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LEFT-ORDERABLE FUNDAMENTAL GROUPS AND DEHN SURGERY

ADAM CLAY AND LIAM WATSON

Abstract. There are various results that frame left-orderability of a group as a geometric
property. Indeed, the fundamental group of a 3-manifold is left-orderable whenever the
first Betti number is positive; in the case that the first Betti number is zero this property
is closely tied to the existence of certain nice foliations. As a result, many large classes of
3-manifolds, including knot complements, are known to have left-orderable fundamental
group. However, though the complement of a knot has left-orderable fundamental group,
the result of Dehn surgery is a closed 3-manifold that need not have this property. We take
this as motivation for the study of left-orderability in the context of Dehn surgery, and
establish a condition on peripheral elements that must hold whenever a given Dehn surgery
yields a manifold with left-orderable fundamental group. This leads to a workable criterion
used to determine when sufficiently positive Dehn surgery produces manifolds with non-
left-orderable fundamental group. As examples we produce infinite families of hyperbolic
knots – subsuming the (−2, 3, q)-pretzel knots – for which sufficiently positive surgery
always produces a manifold with non-left-orderable fundamental group. Our examples
are consistent with the observation that many (indeed, all known) examples of L-spaces
have non-left-orderable fundamental group, as the given families of knots are hyperbolic
L-space knots. Moreover, the behaviour of the examples studied here is consistent with
the property that sufficiently positive surgery on an L-space knot always yields an L-space.

1. Introduction

This paper studies left-orderable groups in the context of 3-manifold topology, and in partic-
ular, the question of whether there exist left-orderings of a fundamental group that descend
to certain quotients of the group. To begin, we recall the following:

Definition 1. A non-trivial group G is left-orderable if there exists a strict total ordering
> of the elements of G that is left-invariant: Whenever g > h then fg > fh, for any
g, h, f ∈ G.

We adhere to the somewhat non-standard convention that the trivial group is not left-
orderable. An equivalent definition of left-orderability may be given in terms of positive
cones; our convention is consistent with requiring that the positive cone be non-empty.

Left-orderability may be viewed as a geometric property: A countable group is left-orderable
if and only if it acts faithfully on R by order-preserving homeomorphisms. In fact, this leads
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to a connection between left-orderability and 3-manifolds as Boyer, Rolfsen and Wiest show
that compact, connected, orientable manifolds supporting R-covered foliations1 have left-
orderable fundamental group. For Seifert fibred manifolds the connection is even stronger:
a Seifert fibred space with base orbifold S2 has left-orderable fundamental group if and
only if it supports a taut foliation [4]. The work of Calegari and Dunfield [7] and Roberts,
Shareshian and Stein [21] provides related results in the hyperbolic setting. In particular,
Calegari and Dunfield show that atoroidal rational homology spheres admitting a taut foli-
ation have virtually left-orderable fundamental group (that is, there exists a left-orderable
subgroup of finite index). Moreover, restricting to integer homology spheres, the existence
of a taut foliation implies left-orderable fundamental group, so that in this setting estab-
lishing non-left-orderability of the fundamental group can be a useful obstruction to such a
foliation of the manifold [7].

Burns and Hale [5] characterize left-orderability in terms of finitely generated subgroups.

Theorem 2 (Burns-Hale). A group G is left-orderable if and only if every nontrivial
finitely generated subgroup surjects onto a left-orderable group.

While using this characterization on an arbitrary group is often an intractable problem,
Boyer, Rolfsen and Wiest combine this result with Scott’s Compact Core Theorem [22] to
give a natural characterization of left-orderability for fundamental groups of 3-manifolds
[4].

Theorem 3 (Boyer-Rolfsen-Wiest). Let M be a compact, connected, irreducible, ori-
entable 3-manifold, possibly with boundary. Then π1(M) is left-orderable if and only if
π1(M) surjects onto a left-orderable group.

It follows immediately that whenever H1(M ;Q) 6= 0 the group π1(M) is left-orderable. On
the other hand, this characterization can be quite subtle for rational homology spheres.
In particular, while it follows from this result that the complement of any knot has left-
orderable fundamental group, this need not be the case for a rational homology sphere
resulting from Dehn surgery on the knot (an operation described below). As a result, the
following question seems well motivated and is the principal focus of this work:

Question 4. How does left-orderability of fundamental groups behave with respect to Dehn
surgery?

To this end, suppose that M is a compact, connected, irreducible, orientable 3-manifold,
with ∂M ∼= S1×S1. We recall the notion of Dehn filling, following the conventions of Boyer
[2]. Given a primitive class α ∈ H1(∂M ;Z)/± 1 (referred to as a slope) we obtain a closed
3-manifold M(α) via Dehn filling by identifying the boundary of a solid torus D2×S1 to the
boundary of M in such a way that ∂D2×{point} is identified with α. In the case that M is
the exterior of a knot K in S3, there is a canonical basis for the fundamental group of the
boundary (the peripheral subgroup) given by the knot meridian µ and the Seifert longitude

1We suppose throughout that all foliations are co-orientable. For the relevant definitions of R-covered
and taut foliation see [6], for example.
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λ. Thus, every slope α may be written in the form α = ±(pµ + qλ) where the elements
{µ, λ} generate the group π1(∂M) ∼= H1(∂M ;Z). In this setting, we generally denote M(α)
by S3

p/q(K) and refer to this manifold as the result of Dehn surgery (also referred to as p
q -

surgery) along the knot K. On the level of the fundamental group Dehn filling corresponds
to killing the surgery slope α, in the sense that π1(M(α)) ∼= π1(M)/ 〈〈α〉〉.

In this setting, Question 4 asks if there exists a left-ordering of π1(M) that descends to a
left-ordering of the quotient π1(M(α)). For example, such left-orderings exist when M is
the complement of the figure eight knot and α is a slope in the interval (−4, 4) [3], or when
M is the complement of a positive (r, s) torus knot and α is a slope smaller than rs− r− s
[3, 20]. The tools used in each of these examples are very specific to the geometry of the
given situation, and it is not clear how either method might generalize to accommodate a
larger class of knots. Moreover, while the question of preserving (or not preserving) left-
orderability under quotients has been studied in the field of orderable groups, few of the
general theorems available are applicable to the specialized set-up of Dehn surgery (see [10,
Chapter 3 and Chapter 5] for a summary of some available results).

Our main result introduces a workable obstruction to the existence of a left-ordering of
π1(M) that descends to a left-ordering of π1(M(α)). That is, we provide a condition on
the left-orderings of the group π1(M) which ensures that the quotient in question will not
inherit any left-ordering.

Theorem 5 (see Corollary 10). Let M denote the exterior of a non-trivial knot K in
S3, and fix the canonical basis {µ, λ} for the peripheral subgroup π1(∂M), as above. If the
implication

µp0λq0 > 1 ⇒ µp1λq1 > 1

holds for every left-ordering > of π1(M) then π1(S
3
p/q(K)) is not left-orderable for any

p
q ∈ (p0q0 ,

p1
q1
).

While this criterion applies to a more general class of manifolds (see in particular Theorem
9), we are able to apply a variant of this criterion to certain classes of knots in S3. In
particular, we show that sufficiently positive surgery on positive (r, s)-torus knots gives rise
to manifolds with fundamental group that cannot be left-ordered (see Theorem 24). Since
the result of such a surgery is Seifert fibred [14], this recovers a known result (see discussion
below) via different means. However, we are also able to extend our calculation to cover a
large class of hyperbolic knots. We prove:

Theorem 6 (see Theorem 28 and Theorem 30). Let K be a positively m-twisted
(3, 3k + 2)-torus knot. If (1) m ≥ 0 and k = 1, or (2) m = 1 and k ≥ 0, then π1(S

3
r (K)) is

not left-orderable for r ∈ Q sufficiently positive.

The notion of a positively twisted torus knot is introduced in Section 3. This class includes,
for example, the (−2, 3, q)-pretzel knots for odd q > 5 (note that the cases q = 1, 3, 5
correspond to torus knots). As an immediate consequence, the result of sufficiently positive
surgery on any of the knots considered in this theorem is a hyperbolic 3-manifold that does
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not admit an R-covered foliation. Indeed, the criterion applied to establish this fact may
be a useful algebraic tool for obstructing such a foliation in other contexts. However, as an
R-covered foliation is an instance of a taut foliation, it is interesting to note that this fact
may be obtained by other means for the knots in question. We describe this further in the
next section.

1.1. Background and further motivation. While the main focus of this work is the
interplay between left-orderability and Dehn surgery, part of our motivation for studying
left-orderability of fundamental groups in this context comes from Heegaard Floer homology.

Let Y be a closed, connected, oriented 3-manifold, and denote by ĤF(Y ) the (‘hat’ version
of) Heegaard Floer homology of Y [17, 16]. We will be particularly interested in a class of
manifolds introduced in [18] for which the Heegaard Floer homology is a simple as possible.

Definition 7. A closed, connected, orientable 3-manifold Y is an L-space if it is a rational

homology sphere satisfying rk ĤF(Y ) = |H1(Y ;Z)|.

Examples of L-spaces include lens spaces, as well as manifolds admitting elliptic geometry
[18, Proposition 2.3].

An interesting topological property enjoyed by this class of manifolds is that they do not
admit taut foliations, according to a result of Ozsváth and Szabó [15, Theorem 1.4]. Re-
stricting to the class of Seifert fibred spaces with base orbifold S2(a1, . . . , an), a converse
to this result has been established by Lisca and Stipsicz [12, Theorem 1.1]. That is, non-
L-spaces within this class are characterized by the existence of a taut foliation. Combined
with a result of Boyer, Rolfsen and Wiest [4, Theorem 1.3(b)], this characterization may be
restated in terms of left-orderability of the fundamental group, as observed by Peters [20]
and Boyer, Gordon and Watson [3]. In fact, with this observation as a point of departure,
it has been established that a Seifert fibred space (without restriction on the base orbifold)
is an L-space if and only if its fundamental group cannot be left-ordered [3] (see also [25]).

This suggests a correspondence between L-spaces and non-left-orderability of fundamental
groups, a phenomenon that has been studied further in various settings [3, 8, 20]. In light
of this correspondence, it is natural to ask whether properties enjoyed by L-spaces may be
translated into statements regarding non-left-orderability of the fundamental group.

With respect to Dehn filling, L-spaces obey the following property (see [18, Proposition 2.1]).
Fix a compact, connected, orientable 3-manifold M with torus boundary. Given a pair of
slopes α and β in ∂M with geometric intersection 1 and |H1(M(α);Z)| + |H1(M(β);Z)| =
|H1(M(α + β);Z)|, if M(α) and M(β) are L-spaces then so is M(α + β). In the setting of
surgery on a knot in S3, this property may be restated a follows: If S3

n(K) is an L-space for
some integer n > 0, then S3

r (K) is also an L-space for any rational number r ≥ n. A knot
K admitting L-space surgeries will be referred to as an L-space knot; examples are provided
by torus knots and, more generally, Berge knots – those knots known to admit lens space
surgeries [1]. Note that, up to taking mirrors, we may always assume that the integer n is
positive. We will restrict ourselves to considering positive surgeries in this work.
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Given this property of L-spaces with respect to Dehn surgery, the correspondence between
L-spaces and the non-left-orderability of fundamental groups suggests that L-space knots
should yield large families of 3-manifolds with fundamental group that cannot be left-
ordered. In particular, one is led to ask:

Question 8. Is the fundamental group of the manifold obtained by sufficiently positive
surgery on an L-space knot non-left-orderable?

More generally, one might consider a manifold with torus boundary (as above) for which
neither π1(M(α)) nor π1(M(β)) may be left-ordered, and ask whether π1(M(α + β)) is
non-left-orderable. However, in the context of left-orderability questions pertaining to the
relationship between three such quotients seem somewhat unnatural (or, at very least,
unstudied). We leave this to future work.

This paper – in particular Corollary 11 and its applications – constitutes, in part, an
attempt to better understand Question 8. Note that the infinite family of knots considered
in Theorem 6 are all L-space knots.

1.2. Organization. The remainder of the paper is organized as follows. Section 2 contains
the proof of our main criterion and its corollaries. In Section 3 we introduce a family of
twisted torus knots, compute their fundamental groups, and fix a choice of generators for
the peripheral subgroups. These serve as a class of examples to which we may apply our
obstructions to left-orderable fundamental groups after Dehn filling, the focus of Section 4.

Acknowledgements. The authors thank Steve Boyer and Dale Rolfsen for their encour-
agement and input on this work, as well as Tye Lidman for helpful comments on an earlier
version of the manuscript.

2. A criterion for obstructing left-orderability

The following criterion establishes a necessary condition on peripheral elements, given a
left-orderable fundamental group arising from a Dehn filling.

Theorem 9. Let p
q ,

p0
q0
, p1q1 ∈ Q+ be given, with p

q ∈ (p0q0 ,
p1
q1
) and p, q, pi, qi > 0. Suppose that

M is compact, connected, orientable 3-manifold with incompressible torus boundary, and
suppose that 〈µ, λ〉 ∼= π1(∂M) is not sent to 1 under the quotient map π1(M) → π1(M(pq )).

If M(pq ) is left-orderable, then there exists a left-ordering of π1(M) relative to which the

elements µp0λq0 and µp1λq1 have opposite signs.

Before turning to the proof of this result, we record some immediate corollaries that will be
used in the sequel. These come in the form of sufficient conditions to conclude that certain
Dehn surgeries will give rise to non-left-orderable fundamental groups. In Corollaries 10
and 11, M denotes the exterior of a nontrivial knot in S3, with canonical generators µ and
λ for the peripheral subgroup.
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Corollary 10. Let p
q ,

p0
q0
, p1q1 ∈ Q+ be given, with p

q ∈ (p0q0 ,
p1
q1
) and p, q, pi, qi > 0. If

µp0λq0 > 1 implies µp1λq1 > 1 for every left-ordering > of π1(M), then π1(M(pq )) is not

left-orderable.

Proof. For contradiction, suppose that π1(M(pq )) is left-orderable. Since M is the com-

plement of a nontrivial knot, π1(M(pq )) is nontrivial [11] (note that we could alternatively

appeal to our convention that the trivial group is not left-orderable), and hence π1(∂M) is
not sent to 1 under the quotient map π1(M) → π1(M(pq )). Thus, we may apply Theorem 9

to conclude that there exists a left-ordering > of π1(M) such that µp0λq0 and µp1λq1 have
opposite signs.

If µp0λq0 > 1 > µp1λq1 , this contradicts the hypothesis that µp0λq0 > 1 implies µp1λq1 > 1
for every left-ordering > of π1(M). If µp1λq1 > 1 > µp0λq0 , then the opposite ordering of
π1(M) contradicts our hypothesis. �

Corollary 11. Let p
q , r ∈ Q+ be given, with p, q > 0 and r > p

q . If µpλq > 1 implies

µp+Nλq > 1 for all N > 0, then π1(M(r)) is not left-orderable.

Proof. Choose N > 0 such that r ∈ (pq ,
p+N
q ), and apply Corollary 10. �

2.1. The proof of Theorem 9. We now collect the requisite material for the proof of our
main result.

Definition 12. Suppose that (G,>) is a left-ordered group. A subgroup C of G is said to
be convex relative to the left-ordering > of G if for every f, h ∈ C and g ∈ G the implication

f > g > h ⇒ g ∈ C

holds.

The following propositions and definitions are standard, see [10, Propositions 2.1.1 – 2.1.3]
for proofs. Together with the observations that follow, they establish the role of convex
subgroups in the present context.

Proposition 13. Suppose that C is a nontrivial subgroup of the left-ordered group G with
ordering >. Then C is convex relative to the ordering > if and only if the prescription

g > h ⇒ gC ≻ hC

provides a well-defined left invariant ordering ≻ of the set of left cosets G/C.

Definition 14. The left-ordering ≻ of the set of cosets G/C in Proposition 13 is called
the quotient ordering of G/C arising from the left-ordering > of G, and will be denoted by
>G/C .

Definition 15. Suppose that (G,>) is a left-orderable group, and that K is a nontrivial
subgroup of G. The restriction of > to the subgroup K will be denoted by >K , and is called
the restriction ordering of K arising from >.
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Proposition 16. Suppose that

1 → K
i
→ G

φ
→ H → 1

is a short exact sequence of nontrivial groups. Then K is convex relative to the left-ordering
> of G if and only if K and H are left-orderable. Moreover, the left-ordering > of G is
related to the left-orderings >K and >H by the following rule: Given g ∈ G, if φ(g) 6= 1,
g > 1 if and only if φ(g) >H 1; otherwise, φ(g) = 1 and g > 1 if and only if g >K 1.

Proof. The proof is routine. �

We remark that a version of this proposition holds even ifH does not have a group structure.
That is, we may use a left-invariant ordering of any convex subgroup C ⊂ G and a left-
invariant ordering of the set of left cosets G/C in order to create a left-invariant ordering
of G.

Lemma 17. Let p
q ,

p0
q0
, p1q1 ∈ Q+ be given, with p, q, pi, qi > 0, and suppose that {(p, q), (u, v)}

is a basis for R2. If p
q ∈ (p0q0 ,

p1
q1
) and

(p0, q0) = c0(p, q) + d0(u, v),

(p1, q1) = c1(p, q) + d1(u, v),

then d0 and d1 have opposite signs.

Proof. Recall that the determinant p0q − q0p is the signed area the parallelogram bounded
by the vectors (p0, q0) and (p, q). In particular, because the acute angle from (p0, q0) to
(p, q) is swept out in a clockwise direction, the quantity p0q − q0p is negative. We rewrite:

p0q − q0p = (c0p+ d0u)q − (c0q + d0v)p = d0(uq − vp),

so the quantity d0(uq − vp) is negative.

On the other hand, the determinant p1q−q1p is positive, and we compute that the quantity
d1(uq − vp) is positive. Therefore, d0 and d1 have opposite signs. �

Proposition 18. Let p
q ,

p0
q0
, p1q1 ∈ Q+ be given, with p, q, pi, qi > 0. Let > be any ordering

of Z × Z relative to which the subgroup 〈(p, q)〉 is convex. If p
q ∈ (p0q0 ,

p1
q1
) then (p0, q0) and

(p1, q1) have opposite signs in the ordering > of Z× Z.

Proof. Consider the short exact sequence

1 → 〈(p, q)〉
i
→ Z× Z

φ
→ Z → 1,

where the map φ is the quotient map. Since p
q ∈ (p0q0 ,

p1
q1
), neither p0

q0
nor p1

q1
lies in the

kernel of the map φ. Thus, by Proposition 16 we must show that φ(p0, q0) and φ(p1, q1)
have opposite signs in order to show that (p0, q0) and (p1, q1) have opposite signs relative
to the left-ordering > of Z× Z.
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Choose (u, v) ∈ Z× Z such that φ(u, v) = 1. Writing

(p0, q0) = c0(p, q) + d0(u, v),

(p1, q1) = c1(p, q) + d1(u, v),

we see that φ(p0, q0) = d0 and φ(p1, q1) = d1. From Lemma 17, we know that d0 and d1
have opposite signs. �

Lemma 19. Let H be a nontrivial subgroup of the left-ordered group (G,>). If C is convex
relative to the left-ordering >, then C ∩H is convex relative to the restriction ordering >H .

Proof. The proof is routine. �

Proposition 20. Suppose that M is compact, connected, orientable 3-manifold with in-
compressible torus boundary, and let α be a slope in ∂M , and suppose that π1(∂M) is not
sent to 1 under the quotient map π1(M) → π1(M(α)). If π1(M(α)) is left-orderable, then
we may define a left-ordering > of π1(M) such that 〈α〉 is convex relative to the restriction
ordering >π1(∂M) of π1(∂M) ∼= Z× Z.

Proof. Suppose that π1(M(α)) is left-orderable, and denote by 〈〈α〉〉 the normal closure
of α in π1(M). In particular, 〈〈α〉〉 is a left-orderable group, because it is a subgroup of
π1(M), which is left-orderable by Theorem 3 (see [4, Theorem 1.1]). By Proposition 16, we
may use the short exact sequence

1 → 〈〈α〉〉 → π1(M) → π1(M(α)) → 1

to create a left-ordering > of π1(M) relative to which 〈〈α〉〉 is a convex subgroup.

A nontrivial subgroup C of Z × Z is either isomorphic to a copy of the integers or it is of
rank two. In the case that C is convex and of rank two, C ∼= Z × Z is the whole group.
This follows from the observation that for convex groups, if gk ∈ C for some k then g ∈ C.
Thus, if u and v generate C and g is any other element of Z×Z, we may write au+ bv = kg
for some integers a, b, hence g is in C and C = Z× Z.

We apply these observations to the subgroup 〈〈α〉〉 ∩ π1(∂M), which is convex in π1(∂M)
relative to the left-ordering <π1(∂M) by Lemma 19. In our present setting, since π1(∂M) is
not sent to 1 under the quotient map π1(M) → π1(M(α)), we conclude that 〈〈α〉〉∩π1(∂M)
must be isomorphic to a copy of the integers. Since α is primitive,

〈〈α〉〉 ∩ π1(∂M) = 〈α〉

and this subgroup is convex relative to the ordering >π1(∂M) of π1(∂M) ∼= Z× Z. �

Proof of Theorem 9. With the above results in place, we are now in a position to prove our
main criterion. Recall that M is compact, connected, orientable 3-manifold with incom-
pressible torus boundary. By Proposition 20, we may create a left-ordering > of π1(M) such
that 〈µpλq〉 is convex relative to the restriction ordering >π1(∂M) of π1(∂M). By Lemma
18, the elements µp0λq0 and µp1λq1 have opposite signs in the restriction ordering >π1(∂M),
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and hence they must have opposite signs in the ordering > of π1(M). This completes the
proof. �

2.2. A remark on bi-orderability. Recall that a bi-ordering of a group is a left-ordering
that is also invariant under right multiplication. Work of Clay and Rolfsen has shown that
the knot group of an L-space knot cannot be bi-ordered [8]. In light of Question 8 we have
the following proposition, consistent with this observation.

Theorem 21. If the group π1(S
3 r ν(K)) is bi-orderable, then the hypothesis of Corollary

10 (end hence that of Corollary 11 also) does not hold. That is, if x, y ∈ π1(S
3 r ν(K)) are

any two elements such that 〈x〉 ∩ 〈y〉 = ∅, then there exists a left-ordering of G such that
y > 1 > x.

Proof. Recall that an element g in a group G is primitive if it cannot be written as g = hk

for some h ∈ G with k > 1. Every element in a knot group π1(S
3rν(K)) may be written as

a power of some primitive element [9], and so we assume that x = xk0 where x0 is primitive
and k > 0.

Since π1(S
3 r ν(K)) is bi-orderable and x0 is primitive, there exists a left-ordering > of

π1(S
3 r ν(K)) such that x−1

0 is the smallest positive element [19]. If > also satisfies y > 1,
then theorem is established.

If 1 > y, note that the subgroup 〈x0〉 is convex relative to the left-ordering >, and thus
> descends to a left-invariant ordering ≻ of the cosets π1(S

3 r ν(K))/〈x0〉. Moreover, the
coset y〈x0〉 is different from 〈x0〉, since we are assuming 〈x〉 ∩ 〈y〉 = ∅. We may then define
a left-ordering >′ of π1(S

3 r ν(K)) relative to which y is positive and x is negative by
reversing the ordering of the cosets, as in the following definition:

Given g ∈ G, if g /∈ 〈x0〉, declare g >′ 1 if and only if 1 ≻ g〈x0〉; otherwise, g ∈ 〈x0〉 and
g > 1 if and only if g = xk0 for some k < 0 (c.f. Proposition 16). It is easy to check that >′

so defined provides a left-ordering satisfying y >′ 1 >′ x, and the theorem follows. �

3. Torus knots and related constructions

3.1. Conventions for torus knots and their fundamental groups. Denote the (p, q)-
torus knot by Tp,q, where p and q are relatively prime, positive integers. The knot T3,5, for
example, is shown in Figure 1.

The knot group of the Tp,q torus knot is given by the presentation Gp,q = 〈a, b|ap = bq〉,
with generators a and b represented by the curves depicted in Figure 1. We recall that one
may arrive at this presentation immediately from an application of the Seifert-Van Kampen
Theorem applied to the obvious genus 1 Heegaard decomposition of S3, where a and b are
generators the fundamental groups of the respective handlebodies. This point of view will
be essential in what follows.
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b

a

Figure 1. The torus knot T3,5, labelled with standard generators a and b
for the knot group.

Denote the meridian and longitude curves by µ and λ. Relative to the generators a, b we
may write µ = bjai, where i, j are integers satisfying pj + qi = 1, we may assume that
p > i > 0 and 0 > j > −q. Observe that by using the relation ap = bq, we may rewrite
the meridian as µ = bq+jai−p. The longitude is given by λ = µ−pqap = µ−pqbq, since ap

(equivalently, bq) specify the surface framing of the torus knot (see Moser [14] for details).

These choices specify generators bjai and ap for the peripheral subgroup up to conjugacy.

3.2. Preliminaries on twisted torus knots. We begin by recording some facts about
twisted torus knots. We will focus on the positively twisted (3, q)-torus knots, denoted Tm

3,q

where m ≥ 0 denotes the number of (positive) full twists added along a pair of strands.
Further, we restrict our attention to the case when q is congruent to 2 modulo 3 to streamline
the discussion; the case when q is congruent to 1 modulo 3 is similar. This family of knots
may be constructed by adding a second handle to the the standard splitting torus for the
knot T3,q, allowing two of the three strands to pass over the new handle, and finally adding
m positive full twists to the new handle. See Figure 2 for the case Tm

3,5.

This is a simple construction giving rise to many familiar knot types. For example, it is an
easy exercise to show that Tm

3,5 is the (−2, 3, 5+2m)-pretzel knot, denoted P (−2, 3, 5+2m).
This class pretzel knots provides an infinite family of hyperbolic L-space knots [18], and
includes, for example, the Berge knot P (−2, 3, 7).

3.3. Fundamental groups of twisted torus knots. We will use a genus two Heegaard
decomposition of S3 to compute the knot group of Tm

3,q, which we will denote as Gm
3,q = πm

q .
The computation follows the classical application of the Seifert-Van Kampen Theorem as
in the case of the torus knots. We restrict ourselves to the case q = 3k + 2 for k ≥ 0.

Proposition 22. Suppose that m ≥ 0 and q = 3k + 2 for k ≥ 0. Then the fundamental
group of S3 r ν(Tm

3,q) is

πm
q = 〈a, b|a2(b−ka)ma = b2k+1(b−ka)mbk+1〉.
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· · ·m full twists →

Figure 2. The addition of a second handle to obtain the family of twisted
torus knots Tm

3,5, where m records the number of full twists.

In particular, when m = 0 we recover the torus knot group G3,3k+2.

Proof. We begin by fixing notation. Let S3 = U ∪Σ V be the genus two Heegaard splitting
of S3 specified in Figure 3, so that π1(Σ) is generated by a, b, c, d and π1(U) and π1(V ) are
the free groups 〈a, c〉 and 〈b, d〉 respectively. We will use the Seifert-Van Kampen Theorem
to express the knot group πm

q as a free product of π1(U) and π1(V ) with amalgamation.

Therefore, we must first determine the image of the generators of π1(Σr ν(Tm
3,q)) in each of

the groups π1(U) and π1(V ). The generators in each case are represented by the oriented
blue, green and red curves illustrated in Figure 3.

Consulting Figure 3, we see that the generator represented by the green curve may be
written as c in terms of the generators of π1(U), or as dm in terms of the generators of
π1(V ), and so we have the relation c = dm. From the red generator, we read off a = (bk)d,
and from the blue generator, a2ca = (bk)b(bk)dm(bk)b. Since d = b−ka and c = (b−ka)m, we
calculate

πm
q = 〈a, b|a2(b−ka)ma = b2k+1(b−ka)mbk+1〉

where q = 3k + 2, so that m and k both record (positive) full twists on two and three
strands, respectively. �

3.4. Determining the peripheral subgroup. The peripheral subgroup of πm
q may be

generated by the knot meridian and the surface framing of the knot, represented by those
curves illustrated in Figure 3. Denote these elements by µ̄ and s̄ respectively, in this section
we will compute µ̄ and s̄ in terms of the generators a and b. This done, we will fix a choice
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ba

dc

︸
︷︷

︸
k

︸
︷︷

︸

m

︸
︷︷

︸

k

︸
︷︷

︸
m

µ̄

s̄

Figure 3. Generators for the genus two splitting surface Σ (left), a gener-
ating set for the fundamental group of Σ r ν(Tm

3,q) (centre), and generators

µ̄ and s̄ for a peripheral subgroup (right). Note that the surface framing s̄
is obtained by tracing the knot to give s̄ = acaca where c = (b−ka)m.

of peripheral subgroup generated by µ = aµ̄a−1 and s = as̄a−1, as these generators are
easier to work with in Section 4.

First notice that it is immediate from Figure 3 that s̄ = acaca, where c = (b−ka)m as in the
previous section.

Next, we turn to determining µ̄ in terms of the generators a and b. To this end, we consider
the portion of the knot that lies in the lower handle of the handlebody depicted in Figure
3. This portion of the knot gives us a 3-braid as in Figure 4, the generators a and b are as
shown. Recall that ∆2 is the full twist on three strands, which generates the cyclic centre
of B3.

We first conjugate µ̄ by the generator a, this isomorphism by conjugation has the effect of
moving µ̄ linking the top strand to µ linking the bottom strand of the associated 3-braid
(see Figure 5).

We proceed to deduce a formula describing µ = aµ̄a−1 by induction on the number of full
twists, k. Considering the case k = 0, Figure 6 indicates a homotopy between ba−1 and the
meridian µ.
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a b

∆2k

Figure 4. Generators a and b for the knot group of the (3, 3k + 2)-torus
knot. Recall that these generators correspond to one of the two handles
corresponding to the Heegaard splitting for the knot Tm

3,3k+2.

∆2k

µ = aµ̄a−1

µ̄

Figure 5. Conjugation by a relating µ and µ̄.

µ = ba−1

Figure 6. Homotopy between the peripheral element µ and the word ba−1

in the case k = 0.

With this case understood, we turn to adding full twists (as indexed by k in Figure 3).
Adding a copy of the full twist ∆2 to our knot is accomplished by inserting the twist,
appearing in Figure 7, at the dashed line in the base case illustrated in Figure 6. Note that
the generator b, as it appears in Figure 7, is homotopic to the core of the handle. This
observation allows us to see that for each copy of ∆2 added to our knot, our meridian µ
(linking the left bottom strand) is modified by prefixing the base case µ = ba−1 with a copy
of the generator b.

Thus we arrive at the general formula aµ̄a−1 = µ = bk+1a−1. By taking the conjugates
s = as̄a−1 and µ, we arrive at:
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b

Figure 7. The full-twist on 3 strands, denoted ∆2, together with the gen-
erator b, k copies of which are inserted at the dashed line of Figure 6. Notice
that this curve is homotopic to the core of the handle.

Proposition 23. Suppose q = 3k + 2, k ≥ 0, and let m ≥ 0. We may take as generators
of the peripheral subgroup of πm

q the elements µ = bk+1a−1 and s = a2(b−ka)ma(b−ka)m.

Note that this formula agrees with the formula for the meridian of the (3, 3k+2)-torus knot.
This is not a coincidence, as there exists a homotopy (as shown in the above discussion)
between bk+1a−1 and the loop µ in Figure 5 which is supported away from the twists added
to the torus knot T3,q to create the knot Tm

3,q.

For use in the next section, we record some identities that now follow immediately from the
relation in πm

q . We have that

µ = bk+1a−1 = (b−ka)−mb−(2k+1)a2(b−ka)m

s = a2(b−ka)ma(b−ka)m = b2k+1(b−ka)mbk+1(b−ka)m

and refer to these as the meridian and surface framing respectively for the knot Tm
3,3k+2.

Notice that as an immediate consequence of the construction, the canonical longitude is
given by λ = µ−3(3k+2)−2ms. This is a direct generalization of the surface framing for the
torus knot T3,3k+2 in the case m = 0.

4. Examples and applications

We now turn to applications of our criteria to produce infinite families of rational homol-
ogy spheres with non-left-orderable fundamental groups. With the obvious exception of
surgery on torus knots, the constructions given here produce hyperbolic examples. All of
the examples given are L-spaces.

4.1. Surgery on torus knots. The work of Moser establishes that surgery on a torus knot
always yields a Seifert fibred space, or a connect sum of lens spaces [14]. As a result, these
surgery manifolds are completely understood in terms of L-spaces and non-left-orderability
(compare [3, 20]). However, our interest is in establishing that sufficiently large positive
surgery on a torus knot gives rise to a manifold with non-left-orderable fundamental group
by applying of Corollary 11, directly from the presentation Gp,q = 〈a, b|ap = bq〉.
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Theorem 24. Let K be a positive (p, q)-torus knot. Then π1(S
3
r (K)) is not left-orderable

whenever r ≥ pq − 1.

This result follows immediately from Corollary 10 and Corollary 11, together with the
following observations.

Lemma 25. Suppose that µpqλ > 1 in some left-ordering of Gp,q. Then either b(q+j)ja(q+j)i >

1 or a(−j)(i−p)b(−j)(q+j) > 1.

Proof. Observe that µpqλ = ap > 1, so a > 1. Assuming both 1 > a(−j)(i−p)b(−j)(q+j) and
1 > b(q+j)ja(q+j)i, their product must also be negative, so we compute

1 > a(−j)(i−p)b(−j)(q+j)b(q+j)ja(q+j)i = apj+qi = a,

a contradiction. �

Proposition 26. Suppose that µpqλ > 1 in some left-ordering of Gp,q. Then µN+pqλ > 1
for all N > 0.

Proof. Assuming that µpqλ = ap = bq > 1, we deduce that both a and b are positive
elements as well. We use this fact throughout the proof. By Lemma 25, there are two cases
to consider.

Case 1: b(q+j)ja(q+j)i > 1.

Suppose that n > 0 is the smallest integer such that bnjani > 1. Then we may write:

µN+pqλ = (bjai)Nap

= b(1−n)j(bnjani(a(1−n)ib(1−n)j))N b(n−1)jbq.

As n is the smallest integer for which bnjani > 1, we have 1 > b(n−1)ja(n−1)i, and hence
a(1−n)ib(1−n)j > 1.

Write (1 − n)j = kq + l, where 0 ≤ l < q and k is positive. This allows us to rewrite the
above expression, and use the fact that bq is central, to arrive at:

µN+pqλ = bkq+l(bnjani(a(1−n)ib(1−n)j))N b−kq−lbq

= bl(bnjani(a(1−n)ib(1−n)j))N bq−l.

We conclude that µN+pqλ is positive, as it is a product of positive elements.

Case 2: a(−j)(i−p)b(−j)(q+j) > 1.

As above, suppose that n > 0 is the smallest integer such that an(i−p)bn(q+j) > 1. Then we
may write:

µN+pqλ = (bq+jai−p)Nap

= bn(q+j)((b(1−n)(q+j)a(1−n)(i−p))an(i−p)bn(q+j))N bq−n(q+j).
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Since we have assumed nminimal, both b(1−n)(q+j)a(1−n)(i−p) and an(i−p)bn(q+j) are positive.
Write n(q + j) = kq + l, where 0 ≤ l < q and k is positive. Then we use the fact that bq is
central to arrive at

µN+pqλ = bkq+l((b(1−n)(q+j)a(1−n)(i−p))an(i−p)bn(q+j))N bq−kq−l.

= bl((b(1−n)(q+j)a(1−n)(i−p))an(i−p)bn(q+j))Nbq−l.

which is a product of positive terms as in Case 1, and the proof is complete. �

Proposition 27. Suppose that µpqλ > 1 in some left-ordering of Gp,q. Then µpq−1λ > 1.

Proof. If µpqλ = ap = bq > 1, then both a and b are positive. Hence µpq−1λ = (bjai)−1ap =
ap−ib−j where p > i > 0 > j. Therefore µpq−1λ is a product of positive elements, and so is
positive. �

Lastly, we observe that the quotient Gp,q/〈〈a
p〉〉 is not left-orderable either, as both gener-

ators a, b of Gp,q are mapped to torsion elements in the quotient (in fact, Moser shows that
the quotient is finite [14]). Combining these observations, we have that surgery coefficients
in the interval (pq − 1,∞) = (pq − 1, pq) ∪ {pq} ∪ (pq,∞) give rise to non-left-orderable
fundamental groups, concluding the proof of Theorem 24.

4.2. Surgery on pretzel knots. We consider the L-space knots Tm
3,5 ≃ P (−2, 3, 5 + 2m)

for m ≥ 0. The fundamental groups of these knots are given by

〈a, b|a2(b−1a)ma = b3(b−1a)mb2〉,

together with the peripheral elements

µ = b2a−1 = (a−1b)−mb−3a2(a−1b)m

and

s = µ15+2mλ = a2(b−1a)ma(b−1a)m = b3(b−1a)mb2(b−1a)m.

Theorem 28. If r > 15 + 2m and m ≥ 0, then r-surgery on the (−2, 3, 5 + 2m)-pretzel
knot gives rise to a manifold with non-left-orderable fundamental group.

By Corollary 11, Theorem 28 is an immediate consequence of the following.

Proposition 29. If > is any left-ordering of G, then s > 1 implies µNs > 1 for all integers
N > 0.

Proof. Suppose that s > 1, and let N > 0 be any positive integer. If µ > 1, then the
conclusion µNs > 1 follows trivially, as an arbitrary product of positive elements is always
positive. Assume then, without loss of generality, that µ = b2a−1 is negative (and µ−1 =
ab−2 > 1).

We proceed by considering two cases, depending on whether the word w = b−1a is a positive
or negative element.
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Case 1: 1 > w.

Notice that in this case we have

s = a2(b−1a)ma(b−1a)m = a(awm)2

so that 1 > s as a product of negative elements, unless a > 1. Since 1 > w implies that
b > a, and s > 1 by assumption, we need only consider b > a > 1.

Note that in this setting b2 > b > a implies that a−1b2 > 1 and write

µN = (b2a−1)N = b2(a−1b2)N−1a−1

and

(b−1a)m = b−1(ab−1)m−1a = b−1(µ−1b)m−1a

so that

s = b(b2(b−1a)m)2 = b(b(µ−1b)m−1a)2 = b2(µ−1b)m−1ab(µ−1b)m−1a.

Now

µNs = b2(a−1b2)N−1a−1b2(µ−1b)m−1ab(µ−1b)m−1a = b2(a−1b2)N (µ−1b)m−1ab(µ−1b)m−1a

must be positive, as a product of the positive elements a, b, µ−1 and a−1b2.

Case 2: w > 1.

Writing

(b−3a2)N = b−2((b−1a)(ab−2))N−1b−1a2 = b−2(wµ−1)N−1wa

we have that

µNs = sµN = a(a(b−1a)m)2(b−1a)−m(b−3a2)N (b−1a)m

= a2wmab−2(wµ−1)N−1wawm

= a2wm(µ−1w)Nawm,

immediately exhibiting µNs > 1 as a product of positive elements whenever a > 1. Since
w = b−1a > 1 implies a > b, the assumption that s > 1 reduces the proof to the case
1 > a > b.

Suppose then that 1 > a > b, and restrict to the case m > 0 (noting that m = 0 has already
been handled in the torus knot setting). We claim that a2wm > 1 and awm > 1. To see
this, notice that if 1 > ab−1 then

s = b(b2(b−1a)m)2 = b(b(ab−1)m−1a)2

is negative, as a product of negative elements. Since s > 1 by assumption, it must be that
ab−1 > 1 and 1 > ba−1. Now write

(b−1a)m = b−2((ba−1)(a2b−2))m−1ba

so that

s = b(b2(b−1a)m)2 = b(((ba−1)(a2b−2))m−1ba)2

forcing a2b−2 > 1 and 1 > b2a−2 (otherwise 1 > s, a contradiction).
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Now suppose that 1 > a2wm. Then

1 > (b2a−2)(a2wm) = b2wm

hence
1 > s = b(b2wm)2

as a product of negative elements, a contradiction. This proves that a2wm > 1.

Similarly, s = a(awm)2 > 1 forces awm > 1.

Now, revisiting the rewriting

µNs = a2wm(µ−1w)Nawm,

we see that µNs > 1 is a product of the positive elements µ−1, w, awm and a2wm. �

4.3. Surgery on torus knots with one added twist. In this section we consider the
family of twisted torus knots T 1

3,3k+2, where m = 1 and k ≥ 0 varies. These examples
provide an infinite family of hyperbolic knots, as a consequence of Thurston’s Hyperbolic
Dehn Filling Theorem [23].

To see this, we observe that the complement S3r ν(T 1
3,3k+2) may be obtained by − 1

k -filling
of one component of a link depicted in Figure 8. Since this link complement is hyperbolic
(as verified by SnapPea, for example, combined with work of Moser [13]), all but finitely
many of the − 1

k -fillings must be hyperbolic as well.

− 1

k

Figure 8. The exterior of the knot T 1
3,3k+2 may be obtained via − 1

k -surgery
on the unknotted component of the hyperbolic link shown.

It is also easy to verify that the knots T 1
3,3k+2 are distinct from the pretzel knots given

by Tm
3,5 (considered in the previous section). For example, the Khovanov homology of the

former is supported on k+1 diagonals, while the latter is supported on exactly 2 diagonals
for every m (see Watson [24]). In fact, these calculations give an alternate method for
proving that the knots T 1

3,3k+2 are non-torus for k > 0. We remark that the case k = 0

gives rise to the torus knot T 1
3,2 ≃ T2,5.

On the other hand, it is a consequence of the surgery description of this family of knots,
together with an unpublished observation due to Hedden, that the knots T 1

3,3k+2 are L-space



LEFT-ORDERABILITY AND DEHN SURGERY 19

knots. Since the genus of these knots is given by 3k + 2, surgery greater than 6k + 3 will
always give rise to an L-space. In this final section, we prove:

Theorem 30. Suppose that q is a positive integer congruent to 2 modulo 3. If r > 3q +
2, then r-surgery on the twisted torus knot T 1

3,q yields a manifold with non-left-orderable
fundamental group.

Thus, writing q = 3k + 2 where k ≥ 0, we consider the (3, 3k + 2) torus knot with one
positive twist. The corresponding knot group is

π1
q = 〈a, b|a2(b−ka)a = b2k+1(b−ka)bk+1〉,

together with the meridian

µ = bk+1a−1 = (b−ka)−1b−2k−1a2(b−ka)

and surface framing

s = µ3q+2λ = a2(b−ka)a(b−ka) = b2k+1(b−ka)bk+1(b−ka),

where s = µ3q+2λ. Theorem 30 follows from an application of Corollary 11 together with
the following proposition:

Proposition 31. If > is any left-ordering of π1
q , then s > 1 implies µNs > 1 for all N > 0.

Proof. We consider all possible choices of signs for the generators a and b of π1
q . There

are 6 cases to consider in general, though in the present setting it is possible to reduce the
argument very quickly to the cases where a and b are both positive elements.

To this end, observe that if both 1 > a and 1 > b then

s = b2k+1(b−ka)bk+1(b−ka) = bk+1aba

is a product of negative elements, hence 1 > s. Thus at least one of the generators a or b
must be positive given the hypothesis that s > 1.

Similarly, if b > 1 > a then bk > a and 1 > b−ka so that

s = a2(b−ka)a(b−ka)

is a product of the negative elements a and b−ka, hence 1 > s.

On the other hand, if a > 1 > b then

µNs = sµN = a2(b−ka)a(b−ka)(b−ka)−1(b−2k−1a2)N (b−ka)

= a2(b−ka)a(b−2k−1a2)N (b−ka)

hence µNs > 1 as a product of the positive elements a and b−1 for all N ≥ 0.

It remains then to consider the case in which both a and b are positive. Suppose that s > 1,
and let N > 0 be any positive integer. As before if µ > 1, then the conclusion µNs > 1
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follows trivially, so we suppose that µ is negative, observe that µ−1 = ab−k−1 > 1, and
record

(1) ab−k = µ−1b > 1

for use in the remainder of the proof. We consider two cases.

Case 1: b > a > 1

In this case we have that bℓ > a for any positive integer ℓ, hence a−1bℓ > 1. Now write

µN = (bk+1a−1)N = bk+1(a−1bk+1)N−1a−1

and

s = a(a(b−ka))2 = a(µ−1ba)2

using Equation (1). This gives rise to

µNs = bk+1(a−1bk+1)N−1a−1a(µ−1ba)2

= bk+1(a−1bk+1)N−1(µ−1ba)2

which we recognize as the product of the positive elements a, b, a−1bk+1 and µ−1, hence
µNs > 1 for all N ≥ 0.

Case 2: a > b > 1

In this case we note that either b2k+2a−2 > 1 or a2b−2k−1 > 1 since, should these both be
negative elements, the product

(b2k+2a−2)(a2b−2k−1) = b

would be negative and give a contradiction. This observation gives rise to two subcases.

Subcase I: w = b2k+2a−2 > 1

Write

µN = (bk+1a−1)N = b−k−1((b2k+2a−2)(ab−k−1))N bk+1 = b−k−1(wµ−1)N bk+1

and

s = a(a(b−ka))2 = a(µ−1ba)2 = aµ−1baµ−1ba

(using Equation (1), as before), so that

µNs = sµN = aµ−1baµ−1bab−k−1(wµ−1)N bk+1

= aµ−1baµ−1bµ−1(wµ−1)N bk+1

so that µNs > 1 as a product of the positive elements a, b, µ−1 and w.

Subcase II: w = a2b−2k−1 > 1

Write

(b−2k−1a2)N = b−2k−1(a2b−2k−1)N−1a2 = b−2k−1wN−1a2
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so that

µNs = sµN = a2(b−ka)a(b−ka)(b−ka)−1(b−2k−1a2)N (b−ka)

= a2(b−ka)ab−2k−1wN−1a2(b−ka)

= a2b−kwNa2b−ka

= aµ−1bwNaµ−1ba

using Equation (1) in the last step. This shows that µNs > 1, again as a product of the
positive elements a, b, µ−1 and w. �
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