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Abstract

In this article, we provide two different ways of producing recursive formu-
las for the Rayleigh functions of eigenvalues of the one-dimensional Laplacian
with non-local boundary conditions, which commutes with an integral opera-
tor having a harmonic kernel.
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1. Introduction

The purpose of this article is to prove recursion formulas for power sums
for the eigenvalues of a problem which has arisen in recent work by one of us
[1]. We concentrate on the one-dimensional case for the non-local boundary
value problem (BVP) described in [1]. Our recursion formulas emulate those
developed by various authors for Rayleigh functions, or power sums, involving
roots of various transcendental equations. It was Euler who first found the first
few closed expressions for what later came to be known as the Rayleigh function
[2] (see also [3, Sec. 15.5], [4]):

σ2ℓ(ν) =
∞
∑

n=1

1

j 2ℓ
ν,n

, ℓ= 1,2, . . . ,
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where jν,n denotes the n-th positive root of z−ν Jν(z), and Jν(z) is the Bessel
function of the first kind of order ν. Euler’s method was further developed by
Lord Rayleigh [5] and Carlitz [6]. Both Euler and Rayleigh analyzed eigenval-
ues of oscillations of physical systems (a hanging chain for Euler and a circular
membrane for Rayleigh), which aroused their interest in computing zeros of
the Bessel functions. By exploiting a differential equation of Riccati-type satis-
fied by the function z−ν Jν(z), Kishore [7, 8, 9] developed recursion formulas for
σ2ℓ(ν), starting with the known expression, due to Euler and Rayleigh

σ2(ν) =
∞
∑

n=1

1

j 2
ν,n

=
1

4(ν+1)

σ4(ν) =
∞
∑

n=1

1

j 4
ν,n

=
1

16(ν+1)2(ν+2)
. (1)

In his famous book [10], Rayleigh was further led, in the context of treating
the transverse vibrations of a clamped beam, to finding summation formulas
for the reciprocal 4th and 8th powers of the positive roots of the equation

cos x cosh x ±1 = 0. (2)

The early history of the techniques of proving these power sum rules can
be found in Watson’s book [3] as well as [11, 12, 13]. The more recent articles
[14, 15, 16] offer modern views, survey recent results, and apply the techniques
to various transcendental functions.

Properly speaking, the technique of resolution of many of these problems
goes back to Euler and his famous resolution of the “Basel” problem, named af-
ter the native Swiss city of Euler and the Bernoulli brothers. Euler successfully
solved the problem first posed by Pietro Mengoli in 1644 [12, 13] and found a

closed form for the expression
∑∞

n=1
1

n2 . It is now folklore that the sum is π2

6 .
Heuristically, Euler’s argument of 1740 [17] (see also [12, 13]) amounted to writ-
ing sin x

x
in two different ways: as a Maclaurin series and as the infinite product

∞
∏

n=1

(

1−
x2

n2π2

)

,

since the roots of the transcendental equation sin x/x = 0 are given by x =±nπ,
for n = 1,2, . . . Expanding the product, and equating the coefficients of x2 gives
the above formula. For rigorous justifications of these formulas one should
consult [18, Chap. 1]. Euler’s technique is exactly what Rayleigh employed in
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the case of equation (2). Many nice examples illustrating this technique appear
in the excellent paper of Speigel [19] where generalizations of Newton’s known
formulas for the symmetric sums of the roots of a polynomial can be found (see
also the comments in [15]).

Radoux [20], Liron [21, 22, 23], and more recently Gupta-Muldoon [14] and
Ismail-Muldoon [15] employed similar techniques to generate various recur-
sion formulas in the same spirit. In the case of Radoux and Liron, one finds
explicit and recursive formulas for sums of even powers of reciprocals for the
roots of the equation tan x = x, and cot x = x. To illustrate the case of the equa-
tion, tan x = x, with x1, x2, . . . denoting the strictly positive roots of the equation,

they derived the sums of even powers of xk ’s, i.e.,
∑∞

k=1 x
−2p

k
, p = 1,2, . . .. For ex-

ample, the cases p = 1,2 lead to

∞
∑

k=1

1

x2
k

=
1

10
,

∞
∑

k=1

1

x4
k

=
1

350
.

All of these are manifestations of convolution formulas relating the trace of
the compact operator defined by the Green’s function, and power sums of the
eigenvalues as detailed in [24] and the classical book of Mikhlin [25]. The recent
survey paper of Grieser [26] offers a view that relates these formulas to what is
known for matrices.

Radoux [20] attributes the method of finding sums of reciprocals of powers
of eigenvalues of certain operators to Sèrge Nicaisse, but as detailed in [24, 25,
26] this is truly classical.

In what follows, we provide two proofs of a recursive scheme to obtain ex-
plicit values of Rayleigh functions for a non-local BVP posed in [1]. Our main
contribution is Theorems 2, 3, 4 for that non-local BVP. The proofs of the first
two theorems are demonstrated directly using the properties of the eigenvalues
of the non-local BVP without using the trace formulas unlike the way Goodwin
proved for the regular BVPs [24]. The proof of Theorem 4 uses the generating
functions as Radoux [20] and Liron [21] did for different BVPs (see also Ismail
and Muldoon [15]).

2. A Non-local Boundary Value Problem

In this section we describe our eigenvalue problem. We first recall Corollary
6 from the article [1]:
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Corollary 1. The eigenfunctions of the integral operatorKwith the kernel K (x, y)=
−|x − y |/2 for the unit interval Ω = (0,1) satisfy the following Laplacian eigen-

value problem:

−φ′′ =λφ, x ∈ (0,1);

φ(0)+φ(1)=−φ′(0) =φ′(1), (3)

which can be solved explicitly as follows.

• λ0 ≈ −5.756915 is the smallest (and the only negative) eigenvalue and is

the solution of the following secular equation:

coth

√

−λ0

2
=

√

−λ0

2
, (4)

The corresponding eigenfunction is:

φ0(x) =C0 cosh
√

−λ0

(

x −
1

2

)

,

where C0 =
p

2

(

1+ sinh
p

−λ0p
−λ0

)−1/2

≈ 0.7812598 is a normalization constant

to have ‖φ0‖L2(Ω) = 1.

• λ2m−1 = (2m −1)2π2, m = 1,2, . . ., and the corresponding eigenfunction is:

φ2m−1(x) =
p

2cos(2m −1)πx.

These are canonical cosines with odd modes.

• λ2m , m = 1,2, . . ., is the solution of the secular equation:

cot

√

λ2m

2
=−

√

λ2m

2
, (5)

and the corresponding eigenfunction is:

φ2m(x) =C2m cos
√

λ2m

(

x −
1

2

)

,

where C2m =
p

2

{

1+ sin
p

λ2mp
λ2m

}−1/2

is a normalization constant.
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Remark 1. We refer the reader to [1] for the motivation of considering such an
integral operator K, the description of the higher dimensional versions, and
a variety of applications. Here, however, we would like to point out our new
interpretation of the above eigenvalue problem that was not explicitly stated
in [1]. The above problem turns out to be equivalent to the following problem
defined for the whole real axis and then restricting the solutions to the unit
intervalΩ.

−ψ′′ =
{

λψ for x ∈Ω;

0 for x ∈R\Ω,

with the continuity conditions at the boundary points: ψ(0−) =ψ(0+), ψ′(0−) =
ψ′(0+), ψ(1−) =ψ(1+), ψ′(1−) =ψ′(1+). Then, φ(x) in Corollary 1 is χΩ(x)ψ(x).

Remark 2. The three cases of the eigenvalues in Corollary 1, i.e., λ0; {λ2m−1};
and {λ2m} can also be derived from a single equation:

(

eα/2 +e−α/2) ·
(

eα/2+e−α/2

eα/2−e−α/2
−
α

2

)

= 0,

where λ=−α2, and α ∈ C. Searching zeros of the first factor for α ∈ iR leads to
λ2m−1 = (2m−1)2π2 whereas doing so in the second factor for α ∈R leads to (4)
and for α ∈ iR leads to (5).

Remark 3. Both Radoux [20] and Liron [21] dealt with the secular equation
tanβ=β. They explicitly mention that this equation came from the one-dimensional
Laplacian eigenvalue problem by setting λ=−α2, α= iβ, β ∈R with the follow-
ing Robin boundary condition:

φ(0)= 0, φ′(1) =φ(1).

Note that φ′(0) =φ(0), φ(1)= 0 lead to tanβ=−β.
On the other hand, Radoux also dealt with the other secular equation cotβ=

β whereas Liron treated the case involving cotβ = −β. Neither of them ex-
plained why they wanted to treat these secular equations and neither of them
explicitly listed the corresponding boundary condition unlike the case of tanβ=
β. In fact, simple computations similar to those in [27, Sec. 4.3] suggest that
cotβ=β is associated with the Robin boundary conditions (φ′(0),φ′(1)) = (φ(0),0)
or (0,−φ(1)) and cotβ=−β is associated with (φ′(0),φ′(1)) = (0,φ(1)) or (−φ(0),0).
But one also needs to consider the hyperbolic versions, i.e., cothα = α, in or-
der to fully solve the eigenvalue problems with the Robin boundary conditions
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(φ′(0),φ′(1)) = (0,φ(1)) or (−φ(0),0). Note that these Robin boundary condi-
tions are all decoupled, i.e., local. To the best of our knowledge, [1] is the first to
explicitly describe the unusual non-local boundary condition (3).

Remark 4. One can exploit the well-known trace formula [24, 25, 26]

∞
∑

n=0

1

λ
p
n

=
∫1

0
Kp (x, x)dx, (6)

where Kp (x, y) denotes the pth iterated kernel of K (x, y), to determine the first
few expressions for the Rayleigh function at hand. Indeed, one obtains at once

∞
∑

n=0

1

λn
=

∫1

0
K (x, x)dx = 0,

and
∞
∑

n=0

1

λ2
n

=
∫1

0
K2(x, x)dx =

∫1

0

(

1

2
−

x

4
+

x2

4

)

dx =
1

24
.

However this task becomes tedious for p ≥ 3, and we propose to obtain these
power sums without recourse to iterated kernels, but by exploiting properties
of the transcendental equations of which the eigenvalues are roots.

3. Sum of the Reciprocals of the Eigenvalues of Corollary 1

In light of Remark 4, we want to show the following directly.

Theorem 2. Let {λn}∞n=0 be the eigenvalues of the boundary problem in Corol-

lary 1, and let K (x, y) =−|x−y |/2. Then, they satisfy the following trace formula:

∞
∑

n=0

1

λn
=

∫1

0
K (x, x)dx = 0.

PROOF. Let us group the eigenvalues into the three groups as indicated in Corol-
lary 1:

∞
∑

n=0

1

λn
=

1

λ0
+

∞
∑

m=1

1

λ2m−1
+

∞
∑

m=1

1

λ2m
. (7)
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Now, the second term of the sum is:

∞
∑

m=1

1

λ2m−1
=

∞
∑

m=1

1

(2m −1)2π2
(8)

=
1

π2

∞
∑

m=1

1

(2m −1)2

=
1

π2

( ∞
∑

m=1

1

m2
−

∞
∑

m=1

1

(2m)2

)

=
1

π2
·

3

4

∞
∑

m=1

1

m2

=
1

π2
·

3

4
·
π2

6
=

1

8
,

where we used the famous Basel problem identity
∑∞

m=1 1/m2 = π2/6 resolved
by Euler [17] (see also [11, 12, 13, 26]).

As for the last term of (7),

∞
∑

m=1

1

λ2m
=

1

4

∞
∑

m=1

1

x2
m

, (9)

where xm :=
√

λ2m/2 > 0 is the mth zero of the following transcendental equa-
tion; see (5):

cot x =−x. (10)

To proceed to compute (9) explicitly, let us analyze (10) more deeply. Following
Radoux [20], let us first consider the following function and its Maclaurin series
expansion:

(cot x +x) ·sin x = cos x +x sin x (11)

=
(

1−
x2

2!
+

x4

4!
−·· ·

)

+x ·
(

x −
x3

3!
+

x5

5!
−·· ·

)

= 1+
x2

2
−

(

1

3!
−

1

4!

)

x4 +
(

1

5!
−

1

6!

)

x6 −·· ·

= 1+
x2

2
−

3

4!
x4 +

5

6!
x6 −·· ·+ (−1)k−1 2k −1

(2k)!
x2k +·· ·

Now, the function cos x+x sin x can also be expanded into the following infinite
product in a manner similar to what Euler [17] and Rayleigh [5] did (see also
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[11, 12, 13, 19, 26]):

cos x +x sin x =
(

1+
x2

α2

) ∞
∏

m=1

(

1−
x2

x2
m

)

, (12)

where α≈ 1.19967864 satisfies α= cothα.
In other words, x = ±iα are the two (and only) pure imaginary roots of

cos x + x sin x. This can be verified as follows. Let us seek for the pure imagi-
nary zeros of cos x +x sin x by setting x = iy , y ∈R. Then, we have

cos x +x sin x = cos(iy)+ iy sin(iy)

=
ei(iy) +e−i(iy)

2
+ iy

ei(iy) −e−i(iy)

2i

=
ey +e−y

2
− y

ey −e−y

2
= 0,

which is equivalent to cosh y − y sinh y = 0, i.e.,

y = coth y. (13)

The justification for the product formula (12) follows considerations similar to
those for example in [18, Chap. 1]; see also [15]. From (12), we have

cos x +x sin x =
∞
∏

m=1

(

1−
x2

x2
m

)

+
x2

α2

∞
∏

m=1

(

1−
x2

x2
m

)

(14)

= 1+
(

1

α2
−

∞
∑

m=1

1

x2
m

)

x2 +·· ·

Equating the corresponding coefficients of the x2 terms of (11) and (14), we
have

∞
∑

m=1

1

x2
m

=
1

α2
−

1

2
.

Hence, inserting this to (9), in turn, (7) together with (8) gives us
∞
∑

n=0

1

λn
=

1

λ0
+

∞
∑

m=1

1

λ2m−1
+

∞
∑

m=1

1

λ2m

=
1

λ0
+

1

8
+

1

4

∞
∑

m=1

1

x2
m

=
1

λ0
+

1

8
+

1

4

(

1

α2
−

1

2

)

=
1

λ0
+

1

4α2

= 0,

8



since λ0 =−4α2, which can be verified by identifying (4) with the equation (13)
via α=

√

−λ0/2. �

4. Sums of Higher Powers of the Reciprocals of the Eigenvalues of Corollary 1

Furthermore, we can establish the following identities:

Theorem 3. Let {λn}∞n=0 be the eigenvalues of the boundary value problem spec-

ified in Corollary 1. Let Kp (x, y) be the pth iterated kernel of K (x, y) =−|x− y |/2.

Then, we have

∞
∑

n=0

1

λ
p
n

=
∫1

0
Kp (x, x)dx =

1

4p

(

S2p +
(−1)p

α2p

)

+
4p −1

2 · (2p)!
|B2p |, (15)

where

S2p :=
∞
∑

m=1

1

x
2p
m

=
∞
∑

m=1

(

4

λ2m

)p

,

and B2p is the Bernoulli number, which is defined via the generating function:

x

ex −1
=

∞
∑

n=0

Bn

n!
xn .

Moreover, S2p satisfies the following recursion formula:

n+1
∑

ℓ=1

(−1)n−ℓ+1 (2 (n −ℓ+1)−1)

(2 (n −ℓ+1))!

{

S2ℓ+
(−1)ℓ

α2ℓ

}

=
(−1)n

2(2n)!
. (16)

PROOF. The first equality in (15) connecting the sum of the powers of the eigen-
values and the trace of the iterated kernel is the standard fact and its proof can
be found in, e.g., [25, Sec. 15]. Now, to prove the second equality, we have

∞
∑

n=0

1

λ
p
n

=
1

λ
p
0

+
∞
∑

m=1

1

λ
p
2m−1

+
∞
∑

m=1

1

λ
p
2m

=
(

−1

4α2

)p

+
1

π2p

∞
∑

m=1

1

(2m −1)2p
+

1

4p

∞
∑

m=1

1

x
2p
m

=
(−1)p

4pα2p
+

1

π2p

(

1−
1

22p

) ∞
∑

m=1

1

m2p
+

1

4p
S2p

=
1

4p

{

S2p +
(−1)p

α2p
+

4p −1

π2p

∞
∑

m=1

1

m2p

}

=
1

4p

(

S2p +
(−1)p

α2p

)

+
4p −1

2(2p)!
|B2p |,

9



where we used the following well-known formula first obtained by Euler (see,
e.g., [11, 12, 13] to derive the last equality:

∞
∑

m=1

1

m2p
=

(2π)2p

2(2p)!
|B2p |.

Now, to prove the recursion formula (16), we follow Radoux [20] again. Tak-
ing the logarithm of the product formula (12) followed by differentiation with
respect to x, we have

x cos x

cos x +x sin x
=

2x
α

1+ x2

α2

+
∞
∑

m=1

−2x
x2

m

1− x2

x2
m

,

which leads to

1

2
cos x = (cos x +x sin x) ·







1

α2

1

1+ x2

α2

−
∞
∑

m=1

1

x2
m

1

1− x2

x2
m







.

Expanding each term into the Maclaurin series or the geometric series, we have

1

2

∞
∑

n=0

(−1)n x2n

(2n)!
=

(

∞
∑

k=0

(−1)k−1(2k −1)

(2k)!
x2k

)

·
(

∞
∑

ℓ=0

(

(−1)ℓ

α2ℓ+2
−S2ℓ+2

)

x2ℓ

)

.

Hence, comparing the coefficients of the x2n term, we have:

(−1)n

2(2n)!
=

n
∑

k=0

(−1)n−k−1(2n −2k −1)

(2n −2k)!

(

(−1)k

α2k+2
−S2k+2

)

=
n+1
∑

ℓ=1

(−1)n−ℓ+1(2(n −ℓ+1)−1)

(2(n −ℓ+1))!

(

S2ℓ+
(−1)ℓ

α2ℓ

)

via setting ℓ= k +1,

which is (16). �

Let Ap :=
∑∞

n=0
1
λ

p
n

. Here are the first few sums:

A1 = 0; A2 =
1

24
; A3 =−

1

240
, . . .

10



5. The Generating Function and Obtaining Recursive Formulas All at Once

In this section, we show how to obtain the recursion formulas for the Aℓ’s at
once and without recourse to the knowledge of Bernoulli numbers. The main
result is the following theorem.

Theorem 4. Let {λn}∞n=0 be the eigenvalues of the boundary problem in Corol-

lary 1, and let Kp (x, y) be the pth iterated kernel of K (x, y) =−|x − y |/2. Then,

Ap =
∞
∑

n=0

1

λ
p
n

=
∫1

0
Kp (x, x)dx

satisfies the recursion formula:

4An+1 +
n−1
∑

k=1

(−1)k

(

2

(2k)!
−

1

(2k −1)!

)

An−k+1 =
(−1)n+1n

(2n +1)!
, n = 1,2, . . . ,

with A1 = 0.

PROOF. From the statement of Corollary 1 and (12), it is clear that

(cos x +x sin x) ·cos x =
(

1+
x2

α2

) ∞
∏

m=1

(

1−
x2

x2
m

)

where λ0 =−4α2 as defined above and where we set xk =
√

λk /2, for k = 1,2, . . ..
One can again justify this product formula as in Knopp [18, Chap. 1] or any stan-
dard Complex Analysis textbook which treats the Weierstrass Factor Theorem.

In terms of the eigenvalues one has, after some trigonometric substitutions,

1+cos x

2
+

x

4
sin x =

(

1−
x2

λ0

) ∞
∏

m=1

(

1−
x2

λm

)

. (17)

Expanding the LHS into a Maclaurin series and equating lead to

1+
∞
∑

k=1

(−1)k

(

1

2(2k)!
−

1

4(2k −1)!

)

x2k = 1−
(

∞
∑

k=0

1

λk

)

x2 +
(

∞
∑

j ,k=0

1

λkλ j

)

x4 − . . . .

11



With αk := (−1)k
(

1
2(2k)! −

1
4(2k−1)!

)

denoting the coefficients of the Maclaurin ex-

pansion, one can recourse to Speigel’s formulas [19, 24]

∞
∑

k=0

1

λk

= −α1

∞
∑

k=0

1

λ2
k

= α2
1 −2α2

∞
∑

k=0

1

λ3
k

= 3α1α2 −3α3 −α3
1

∞
∑

k=0

1

λ4
k

= α4
1 −4α2

1α2 +2α2
2 +4α1α3 −4α4

to obtain, as above,

A1 =
∞
∑

k=0

1

λk

= 0

A2 =
∞
∑

k=0

1

λ2
k

=
1

24

A3 =
∞
∑

k=0

1

λ3
k

= −
1

240

A4 =
∞
∑

k=0

1

λ4
k

=
41

40320
.

One can generate a recursion formula for the Ak sequence employing what
Ismail and Muldoon [15] call, properly, the “Euler-Rayleigh” technique. The
logarithmic derivative of the entire function f (z) = 1+cos z

2 + z
4 sin z appearing in

(17) gives,

−
sin z

4
+

z cos z

4
1+cos z

2
+

z sin z

4

=−
2z

λ0 − z2
−2

∞
∑

k=1

z

λk − z2

Or, substitutingλ0 =−4α2 and λk = 4x2
k

, and after some manipulation,

−
sin2z

4
+

z cos2z

2
1+cos2z

2
+

z sin2z

2

=
z

α2 + z2
−

∞
∑

k=1

z

x2
k
− z2

=: −zG(z). (18)

12



The function

G(t ) =−
1

α2 + t 2
+

∞
∑

k=1

1

x2
k
− t 2

is known as the generating function of Aℓ. That is, one can obtain the needed
recursion formula for this sequence from consideration of this function. To
simplify notation, we let Mℓ := 4ℓ+1 Aℓ+1. It is then clear that

Mℓ−1 =
(−1)ℓ

α2ℓ
+

∞
∑

m=1

1

x2ℓ
m

.

Moreover, a straightforward calculation leads to

∞
∑

ℓ=0

Mℓt 2ℓ =G(t ).

By (18), one then obtains

sin2t

4t
−

cos2t

2
=

(

1+cos2t

2
+

t

2
sin2t

)

(

∞
∑

ℓ=0

Mℓt 2ℓ

)

.

Expanding into power series leads to

∞
∑

n=1
(−1)n+1 4nn

(2n +1)!
t 2n =

(

1+
∞
∑

k=1

(−1)k

(

22k−1

(2k)!
−

22k−2

(2k −1)!

)

t 2k

) (

∞
∑

ℓ=0

Mℓt 2ℓ

)

.

From which one obtains M0 = 0, and

∑

k+ℓ=n

(−1)k

(

22k−1

(2k)!
−

22k−2

(2k −1)!

)

Mℓ =
(−1)n+14nn

(2n +1)!
.

In terms of the Aℓ’s one has, A1 = 0, as before,

4An+1 +
n−1
∑

k=1

(−1)k4−k+1
(

22k−1

(2k)!
−

22k−2

(2k −1)!

)

An−k+1 =
(−1)n+1n

(2n +1)!
,

which is the same as the desired statement of the theorem. �

Remark 5. We note that the recursion generates the following valuesA2 = 1/24,
A3 =−1/240, A4 = 41/40320, A5 =−107/725760, etc., corresponding to what we
obtained differently in Section 4.
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Remark 6. As in [15], one can exploit the formulas generated for the Aℓ’s to
obtain

−|A2m−1|−1/(2m−1) <λ0 <−A−1/(2m)
2m (19)

and
A2m/A2m+1 <λ0 < A2m−1/A2m . (20)

for m = 1,2,3, . . .. These inequalities provide strict improvable bounds for the
unique negative root of the transcendental equation (4) and another way of
obtaining it.

6. Higher Dimensional Considerations

One of the motivations that led to the non-local BVP considered in [1] is that
one is able to read the spectral data (eigenvalues, eigenfunctions) by discretiz-
ing then computing integrals involving the kernel K (x,y) over a domainΩ⊂R

d

without imposing conditions on ∂Ω. For the two dimensional case, K (x,y) takes
the form of a logarithmic kernel

K (x,y) =−
1

2π
ln |x−y|. (21)

Troutman [28] gave an analytical proof for the existence of at most one nega-
tive eigenvalue and gave an upper bound estimate for it in terms of the area
and transfinite diameter of Ω. (The transfinite diameter is a measure of the
compactness of a domain; see [28] for the definition.) In [29], Kac offers a prob-
abilistic proof of this fact (see also [30] and the generalization in [31]). With Ap

denoting the power sum in (6) and the iterated integrals computed numerically,
(19) and (20) provide a practical and improvable means of computing this neg-
ative eigenvalue for a specific domain. When the transfinite diameter of Ω is
less than or equal to one, this negative eigenvalue disappears. This is the case
of the unit disk. In [1], it was found that the eigenvalues of the nonlocal BVP
associated with the kernel (21) are of two types, j 2

0,n , with multiplicity 3, and

j 2
m−1,n with multiplicity 2, for m = 2,3, . . ., and n = 1,2, . . .. Based on the values

of σ2ℓ(ν), one can generate for the first few power sums. While
∑∞

k=1 1/λk is
easily seen to diverge,

∞
∑

k=1

1

λ2
k

= 3σ4(0)+2
∞
∑

ν=1
σ4(ν) =

3

32
+

1

8

(

π2

6
−

3

2

)

.
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Similarly
∞
∑

k=1

1

λℓ
k

= 3σ2ℓ(0)+2
∞
∑

ν=1
σ2ℓ(ν)

can be carried out explicitly for ℓ = 3,4, . . ., but there may not be an obvious
recursion scheme.
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