EooO n+2 (VQEOQ VEEOE) n+1 (AaﬁE + AEBEEE)v
' —i(n+2)v, + (n+ D)VP s + (n+ 1)N, Bmm

= —FEpo + 725E0 — 7 (VPE,5 + N, 57E)

If we substitute the second equation into the first one and use E,; = O, 5 and (£.9), the
system is reduced to P*# Pop— Paﬁuaﬁ = u. Hence, by setting p,5 = A, 5 and determining
v,, by ([8) we achieve Ein_, = O(p?"*%) and Ein__, = O(p?"+*).

Having fixed 1/)82) and 7,/)(0), now we may determine 7,/)(()3)), 1/1(1)aa, tf (1/)(0)) and ”‘/’00) +(n+
1)y”,* modulo O(p?"+9) so that Ein'Y, Ein((lOB) are O(p?"*5) by observing ([E3d)-(#3d).
It automatically holds that Ein, . = .A?"*5 by (E2a). Although %nwég) +(n+ 1)y, is
fixed, 1/)(()8) (or 1¥4*) remains to be free, so we prescribe it by 1/1(()%) = p?" Tk 4 O(p*+9).

We have shown that there is a singular normal-form ACH metric satisfying Ein;; =
A2nt2+a(l]) If we impose the condition (Z.4) then g,; are unique modulo A" F2+a(id),

Let m > 2n + 3 and suppose that ¢ is a singular normal-form ACH metric satisfying
Ein;; = A7 1He.)) | We set

N
g =9 + Z 7/%(;‘1) (log p)?,
q=0
where @[Jg?) = O(pm~1*e(09)) and prove that wfj mod O(p™+(%:1)) may be uniquely de-
termined so that Ein;; = A™Fe(:7) holds.
By replacing N with larger one if necessary, the difference § Ein = Ein’ — Ein between
the Einstein tensors is of the form

N
0Ein;; = Z ) Ein%) (log p)? + Amtall, ).
q=0

Then by ([@2]) and (@3] we have, modulo terms linearly depending on z/1<q+2) or ;; qH

(7.9a) S Eingf) = —3(m” — 2nm — 8n — )f) + fmy@
+ (O(p™"?2) terms depending on 1% and 1/)(()2) +O(p™3)
(7.9b) SEnSY = —L(m +2)(m — 2n — 2)¢52 + O(p"™*?),
SEN@ = In(m — 2)y{) — L (m? — (4n — 2)m — 8n — 8) (@)
(7:9¢) + (O(pm+2) terms depending on wég) and w((;g) + O(pm+3),
(7.9) tf(d Eing%)) = —%(m2 —2nm — 2n —9) tf(1/1((l%))

(O(p™*?) terms depending on wég) and w((lqg) +0(p™?),
(7.9¢) 6Ein&qg = —im(m—2n— 2)¢(q) O(p™™h).
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By (E3), if m # 4n + 2, we may determine z/;l(jv), 1/1%\[_1), e 7,/11(?) inductively so that
Ein';; = A™*e(i9) hold. Then by (52) it automatically holds that Ein' = A™F3,
Ein' y = A™"3 and Ein' , = A™2. If m = 4n + 2, instead of (7.9d) we use
SEn®_ = —8n(n+ 1)l — 8(n+ 1)(2n + 1)p @,
+ (O(p*™ ™) terms depending on 1/)(()76)) + O(p*"?),

which holds modulo %" and {!™". We may determine (), ¥~ V. ..., v induc-
tively so that Ein’ = A5 Ein'y, = A4"a+5, Ein'y, = A", tf(Ein’ ;5) = A**5 and
Ein',; = A**4. By ([E2), we obtain Ein’,” = A**3 Ein' , = A**° and Ein', =
A*"+4 Hence the induction works and we obtain the theorem. g

Finally we shall discuss constructing a completely log-free solution when the O, 5 = 0.

We set

vi=—Eg+ 2B, = (VO Eyq + VEz) + miay (VY Ega — V7 Eqg)

a3 a3 af o3
nnH)(V VPE, ;s +V*V E’aﬁ—i—NV V,E.,; + N7 VVEEE
ap yap

+ N E.s+N WEEB)'
Theorem 7.4. Suppose that O,5 = 0. Let k be a smooth function and A, a tensor
satisfying
P\ = PN o =,

af ozB
P 2/n)‘o¢ﬂ + P 2/n)\—,3

(7.10)

Then there is a normal-form ACH metric g, which is free of logarithmic terms, satisfying
Ein;; = A* and

1 . 1 n
(7.11) m (82 Jr4900)’M =Ky m (83 +2gaﬂ)‘M - /\0‘13

The components g,; are unique.

Again this theorem also holds in the formal sense. Since the principal parts of P®?
and Pfg /n agree, the Cauchy—Kovalevskaya theorem guarantees that the system (ZI0) is
formally solvable at any given point. Thus we show the second statement of Theorem

Proof. 1f O, 5 = 0, then a (potentially) singular normal-form ACH metric g satisfying the
conditions in the statement of Lemma [7.3]is of the form

90)oo + Yo + iy log p + A2,

Yoo = (

oo = (90)ga + VOV + AP,

95 = (00)a5 + U0 + h, 50, log p + AP,
s = (90)ag + V) + A2,

Here %m/)(()})) +(n+ 1)1/)(1)aa = O(p*"*5) should hold. After prescribing 1/)236), the potential

[e3

log-term coefficients 7,/1(%) and 7,/1(1)(1 are determined by requiring nEiné%) —2 Ein(o)ao‘
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O(p*"*®). So let us look at the dependence of nEln’( ) 2Ein’(0)aa on @[Jéog. Using (£3d)
and (£3d) again, we obtain

nd Bingg ~20Bin ¥, = ~3(n +2)(nfy) —20,)
+iln -+ 2p(Vl) — VT — dnp?(@°7pl0) + 574 0)
- p? (VQV51/JSE + VEVE/;%) + N’Yaﬁvrngg + N’Y_QEV#/)EWOE)
a 0 Fa s 0 n
4+ N7 B,%big) + N7 ﬂﬁwéﬁ)) + O(p2 +5)'
Hence if we can set 1/)236) and 1/1(()23 appropriately, then ¢éé) — 2™, must be O (5"+5) and
so are 5y and 0", Let i) = g2, +0(p" ) and 90 = p 2y, + O(p2"+).
Combined with (Z.8]), the equations to be solved are
(n+2)(V, + Vo) — (n+1)(Apu, ﬁ + A%y, ﬁ)
=—Ey o — n+2 (VOEy, + VEy;) + n+1 (AO"@E + AO"@E )
—i(n+2)v, + (n+ I)Vﬁ,uaﬁ +(n+1)N, 5’)’MB
= _EOOQ + n+2EOa - n+1 (V'@EQB + N 'G’YE )
Z(TL + 2)(VaVa - Ve Va) - §n((1)aﬁ'ua (I)aﬁ 5)
VOV iy — vavﬁuag ~ NPV Nwﬂvv o= NP~ N'yaﬁﬁu
= _”Eoo + 2Eaa

ap

By substituting the second equation into the other two and using (3.4), the system is reduced
to
Py of Po‘ﬂu — =u,

Pou@ MQB + P

—-2/n —2/n =v.

So we set u,5 = A,5 and determine v, by the equations above. Then @[Jéé) = O(p*" ),
P, = 0(p?"+3) solve Ein__, = A2+, Ein__, = A2"*4 and n Eing, —2Bin,* = A2"+5.
As before, tf(wgg) mod O(p*"5) and l711/)(()0) +(n+ 1)1/)(0)aa mod O(p***3) are uniquely

determined so that Eingy = A*"*%, Ein 5 = A*"*°. We set B8 = 2t 4 O(p*15). By
(5.2a) we have Ein___ = A*"5.

Now we have uniquely constructed a normal-form ACH metric g, which is log-free, sat-
isfying Ein;; = A?"+2+e(l.J) and (TII)). After that we once again follow the latter half of
the proof of Theorem to determine all the higher-order terms of g,;. No logarithmic
terms occur in this process. O
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