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Equivalence problem for the orthogonal webs on the sphere

Caroline M. Cochran1, Raymond G. McLenaghan2 and Roman G.
Smirnov3

Abstract.

We solve the equivalence problem for the orthogonally separable webs
on the three-sphere under the action of the isometry group. This con-
tinues a classical project initiated by Olevsky in which he solved the
corresponding canonical forms problem. The solution to the equivalence
problem together with the results by Olevsky forms a complete solution
to the problem of orthogonal separation of variables to the Hamilton-
Jacobi equation defined on the three-sphere via orthogonal separation of
variables. It is based on invariant properties of the characteristic Killing
two-tensors in addition to properties of the corresponding algebraic cur-
vature tensor and the associated Ricci tensor. The result is illustrated by
a non-trivial application to a natural Hamiltonian defined on the three-
sphere.

1 Introduction

This paper presents a complete solution to the equivalence problem for orthogonally
separable webs (OSWs) generated by the characteristic Killing tensors (CKTs) de-
fined on the three-dimensional sphere S

3. In addition, we lay the ground work for
solving the analogous problem for three-dimensional hyperbolic space H

3 as well as
the spaces of constant non-zero curvature of higher dimensions. This work continues
and generalizes our studies of the OSWs defined in flat (pseudo-)Riemannian spaces
(see, for instance, [1, 14, 16] and the relevant references therein).

Reportedly, the study of OSWs generated by Killing two-tensors was conceived
in various classical articles published throughout the 19th century. A list of such
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works should include, among many others, Liouville [21], Neumann [26], Bertrand
[3], Morera [25], and Stäckel [34]. The research in the area continued throughout the
last century to make this study more systematic and develop new results. Of note
was the celebrated 1934 paper by Eisenhart [8]. In this paper, the author completely
solved the canonical forms problem for the OSWs generated by CKTs defined in E

3 by
showing that there were exactly eleven inequivalent (in some sense) such OSWs and
represented each of them with the corresponding canonical form. Furthermore, he
gave a general criterion linking orthogonal separability with geometric and algebraic
properties of Killing two-tensors. In addition to E

3, he also partially solved the
canonical forms problem for S3. This problem, as well as the case of hyperbolic space
H

3, was later completed by Olevsky in 1950. In his paper [28], Olevsky determined
the number of orbits corresponding to the orthogonal separable coordinates on S

3

and H
3, listing the metrics in these coordinates and the transformations to separable

coordinates in each case. Kalnins et al [20] completed Olevsky’s work on S
3 by also

listing the CKTs (using the language of differential operators) in their respective
canonical forms representing the OSWs. In recent years, the research in the area has
been successfully continued yielding many important results in the area in connection
with the study of integrable and superintegrable classical and quantum Hamiltonian
systems (see, for example, [4, 14, 16, 19, 30, 35] and the relevant references therein).

It must be noted, however, that many of the aforementioned investigations con-
cerned the canonical forms problems for the CKTs in question, while the applications
arising in the field of classical and quantum Hamiltonian systems often involve the
properties of the CKTs in their general form as far as the action of the corresponding
isometry groups are concerned (see [14], for example). From this perspective, the
main goal of this paper is to extend the results by Olevsky and others and solve the
equivalence problem for the CKTs defined on S

3.
The paper is organized as follows. Section 2 contains a brief review of the required

mathematical tools defined in the framework of the invariant theory of Killing tensors
(ITKTs) that will be used in solving the main problem. In Section 3 we determine the
form of the general Killing tensor on S

n by considering it as an imbedded hypersurface
in E

n+1. We also obtain algebraic conditions for the orthogonal integrability of the
eigendirections of the CKTs. In Section 4 we formulate and solve the equivalence
problems for CKTs defined on S

3. Section 5 is devoted to applications to problems
of classical mechanics that subsume the results of the previous sections. Section 6
contains the conclusion.
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2 Invariant theory of Killing tensors

In what follows we formulate and solve the equivalence problem for the OSWs gener-
ated by CKTs defined on S

3 within the framework of the invariant theory of Killing
tensors (ITKTs), which is a natural extension of the classical invariant theory of
homogeneous polynomials (see [18] for more details and relevant references). Thus,
the study of OSWs is based on algebraic and geometric properties of Killing tensors
two-tensors in which invariant theory comes into play as the natural link between al-
gebra and geometry. Moreover, recently it has been shown explicitly (see [16] for more
details and references) that in the case of Killing two-tensors generating OSWs the
study can be naturally cast into the general setting of Cartan’s geometry [5, 6, 12].

Let (M, g) be an n-dimensional (pseudo-)Riemannian manifold of constant cur-
vature.

Definition 2.1. A (contravariant) Killing tensor of valence p defined in (M, g) is a
symmetric (p, 0) tensor field satisfying the Killing tensor equation

[K, g] = 0, (2.1)

where [ , ] denotes the Schouten bracket [32]. When p = 1, K is said to be a Killing
vector field (infinitesimal isometry) and (2.1) reduces to

LKg = 0, (2.2)

where L denotes the the Lie derivative operator.

Since the Schouten bracket [ , ] is R-bilinear, the set of solutions to the system of
overdetermined partial differential equations (PDEs) given by (2.1) forms a vector
space over R. Furthermore, since (M, g) is of constant curvature, the dimension of
such a vector space is maximal (see the relevant references in [14] for more details).
In what follows, we shall use the notation Kp(M) to denote the vector space of
valence p Killing tensor fields defined on M.

Remark 2.2. Note that the equation (2.1) can be equivalently rewritten in the more
familiar (covariant) form as follows:

K(i1,...,ip;ip+1) = 0, (2.3)

where Ki1,...,ip denotes the covariant components of the Killing tensor K, ; the co-
variant derivative with respect to the Levi-Civita connection defined by g, and (. . .)
symmetrization over the enclosed indices
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As is well-known the Killing tensors defined on spaces of constant curvature are
sums of symmetrized tensor products of Killing vectors forming finite-dimensional
vector spaces. Denote by d the dimension of the vector space Kp(M) and recall that
d is given by

d = dimKp(M) =
1

n

(

n+ p

p+ 1

)(

n+ p− 1

p

)

, p > 1. (2.4)

Therefore the general element of Kp(M) may be represented by d arbitrary param-
eters a1, . . . , ad with respect to a given basis. Let G denote the isometry group of
(M, g). Our next observation is that the group G acting on M induces, via the
pushforward map, a linear transformation of Kp(M) which defines a representation
of G [23]. Moreover, the action G � K2(M) is not transitive. These observations
are the crux of the invariant theory of Killing tensors, allowing us to formulate the
canonical forms and equivalence problems for the Killing tensors defined on spaces
of constant curvature.

Of particular importance for applications are the elements of K2(M) enjoying
additional geometric and algebraic properties. More specifically, let K ∈ K2(M) be
such that its eigenvalues are pointwise simple and real, and the eigenvector fields are
normal (orthogonally integrable). Such a Killing tensor K is called a characteristic
Killing tensor (CKT) [8, 2]. The remarkable property of CKTs is that their eigen-
values and eigenvectors generate OSWs, which are n foliations of the space M that
consist of (n − 1)-dimensional hypersurfaces orthogonal to the eigenvectors of the
CKT in question.

The action G � K2(M), thus defined, foliates the vector space K2(M) into the
orbit space K2(M)/G. These orbits represent Killing tensors of valence two that
share the geometric (and algebraic) properties that are equivalent modulo the group
action G � K2(M). Of particular importance in applications are the orbits that
correspond to the CKTs belonging to the vector space K2(M). It must be noted at
this point that, in general, the topology of the orbit space K2(M)/G (or (K2(M)×
M)/G) is far from being trivial which makes the problem of invariant classification of
the orbits fairly complicated. The problem consists of two “subproblems,” namely the
canonical forms problem and the equivalence problem which can briefly be formulated
in this setting as follows.

1. Canonical forms problem: Consider the action G � K2(M). The problem
is to determine the number of inequivalent orbits corresponding to the CKTs
defined on (M, g) as well as the canonical forms representing each of them.

2. Equivalence problem: Consider again the action G � K2(M). Let K ∈
K2(M). First, the problem is to deterimine whether or not K is a CKT. If
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the answer is “yes”, the main problem is to determine the corresponding orbit
in the quotient space K2(M)/G that the Killing two-tensor in question K

belongs to. Finally, we also want to determine the moving frames map [9, 10]
that maps K to its respective canonical form.

Recall that Eisenhart [8] outlined the solution to the canonical forms problem for
CKTs formulated above and solved it for the case M = E

3. In [16] (see also the
relevant references therein) Horwood et al reformulated Eisenhart’s approach in the
language of the Cartan geometry (which Eisenhart employed implicitly). Note that
the canonical forms problems for the cases M = S

3 and M = H
3 were solved by

Olevsky in [28], while the caseM = M
3 was treated by Horwood and McLenaghan in

[15]. Moreover, these solutions have been used to solve the corresponding equivalent
problems. Thus, Horwood et al [14] and Horwood [17] employed two different meth-
ods to solve the equivalence problem for the CKTs defined on E

3, while Horwood at
al [16] solved the equivalence problem for the case M = M

3.
In order to set the stage for our theory and in what follows solve the equivalence

problem for K2(S), we now employ the fundamental ideas from Cartan’s approach to
geometry. Observe first that M ≃ G/H , where G is the isometry group of M and H
is a closed subgroup of G. Thus, for example, S3 ≃ SO(4)/SO(3). Next, we observe
that in view of this identification the homogeneous space G/H can be treated as the
base manifold in the tautological principal bundle projection π1 : G → G/H ≃ M
(i.e. G is the principal H-bundle over G/H). Similarly, consider the vector bundle
Kp(M)×M, then π2◦π2 : K

p(M)×M → M ≃ G/H is the vector bundle projection
with the same base manifold. Upon noticing that the transitive action of the isometry
group I(M) = G in M yields the non-transitive action of G in Kp(M), where G acts
as an automorphism, we consider next the orbit space (Kp(M)×M)/G leading to
the third projection π3 : K

p(M)×M → (Kp(M)×M)/G, having the structure of a
principle G-bundle with Kp(M)×M as the total space. Following [16], we introduce
the lift f : (K2(M)×M)/G → G, so that the following diagram commutes:

G
π1

// G/H ≃ M

(Kp(M)×M)/G

f

OO

Kp(M)×Mπ3

oo

π2

OO
(2.5)

Geometrically, the existence of f is equivalent to the existence of a cross-section
through the orbits of the orbit-space (Kp(M)×M)/G. The intersections of such a
cross-section with the orbits are the corresponding canonical forms, and their coordi-
nates are covariants (invariants) which play an important role in the considerations
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that follow.
Consider now the case of p = 2.
Let K ∈ K2(M) be a CKT at a non-singular point x ∈ M (i.e. the eigenvalues

of K are all real and distinct at x). Indeed, K gives rise to a quasi-orthonormal
frame EK,x(M) of eigenvectors {e1, . . . , en} of K at x ∈ M, which is also a quasi-
orthonormal basis for Tx(M). Denoting E(M) as the corresponding bundle of frames
generated by CKTs in M, it follows that (E(M),M, π̃2) defines an (oriented) quasi-
orthonormal frame bundle, where π̃2 : E(M) → M. The fibres π̃2

−1(x) correspond to
sets of all possible quasi-orthonormal frames at x ∈ M generated by the eigenvectors
of CKTs. Finally, this arrangement leads to the fibre bundle projection π̃3 : K

2(M)×
M → E(M). Accordingly, our diagram (2.5) now assumes the following form:

G
π1

// G/H ≃ M

(K2(M)×M)/G

f

OO

K2(M)×Mπ3

oo

π2

OO

π̃3

// E(M)

π̃2

ggN
N

N

N

N

N

N

N

N

N

N

(2.6)

The existence of such a lift f is assured by the fact that G acts transitively on the
bundle of frames E(M) for a given CKT K ∈ K2(M) and the classical Cartan
lemma [12]:

Lemma 2.3 (Cartan). Suppose that ϕ is a g-valued one-form on a connected (or
simply connected) manifold M. Then there exists a C∞ map F : M → G with
F ∗ω = ϕ iff

dϕ = ϕ ∧ ϕ,

where ω is the Maurer-Cartan form on G. Moreover, the resulting map is unique up
to left translation.

Furthermore, we define the map F : E(M) → G to be F = f ◦π3 ◦ π̃3
−1. Clearly,

in this case G may be identified with the set of frames associated to the CKT K

in question, or alternatively, cross-sections of the fibration G → G/H over K. In
view of Lemma 2.3 the Maurer-Cartan form on G can be restricted to this choice
of frames and thus produce a complete set of invariants (covariants) to solve the
equivalence problem, which one can now solve for the orbit space (K2(M)×M)/G
(or K2(M)/G) for CKTs using the classical calculus of differential forms. More
specifically, the problem of invariant classification of the orbit(s) generated by a CKT
K ∈ K2(M) reduces to fixing a quasi-orthonormal frame of eigenvectors {e1, . . . , en}
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and considering in the frame the corresponding Cartan structure equations

dea + ωa
b ∧ eb = T a, (2.7)

dωa
b + ωa

c ∧ ωc
b = Θa

b, (2.8)

together with the Killing tensor equations for the components Kab of K (2.3) and
the integrability conditions

ea ∧ dea = 0 (no sum). (2.9)

In these equations, ωa
b = Γcb

a ec are the connection one-forms, T a = 1
2
T a

bc e
b∧ec are

the torsion two-forms, Θa
b =

1
2
Ra

bcd e
c∧ed are the curvature two-forms, {e1, . . . , en}

is the dual basis of one-forms, the connection coefficients Γcb
a correspond to the Levi-

Civita connection ∇ (and hence T a = 0 in (2.7)) and Ra
bcd are the components of the

curvature tensor. Note that (2.9) are the integrability conditions for the normality of
the eigenvectors ea. We also note that, with respect to this frame, the components
of the metric g and CKT K are given by

gab = diag(ǫ1, . . . , ǫn), Kab = diag(ǫ1λ1, . . . , ǫnλn), (2.10)

respectively, where ǫa = ±1, a = 1, . . . , n, and λa, a = 1, . . . , n, are the eigenvalues of
K. The differential invariants characterizing the orbits in question are determined
by the connection one-forms ωa

b that are found from a fixed quasi-orthonormal frame
{e1, . . . , en}. More specifically, solving the Killing tensor equation (2.3) for Kab in
this case modulo the integrability conditions (2.9) will produce a set of canonical
forms (thus solving the canonical forms problem) corresponding to the orbits, while
finding the connection one forms ωa

b will provide a means to distinguish between
the orbits, thus solving the equivalence problem (or, rather, most of it). However,
at this point we would like to point out that solving the equivalence problem in this
way (i.e., by thus finding a complete set of differential invariants) may be extremely
challenging computationally. Instead, one can make use of the fact that the group G
acts transitively on the bundle of frames and try to solve it “in the group”, employ-
ing an algebraic approach to Cartan’s method of moving frames [9, 10, 29]. More
specifically, via the tensor transformation laws, we can determine the action of G on
the parameters a1, . . . , ad (and the local coordinates of M if necessary) that deter-
mine the vector space K2(M) (or the product space K2(M)×M) and then find a
set of complete invariants (covariants) as algebraic functions of the parameters (pa-
rameters and local coordinates). This approach (analogous to the classical invariant
theory of homogeneous polynomials) is also more preferable from the applications
point of view, because the Killing two-tensors in Classical Mechanics (for example)
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normally appear in terms of local coordinates on M, rather than in the frame of its
eigenvectors as in (2.10).

The concept of a web symmetry, which signifies that the web is invariant under
at least a one-parameter group of isometries, is another interesting geometric conse-
quence stemming from the properties of covariants (eigenvalues) of CKTs. Suppose,
for example, K is a CKT in K2(M) having n− 1 functionally independent eigenval-
ues λi, i = 1, . . . , n − 1. It follows that there exists a vector field V ∈ K1(M) (V
is necessarily a Killing vector), such that LV (K) = 0. Indeed, the integral curves of
V are given by the common level sets

n−1
⋂

i=1

{λi = const}.

Now we can be more specific about solving the equivalence problem outlined
above. Let K ∈ K2(M). We first verify whether or not the Killing two-tensor K

in question is a CKT. This requires verifying that the eigenvalues of K are real and
distinct, and that the eigenvector fields of K are normal. The latter step can be
accomplished by verifying the vanishing of the Haantjes tensor (H condition) [13]
(see [18] for more details):

H
K̂
(X, Y ) := K̂

2
N

K̂
(X, Y )+N

K̂
(K̂X, K̂Y )−K̂(N

K̂
(X, K̂Y )+N

K̂
(K̂X, Y )) = 0,

(2.11)
where the (1, 1)-tensor K̂ = Kg−1, N

K̂
is the Nijenhuis tensor [27] and X, Y are

arbitrary vector fields on M. Thus, the vanishing of the Haantjes tensor defined by
(2.11) is equivalent to the Killing tensor K being a CKT. Alternatively, the formula
(2.11) can be given in index form as follows:

H i
jk = N i

ℓmK
ℓ
jK

m
k + 2N ℓ

m[jK
m

k]K
i
ℓ +N ℓ

jkK
m

ℓK
k
m = 0, (2.12)

where Ki
j denotes the components of the (1, 1)-tensor K̂ and [. . .] denotes skew

symmetrization over the enclosed indices.
One can also employ the Tonolo-Schouten-Nijenhuis (TSN) conditions to verify

the normality of the eigenvectors of a symmetric tensor field K of valence (0,2).
Indeed, K with real distinct eigenvalues has normal eigenvectors iff the following
conditions are satisfied:

N ℓ
[ijgk]ℓ = 0,

N ℓ
[ijKk]ℓ = 0,

N ℓ
[ijKk]mK

m
ℓ = 0,

(2.13)
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where N i
jk are the components of the Nijenhuis tensor [27] of Ki

j defined by

N i
jk = Ki

ℓK
ℓ
[j,k] +Kℓ

[jK
i
k],ℓ. (2.14)

In the index-free form, formula (2.14) can be obtained from the formula (2.11) by
replacing the operator N

K̂
(·, ·) with the Lie bracket [ , ].

Remark 2.4. If the eigenvalues of K are real and distinct, the H condition and
the TSN conditions are equivalent. If the multiplicity of some the eigenvalues of K
is greater than one, the TSN conditions no longer apply. However, in this case the
following more general result [13] needed in Section 4 is true: the distributions defined
by the eigenspaces of K in a Riemannian space are orthogonally integrable if and only
if the H condition is satisfied. Recall that orthogonal integrability signifies that the
distribution defined by the orthogonal complement of the eigenspace is integrable.

If K ∈ K2(M) is a CKT, our next step is to determine which orbit in K2(M)/G
it belongs to, noting that the corresponding canonical form for the orbit in question
is known from solving the canonical forms problem. This problem can in principle
be solved by employing a number of mathematical tricks and tools, although it is
hard in general due to the fact that the group action G � K2(M) is not regular and
thus the orbits have different dimensions.

To solve the problem, one can employ algebraic invariants of the group action
G � K2(M). These are the invariants of the group G acting in the parameter space
of the vector space K2(M), or more specifically, functions of the parameters that re-
main unchanged under the induced action of the group G (see, for example, [14, 35]
for more details). It must be noted however, that the problem can normally be
solved in relatively simple cases using only algebraic invariants, that is when one
has to deal with few types of orbits (e.g., dimM is small). Recall that algebraic
invariants of the CKTs were first introduced by Winernitz and Frǐs [35] and later
rediscovered in McLenaghan et al [22] in a different context. More generally, one has
to recover more information about the orbits and their degeneracies. One way to deal
with the problem is to “improve” the group action by considering it in the extended
space K2(M)×M. After appropriate computations, this yields algebraic covariants
of Killing tensors, which are functions of both the parameters of the vector space
K2(M) and coordinates of M. The covariants of Killing tensors were introduced
by Smirnov and Yue in [33] and have been successfully employed to solve a number
of equivalence problems (see, for example, Horwood [17]). The degeneracies of the
orbits in K2(M)/G (or (K2(M)×M)/G) manifest themselves in the orbits having
different dimensions - a fact which for our problem has appropriate group theoretical,
geometric and algebraic interpretations. Thus recall that in general the dimension of
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an orbit is determined by the formula dimG = dimOx+dimGx, where G is a group
acting on M, x ∈ M, Ox is the orbit through x, and Gx is the isotropy subgroup of
G through x. The existence of isotropy subgroups indicates the degeneracies of the
orbits (i.e., their dimensions drop), which in our case of M = K2(M)/G from the ge-
ometric perspective is equivalent to the CKTs corresponding to the degenerate orbits
admitting web symmetries (see below). Algebraically this means that the CKTs cor-
responding to the degenerate orbits have functionally dependent eigenvalues. Note
that if all the eigenvalues of a CKT K are functionally independent they can be
taken as the orthogonal coordinates (see [16] for more details). Degeneracies of the
orbits can also be characterized by singular points of the CKTs in question, that
is the points where the eigenvalues coincide. Unfortunately, most of the orthogonal
coordinate webs used in applications come from the CKTs with degeneracies.

Solving the equivalence and canonical forms problems described above forms the
mathematical foundation for applications arising in Classical Mechanics, in particular
in the Hamilton-Jacobi theory of orthogonal separation of variables for the natural
Hamiltonians defined in spaces of constant curvature (see [16] for relevant references
and details). Let a Hamiltonian system be defined by a natural Hamiltonian of the
form:

H(q,p) =
1

2
gij(q)pipj + V (q). (2.15)

The following theorem (Benenti [2]), which is a generalization of the corresponding re-
sult due to Eisenhart concerning geodesic Hamiltonians [8], establishes an important
link between orthogonal separation of variables in the associated Hamilton-Jacobi
equation for the Hamiltonian system defined by (2.15).

Theorem 2.5. A Hamiltonian system defined by (2.15) is orthogonal separable iff
there exists a CKT K such that

d(K̂dV ) = 0, (2.16)

where the (1, 1)-tensor K̂ = Kg

In light of Theorem 2.5 the canonical and equivalence problems formulated above
can be reformulated in the language of orthogonal separation of variables for natural
Hamiltonian systems defined by (2.15) in spaces of constant cutvature as follows:

(i) How many “inequivalent” coordinate systems afford orthogonal separation of
variables in the corresponding HJ equation?

(ii) If the answer to (i) is non-zero, how can one characterize intrinsically the
coordinate systems that afford separation of variables in the HJ equation?

10



(iii) What are the canonical coordinate transformations

(q1, q2, . . . , qn) → (u1, u2, . . . , un)

from the given position coordinates of (2.15) to the coordinate systems that
afford orthogonal separation of variables of the HJ equation?

In what follows we employ some of the tools and techniques described above to
solve the equivalence problem for the CKTs defined on S

3, employing the results ob-
tained by Olevsky [28] and Kalnins et al [20] who solved the corresponding canonical
forms problem.

3 Killing two-tensors on S
n ⊂ E

n+1

To fully explore the algebraic and geometric properties of Killing two-tensors defined
in a sphere, we employ the (Cartesian) coordinates of the corresponding ambient
Euclidean space. In this view the vector space of Killing two-tensors K2(Sn) is viewed
as a subspace of K2(En+1) whose elements are defined in terms of the Cartesian
coordinates of En+1.

Indeed, since every Killing tensor defined in a space of constant curvature is
expressible as a sum of symmetrized products of Killing vectors, let us begin by
defining basic Killing vectors of a Euclidean space E

m in terms of the corresponding
Cartesian coordinates. For our purposes, we also need to define the dilatational
vector field D (Euler vector field). Thus, the translational X i and rotational Rij

Killing vectors and the vector D in terms of a system of Cartesian coordinates xi

can be defined as follows:

X i =
∂

∂xi
, Rij = 2δkℓij gℓmx

mXk, D = xiX i, (3.1)

where gij = diag(1, . . . , 1), denotes the Euclidean metric of the Euclidean space in
question and δkℓij = δk[iδ

ℓ
j], the generalized Kronecker delta. Note that the translational

and rotational Killing vectors defined above form a basis for the Lie algebra K1(En)
of the group of rigid motions of Em. Next, the commutation relations among these
vectors are given by

[X i,Xj ] = 0, [X i,Rjk] = 2δℓmjk gmiXℓ, [X i,D] = X i,

[Rij ,Rkℓ] = 4δmn
ij δprkℓgmpRnr, [D,Rij ] = 0.

(3.2)
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The Killing vectors also satisfy the following algebraic identities (syzgies):

X [i ⊙Rjk] = 0, Ri[j ⊙Rkl] = 0, (3.3)

where ⊙ denotes the symmetric tensor product. The general Killing vector thus has
the form

K = AiX i +BijRij , (3.4)

where the constants Ai, and Bij , called the Killing vector parameters, satisfy the
symmetry relation

B(ij) = 0. (3.5)

From (3.1) and (3.4) we obtain the covariant components of K with respect to the
natural basis dxi:

Ki = Ai + 2Bijx
j . (3.6)

Similarly, the general valence two Killing tensor thus has the form

K = AijX i ⊙Xj +BijkX i ⊙Rjk + C ijkℓRij ⊙Rkℓ, (3.7)

where the constants Aij, Bijk, and C ijkℓ, called the Killing tensor parameters satisfy
the following symmetry relations

A[ij] = 0,

Bi(jk) = 0, B[ijk] = 0,

C(ij)kℓ = 0, C ijkℓ = Ckℓij, C i[jkℓ] = 0.

(3.8)

A key observation is that the parameter set C ijkℓ has the same symmetries as the
Riemann curvature tensor. For this reason it is sometimes called an algebraic curva-
ture tensor. From (3.1) and (3.7) we find that the covariant components of K with
respect to the natural basis are given by

Kij = Aij + 2B(ij)kx
k + 4Cikjℓx

kxℓ. (3.9)

This result is consistent with that obtained in [23] obtained by the use of represen-
tation theory.

Now we may determine the form of the general Killing tensor on S
n by considering

it as an imbedded hypersurface in E
m with m = n + 1 defined implicitly by the

equation
x · x = 1, (3.10)
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where x = (x1, . . . , xn+1), and · denotes the Euclidean inner product. Let

x = f (u1, . . . , un), (3.11)

be a local parametrization of Sn. Then from (3.10) and (3.11) we obtain by differ-
entiation

x · xα = 0, xαβ · x = −gαβ, (3.12)

where xα = ∂x
∂uα , (x

i
α = ∂xi

∂uα ), and

gαβ = xα · xβ , (3.13)

denotes the pullback of the Euclidean metric to S
n. The characterization is given by

the following proposition:

Proposition 3.1. The general Killing vector and general valence two Killing tensor
fields on S

n are given by

Kα = xi
αKi, Kαβ = xi

αx
j
βKij , (3.14)

where
Ki = 2Bijx

j , Kij = 4Cikjℓx
kxℓ. (3.15)

Proof. The pullback to S
n of the covariant derivative of any smooth tensor field

Ki1,...,ip defined on E
n+1 is given by

xi1
α1
, . . . , xip

αp
xip+1

αp+1
Ki1,...,ip,ip+1

= Kα1,...,αp;αp+1
+ pxiKi(α2,...,αp−1

gαp)αp+1
. (3.16)

If Ki1,...,ip is any solution of the KT equation (2.3), it follows that

K(α1,...,αp;αp+1) + pxiKi(α1,...,αp−1
gαpαp+1) = 0. (3.17)

We conclude that K will define a Killing tensor field on S
n if and only if

xiKi(α1,...,αp−1
gαpαp+1) = 0. (3.18)

This condition is clearly satisfied if

xjKji1,...,ip−1
= 0, (3.19)

on E
n+1. For the cases p = 1, 2 this condition takes the form

xiKi = 0, xjKij = 0. (3.20)
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It follows from (3.5), (3.6), (3.8), and (3.9) that

Ai = 0, Aij = 0, B(ij)k=0. (3.21)

These conditions imply that Ki and Kij have form given by (3.15). We note that,
with the use of (3.2), the conditions (3.21) may be written invariantly as

[D,K] = 0. (3.22)

It remains to demonstrate that (3.14) and (3.15) indeed define the general Killing
vector and general valence two Killing tensor on S

n. This may be achieved by a
dimensional argument. From (2.4) it follows respectively for p = 1, 2 that

d =
1

2
n(n+ 1),

1

12
n(n+ 1)2(n+ 2). (3.23)

For the case p = 1, the number d is identical to the number of independent compo-
nents of the Killing vector parameter Bij, while for the case p = 2, d is identical to
the number of independent components of the algebraic curvature tensor Cijkℓ in a
(n+ 1)-dimensional space.

Remark 3.2. Proposition 3.1 is closely related to a result proved by Delong [7] which
states that the valence p Killing tensors (considered as functions on the cotangent
bundle of En+1) that are in involution with the Euclidean distance function and the
function xipi, where pi denotes the canonical momenta, are Killing tensors on S

n.
Delong’s conditions are equivalent to (3.20) and (3.22) respectively, only one of which
seems to required to obtain the result. Furthermore, our proposition goes beyond his
by giving the explicit form of the general valence one and two KTs on S

n in terms
of the appropriate KTs in the ambient space E

n+1. Our proposition may be easily
generalized to valence p Killing tensors by the use of the results of Horwood [17].

Remark 3.3. Note that the image of the contravariant metric metric gαβ on S
n with

respect to spherical coordinates under the pushforward induced by the parametriza-
tion gives rise to a Killing tensor C called the Casimir tensor with the property that
it commutes with every element of the vector subspace of K2(En+1) given by (3.15).
In view of the above C ∈ K2(En+1) is degenerate as an element of the vector subspace
determined by 4Cikjℓx

kxℓ. We also note that C is a CKT for the spherical web on
S
n. The explicit form of the Casimir tensor is given by

C = kgikgℓjRij ⊙Rkℓ, (3.24)
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or with respect to the natural basis by

Cij = kgi[jgℓ]kx
kxℓ (3.25)

where k is some constant. It may be shown by direct calculation that [C,K] = 0,
which verifies the above mentioned commutation property.

The next step is to determine the KTs among those given by (3.14) and (3.15)
that are CKTs, that is which have point-wise distinct eigenvalues and normal eigendi-
rections. To effect this determination we use the fact the eigenvalues of Kαβ are also
eigenvalues of Kij and that the pushforward of the eigenvectors of Kαβ are eigenvec-
tors of Kij . These results follow by contracting both sides of the eigenvalue equation

KijX
j = λgijX

j, (3.26)

with xi
α, which yields

KαβX
β = λgαβX

β, (3.27)

where Xj in (3.26) is the pushforward of Xβ

Xj = xj
βX

β. (3.28)

We conclude that if Kij has distinct eigenvalues then so does Kαβ. The converse
is not true since if Kαβ has a zero eigenvector then by (3.20) Kij will have zero
as a repeated eigenvalue. However, the remaining eigenvalues will be non-zero and
distinct. We also observe by (3.12) that the eigenvector xi corresponding the the
zero eigenvalue of Kij pulls back to the zero vector on S

n.
We next show that the pullback of a normal co-vector field on E

n+1 is a normal
vector field on S

n. To see this consider any co-vector field Ei on E
n+1 which satisfies

the normality condition
E[i,jEk] = 0. (3.29)

We note that (3.29) is the component form of the integrability condition (2.9). An
easy computation shows that

Ei,jEkx
i
αx

j
βx

k
γ = Eα,βEγ − xi

αβEiEγ. (3.30)

It follows from (3.29) and (3.30) that

E[α,βEγ] = 0, (3.31)

which implies that the pullback Eα is a normal vector field. The above results imply
that the pullback of a characteristic KT on E

n+1 is a characteristic KT on S
n. In
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view of the above results we are able to study CKTs on S
n as pullbacks of CKTs on

E
n+1.
We observe that the use of (2.9) to determine whether the eigenvector fields

of K are normal, is impractical since it requires the explicit determination of the
eigenvector fields, an intractable problem. However, alternatively we may utilize
either the TSN conditions (2.13) or the H condition defined by (2.12). We first
consider the TSN conditions for a KT of the form (3.15). These conditions impose
the corresponding algebraic conditions on the algebraic curvature tensor C:

Cℓ
(pq[iCjk]r)ℓ = 0, (3.32)

Cℓ(pq
mCℓ

r[ijCk]st)m − 2Cℓ(pq[iCj
ℓ
|r|

mCk]st)m = 0, (3.33)

3Cℓ(pq
mCℓ

r|n|sC
n
t[ijCk]uv)m + 2Cℓ(pq

mC|n|rs[iCj|t|
nℓCk]uv)m +

2Cℓ(pq
mC|n|rs[iCj

n
|t|

ℓCk]uv)m = 0, (3.34)

where | . . . | denotes exclusion of the enclosed indices from the symmetrization pro-
cess. The first TSN condition (3.32) implies

Cℓ(pq
mCℓ

r[ijCk]st)m + 2Cℓ(pq[iCj
ℓ
|r|

mCk]st)m = 0. (3.35)

This equation together with the second TSN condition (3.33) yields the two equations

Cℓ(pq
mCℓ

r[ijCk]st)m = 0, (3.36)

Cℓ(pq[iCj
ℓ
|r|

mCk]st)m = 0. (3.37)

These equations replace the second TSN condition (3.33). We now show that the
third TSN condition is a consequence of the first and second conditions. The cyclical
identity implies

Cℓ(pq
mC|n|rs[iCj

ℓ
|t|

nCk]uv)m = −Cℓ(pq
mC|n|rs[iCj|t|

nℓCk]uv)m+Cℓ(pq
mC|n|rs[iCj

n
|t|

ℓCk]uv)m.
(3.38)

From the above equation and (3.37) we obtain

Cℓ(pq
mC|n|rs[iCj|t|

nℓCk]uv)m = 0, (3.39)

and
Cℓ(pq

mC|n|rs[iCj
ℓ
|t|

nCk]uv)m = Cℓ(pq
mC|n|rs[iCj

n
|t|

ℓCk]uv)m. (3.40)
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Now from the first TSN condition and (3.40) we find

Cℓ(pq
mCℓ

r|n|sC
n
t[ijCk]uv)m − 2Cℓ(pq

mC|n|rs[iCj
n
|t|

ℓCk]uv)m = 0. (3.41)

On the other hand (3.36) implies

Cℓ(pq
mCℓ

r|n|sC
n
t[ijCk]uv)m + 2Cℓ(pq

mC|n|rs[iCj
n
|t|

ℓCk]uv)m = 0. (3.42)

These equations together imply

Cℓ(pq
mCℓ

r|n|sC
n
t[ijCk]uv)m = 0, (3.43)

Cℓ(pq
mC|n|rs[iCj

n
|t|

ℓCk]uv)m = 0. (3.44)

Finally (3.39), (3.43), and (3.44) imply that the third TNS condition (3.34) is iden-
tically satisfied.

Remark 3.4. This result was first proven in E
3 by Czapor [14] using Gröbner basis

theory and computer algebra. Schöbel [31] extended the result to n-dimensional
spaces of non-zero constant curvature using representation theory of the symmetric
group. However, it seems that our proof, based on standard indicial tensor algebra,
is simpler and more concise.

Substituting the Killing tensor (3.15) into the H condition (2.12) we obtain the
following condition on the coefficients:

4Cℓ(pq
kCm

rs|iCj|tu
nCℓ

v)mn + 2Cℓ(p|m|
kCn

qr[iCj]st
mCℓ

uv)n

−5Cℓ(pq
kCm

rs[iCj]|m|t
nCℓ

uv)n + Cℓ(pq
kCm

rs[iCj]
ℓ
t
nC|n|uv)m

+Cℓ(pq
kCm

rs[iCj]tu
nC|n|v)m

ℓ − 3Cℓ(pq
kCm

r|ij|C
n
st|m|C

ℓ
uv)n

−2Cℓ(pq
kCm

rs[iCj]t|m|
nCℓ

uv)n = 0. (3.45)

Using this condition we can verify whether or not a given Killing tensor defined on
S
n is characteristic. It may be shown that that the first and second TSN conditions

(3.32) and (3.33) imply that the H condition (3.45) is satisfied.
We next examine the pullback of the quadratic first integral

K = Kijpipj + U. (3.46)

The vanishing of the Poisson bracket implies that Kij satisfies (2.3) for p = 2, and
that

∂U

∂xi
= gijK

jℓ ∂V

∂xℓ
, (3.47)
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where V is the potential function. The pullback to S
n is given by

∂U

∂xi
xi
α = gijK

βγxj
βx

ℓ
γ

∂V

∂xℓ
xi
α, (3.48)

which may be written as
∂U

∂uα
= gαβK

βγ ∂V

∂uγ
. (3.49)

We conclude this section by studying the action of SE(m) on the Killing vector
and Killing tensor parameters [17]. The action SE(m) � E

m is given by

xi = Λi
jx̃

j + δi, (3.50)

where Λi
j ∈ SO(m), δi ∈ E

m, and x̃i denote the transformed Cartesian coordinates.
This tranformation induces by (3.1) the following transformation of the Killing vec-
tors:

X i = Λj
iX̃j , Rij = Λk

iΛ
ℓ
jR̃kℓ + µij

kX̃k, (3.51)

where
µij

k = 2δℓmij gmnΛ
k
ℓδ

m. (3.52)

It follows that the Killing vector and parameters transform as

Ãi = Λi
jA

j + µjk
iBjk, B̃ij = Λi

kΛ
j
ℓB

kℓ, (3.53)

while the valence two Killing tensor parameters transform as

Ãij = Λi
kΛ

j
ℓA

kℓ + 2Λ(i
kµℓm

j)Bklm + µkℓ
iµmn

jCklmn,

B̃ijk = Λi
ℓΛ

j
mΛ

k
nB

ℓmn + µmn
iΛj

pΛ
k
qC

mnpq,

C̃ ijkℓ = Λi
mΛ

j
nΛ

k
pΛ

ℓ
qC

mnpq. (3.54)

In order to make our formulas more compact we introduce a multi-index notation
where any upper-case index represents a pair of skew-symmetric lower-case indices.
Thus RI will represent Rij . Using this notation we may rewrite (3.51) as

RI = ΛJ
IR̃J + µI

kX̃k, (3.55)

where ΛI
K = Λi

[kΛ
j
ℓ], represents the second compound of Λi

j . With the same
notation (3.53) reads

Ãi = Λi
jA

j + µJ
iBJ , B̃I = ΛI

JB
J , (3.56)
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whereas (3.54) reads

Ãij = Λi
kΛ

j
ℓA

kℓ + 2Λ(i
kµL

j)BkL + µK
iµL

jCKL,

B̃iJ = Λi
ℓΛ

J
MBℓM + µL

iΛJ
MCLM ,

C̃IJ = ΛI
LΛ

J
MCLM . (3.57)

We are now in a position to give an invariant classification of the translational
Killing vectors on E

m under the action of SE(m). The invariant needed to effect this
classification is I1 = BijB

ij.
A translational Killing vector in E

m is invariantly defined by the condition I1 = 0,
which implies Bij = 0. Thus by (3.4) a translational KV has the form

K = AiX i, (3.58)

where it is assumed that not all the Ai are zero so that K is non-trivial. It follows
from the transformation formula (3.53) that, by an appropriate choice of Λi

j ∈ SO(m)
[14], we can transform (3.58) to the form

K = Ã1X̃1, (3.59)

for some Ã1 6= 0.
The case when I1 6= 0, characterizes the non-translational Killing vectors the

analysis of which will be left to a future paper.
However, we are in a position to classify the rotational Killing vectors in E

4

given by (3.15) that define KVs on S
3. For this we need the additional invariant

I2 = ǫijklB
ijBkl. We utilize the property [11] that the skew-symmetric matrix Bij ,

assumed to be not the 0 matrix, may be transformed to the following canonical form
by an element of O(4):

Bij =









0 κ1 0 0
−κ1 0 0 0
0 0 0 κ2

0 0 −κ2 0









, (3.60)

where κ1, κ2 ∈ R. If I1 6= 0 and I2 = 0, then κ2
1 + κ2

2 6= 0 and κ1κ2 = 0. Without
loss of generality we may set κ2 = 0, which implies that the KV has the form

K = b12R12, (3.61)

where b12 = 2κ1 is some constant. We now assume I2 6= 0, which implies that
κ1κ2 6= 0. In this case the matrix Bij is rank four from which it follows that the KV
has the form

K = b12R12 + b34R34, (3.62)
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where b12 = 2κ1 and b12 = 2κ2 are some constants. The equations (3.61) and (3.62)
via Proposition 3.1 give the two possible canonical forms for the rotations on S

3.

4 The equivalence problem for Killing tensors on

S
3

To solve the equivalence problem outlined in the preceding section for the CKTs
on S

3 we employ as in the Cartesian coordinates of the ambient Euclidean space
E
4 ⊃ S

3. In terms of these coordinates, the general Killing tensor of S3 is given by

K = 4C ijkℓRij ⊙Rkℓ, (4.1)

where
Rij = δmijkx

kXm, δmijk = δmi gjk − δmj gik, (4.2)

i, j, k, ℓ,m = 1, . . . , 4,

x1, . . . , x4 are Cartesian coordinates of E4, X i = ∂i, gij are the components of the
metric and ⊙ is the symmetric tensor product. Note that (4.2) defines the six gen-
erators of so(4), the Lie algebra of the isometry group SO(4) of S3 (no reflections).
Therefore the RHS of (4.1) represents a vector space of Killing tensors on S

3. Fur-
thermore, the dimension d of this space is determined by the tensor C ijkℓ which has
the same symmetries as that of the Riemann curvature tensor, hence d = 20.

The special orthogonal group SO(4) is a Lie subgroup of the orthogonal group
O(4), consisting of all orthogonal matrices Λ with positive unit determinant. The
transitive action of SO(4) on E

4 can be specified by

xi = Λi
jx̃

j ,

where Λi
j ∈ SO(4) and xi denote Cartesian coordinates. This, in turn, induces the

following transformation

Rij = Λk
iΛ

ℓ
jR̃kℓ, Kij = Λi

kΛ
j
ℓK̃

kℓ (4.3)

on the Killing vectors (4.2) and Killing tensors (4.1) of E4. At the same time, this
action induces the following transformations

B̃ij = Λi
kΛ

j
ℓB

kℓ, C̃ ijkℓ = Λi
pΛ

j
qΛ

k
rΛ

ℓ
sC

pqrs (4.4)

on the Killing vector and Killing tensor parameters.
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To make our formulas more compact, we will once again adopt a multi-index
notation (i.e., RI will represent Rij) . Using this notation we may rewrite the first
equation of (4.3) as

RI = λJ
IR̃J , (4.5)

where λI
K = λi

[kλ
j
ℓ], represents the second compound of λi

j. With the same notation
(4.4) reads

B̃I = λI
JB

J , C̃IJ = λI
Kλ

J
LC

KL. (4.6)

To obtain the invariants and covariants of the group action SO(4) � K2(S3), we
apply the theory developed in [17]. In particular, by taking contractions of products
of the general Killing tensor, the Euclidean metric, and the coefficient tensor, we can
obtain a complete set of SO(4)-covariants and invariants. Using matrices K and C,
where (K)i j = Ki

j , and (C)IJ = C ij
kℓ, as well as the trace operator “Tr”, we can

express these covariants Ci and invariants Ii as follows

C1 = Tr(K), C2 = Tr(K2), C3 = Tr(K3), C4 = gijx
ixj ,

I1 = Tr(C), I2 = Tr(C2), I3 = Tr(C3), . . . , I14 = Tr(C14),

where, for example, Tr(K) = Ki
i and Tr(C) = CI

I .
As we stated in Section 2, the action SO(4) � K2(S3) foliates the vector space

K2(S3) into the orbit space K2(S3)/SO(4). Each orbit is represented by a canonical
form, and the solution to the equivalence problem requires determining such canon-
ical forms as well as a classification scheme for finding which orbit a given CKT
belongs to. As we mentioned in the introduction, the canonical forms problem has
been solved. Please refer to the appendix for a list of six canonical forms for the
orbit space K2(S3)/SO(4).

Let us now develop a classification scheme for the orbit space K2(S3)/SO(4). The
set of invariants and covariants listed above could be used to try and classify the orbits
of these CKTs. This approach was successfully implemented in the solution to the
equivalence problem of Killing tensors defined on E

3 [17], although the calculations
were quite cumbersome. Indeed, the difficulty in this approach lies in finding certain
linear combinations of the above invariants and covariants which distinguish between
the orbits. A different approach which has proven to be more efficient and successful
for the problems with small numbers of orbits is the method of web symmetries.
The central idea of this method is to use the symmetry properties of the associated
orthogonal separable web of a canonical CKT to characterize its orbit. In Section 2
we stated that the web symmetries of a Killing tensor K are generated by Killing
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vectors on the manifold. Thus, to determine all of the symmetry generators of a
given web we impose the following condition

LVK = 0 (4.7)

on the Killing tensor K defining the web, using the general Killing vector V of our
manifold.

In what follows we demonstrate the surprising result that the six CKTs of S3 can
be classified based purely on the symmetry properties of their associated webs. To
this end, we are interested in obtaining the symmetry properties of a web before we
impose the spherical constraint, which will yield additional web symmetries for the
CKTs. Visually, this corresponds to capturing all of the symmetry properties of a
web before it is intersected with the surface of S3.

To achieve this, we impose condition (4.7) on each of the six CKTs using the
general Killing vector of the ambient space E

4. This will enable us to determine if a
web is rotationally and/or translationally symmetry before it intersects the surface of
S
3. Upon applying this method, we find that four of the six webs admit at least one

rotational web symmetry. We can go even further by noting the number of rotational
symmetries a CKT admits, which effectively divides the six canonical forms into three
categories. Lastly, we find that two of the six webs admit translational symmetry,
which provides the final distinguishing feature between each of the six webs. Please
refer to Table 4 for a summary of these results.

Remark 4.1. In an application problem, it is possible that a given CKT K may
have the Casimir tensor present. Specifically,

K = αC +K1,

where C is the Casimir tensor (3.24) and K1 is a CKT. If K1 is translationally
symmetric, then the addition of the rotationally symmetric Casimir tensor destroys
this translational symmetry. Thus in order to determine all of the symmetries of K
with or without the presence of the Casimir tensor, it is necessary to check the more
general condition

LV(K+ αC) = 0,

for arbitrary α.

It is necessary to prove that the aforementioned symmetry properties of a Killing
tensor are invariant under the action of SO(4). To do so, it suffices to solve the
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Table 1: Symmetry classification of the six webs of S3 under the action of SO(4)

Category Symmetry Separable webs Generators

I. 2 rotations cylindrical R12,R34

II. 1 translation & 1 rotation spherical R12,X4

III. 1 translation spheroelliptic X4

IV. 1 rotation elliptic-cylindrical I R12

elliptic-cylindrical II
V. none ellipsoidal

Table 2: Invariant classification of Killing vectors on E
4 under the action of SO(4)

Category Canonical form I1

I R12 6= 0
II X1 0

equivalence problem of Killing vectors of K1(E4) under the action of the group SO(4).
To begin, we note that the general Killing vector of E4 is given by

K = Ai
Xi +BI

RI ,

where Ai and BI denote the Killing vector parameters, andXi andRI are the Killing
vector fields defined previously. The action of SO(4) on K induces the following
transformations

Ãi = Λi
jA

j, B̃I = ΛI
KB

K ,

on the Killing vector parameters. Therefore, it follows that

I1 = BIBI , I2 = AiAi

are invariants in the orbit space K1(S3)/SO(4). Using either of these two invariants
it is possible to distinguish between two different types of symmetry generators.
Please refer to Table 4 for a summary of these results. We can conclude that the
translational and rotational web symmetries as defined by the Killing vectors of
K1(E4) are inequivalent under the action of SO(4).

In addition to a classification scheme, a solution to the equivalence problem also
requires a method for determining the moving frames map which identifies the group
action required to return a given CKT to the canonical form of its orbit. On the
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two-dimensional manifolds E2,M2 and S
2, algebraic formulas have been derived [22,

24, 18] for determining the moving frame map of a given CKT. On E
3 and M

3, a
combination of web symmetry and eigenvalues and eigenvectors of the parameter
matrices has be used to determine such a map [14, 16]. In our case, however, the
situation is complicated by the fact that our coefficient tensor, C ijkℓ, has order six
when regarded as a matrix. As such, we will need to devise a different strategy for
determining the moving frame map of a CKT on S

3.
It has been noted in Section 3 from (3.8) that the coefficient tensor C ijkℓ has

the same symmetries as the curvature tensor, and thus can be called an algebraic
curvature tensor. In light of this property, let us lower the last three indices of C ijkℓ

and contract on the first and third indices

Ric = C i
jiℓ = Rjℓ

to obtain an algebraic Ricci tensor. The coefficient tensor for each of the six canonical
forms listed in the Appendix can be contracted to define a canonical Ricci tensor in
each case. The following proposition demonstrates that the Ricci tensor can be used
to define the moving frame map for a given CKT.

Proposition 4.2. A Killing tensor (4.1) is in canonical form if and only if its Ricci
tensor is in canonical form.

Proof. Since the canonical form of the Ricci tensor is defined by the canonical form
of K, the first direction is trivial. For the other direction, we prove by contradiction.
Suppose the Ricci tensor of a Killing tensor K is in canonical form, but K is not.
Since SO(4) acts transitively on the orbits of K2(S3)/SO(4), we can find a group
action Λ ∈ SO(4) which sends K to its canonical form K̃. In particular, the compo-
nents of K transform according to (4.3) which induces the following transformation

C̃ i
jkℓ = Λi

mΛ
n
jΛ

p
kΛ

q
ℓC

m
npq

on the coefficient tensor C i
jkℓ. At the same time, this action on C induces the

following transformation
R̃jℓ = Λm

jΛ
n
ℓRmn

on its Ricci tensorR. Since the Ricci tensor of a canonical Killing tensor is necessarily
canonical, we must have R̃ = R. This is a contradiction.

According to Proposition 4.2, the moving frame map of a CKT can be constructed
by determining the moving frame map of the corresponding Ricci tensor. Note that
each canonical Ricci tensor can be represented by a diagonal matrix of order four.
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Therefore, the determination of the moving frame map for the Ricci tensor is an
eigenvalue-eigenvector problem for matrices of order four. Before we illustrate this
technique with the application in the next section, we summarize our results in the
following algorithm.

1. Begin by substituting the potential into the compatibility condition (2.16) to
determine the most general Killing tensor compatible with the potential. Using
this Killing tensor, determine the subspace of CKTs.

2. Next, we classify a CKT K by determining whether it admits any symmetry.
Namely, impose the constraint

LV(K + αC) = 0,

where α is an arbitrary parameter, C is the Casimir tensor, and V is the general
Killing vector of E4,

K = Ai
Xi +BI

RI .

IfK does admit symmetry, determine which type and the number of generators
for each type. Consult Table 4 to classify the CKT.

3. To determine the moving frame map for K, find the Ricci tensor R of the
coefficient tensor. Diagonalize R by solving the corresponding eigenvalue-
eigenvector problem. The matrix Λ, which diagonalizes R defines the moving
frame map.

4. Finally, define the orthogonally separable set of coordinates corresponding to
K by substituting Λ found in the previous step into the equation

xi = Λi
jT

j(uk),

where xi = T j(uk) denote the canonical orthogonally separable coordinates
corresponding to K.

5 Application

Consider the following natural Hamiltonian

H = Cijpipj +
1

(x− y)2
,
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defined on S
3, where Cij denotes the Casimir tensor and x, y, z, w are cartesian coor-

dinates of the ambient space E
4. Using this Hamiltonian, we will now demonstrate

how to apply the theory outlined in this paper.
First, we impose the compatibility condition (2.16) to obtain a family of Killing

tensors which are compatible with the potential. Of this family, the following re-
strictions on the parameters yields a subfamily of Killing tensors which satisfies the
Haantjes condition (2.11) and generally admits 3 distinct eigenvalues:

C1212 = C3434, C1313 = C2323, C1414 = C2424,
C1323 = C1313 − C1212, C1424 = C1212 − C1414

Therefore we conclude that K must characterize at least one of the six orthogonal
separable webs of S3. After a direct calculation, we find that K admits the following
family of rotational Killing vectors

V = (c3z + c6w)
∂

∂x
+ (c6w − c3z)

∂

∂y
+ (c3y − c3x)

∂

∂z
− (c6y + c6x)

∂

∂w
,

for arbitrary constants c3 and c6. Using the classification scheme outlined in Table
4 we conclude that K characterizes a non-canonical cylindrical web.

In order to determine the orthogonally separable coordinates for this Killing ten-
sor, we need to determine the transformation which maps K to its canonical form.
As discussed in Section 4, such a map can be constructed by diagonalizing the Ricci
tensor of the coefficient tensor. Contracting indices, we obtain the following non-
canonical Ricci tensor for this family of characteristic Killing tensors

Rjk =









C1212 + C1313 + C1414 C1414 − C1313 0 0
C1414 − C1313 C1212 + C1313 + C1414 0 0

0 0 2C1313 + C1212 0
0 0 0 2C1414 + C1212









.

After calculating the eigenvalues and corresponding eigenvectors of Rjk and applying
the Gram-Schmidt orthonormalization procedure, we obtain an orthogonal matrix

Λi
j =









−
√
2

2
0 0

√
2
2√

2
2

0 0
√
2
2

0 −1 0 0
0 0 1 0









which brings the Ricci tensor into canonical form

R̃jk = diag(2C1313 + C1212, 2C1313 + C1212, 2C1414 + C1212, 2C1414 + C1212).
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Therefore, we conclude that

x = −
√
2
2
cos t cosu+

√
2
2
sin t sin v

y =
√
2
2
cos t cosu+

√
2
2
sin t sin v

z = − cos t sin u
w = sin t cos v.

is a system of orthogonally separable coordinates for this Hamiltonian.

6 Conclusion

The results presented in this paper conclude an important project within the frame-
work of a more general program of the development of the Hamilton-Jacobi theory
of orthogonal separation of variables for natural Hamiltonians defined in spaces of
constant curvature (see Table 3). Having solved the equivalence problem, thus ex-
tending the classical result by Olevsky, we have developed a general algorithm for
solving the natural Hamiltonias defined in three-dimensional sphere via orthogonal
separation of variables. In addition we give a simple and concise proof of the fact
that the validity of the first and second TSN conditions imply the validity of the
third. We have also derived a set of analogous algebraic conditions following from
the vanishing Haanjes tensor which can be used to study and characterize algebraic
and geometric properties of Killing two-tensors defined in spaces of constant, non-flat
curvature. These conditions provide an alternative characterization of CKTs to the
one derived in [31] and this paper based on the TSN criterion.

The results presented here lay the groundwork for a project that concerns orthog-
onal separation of variables afforded by characteristic Killing two-tensors defined in
three-dimensional hyperbolic space which is the subject of a forthcoming paper.
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Table 3: Solutions to the canonical forms and equivalence problems.

Canonical forms problem Equivalence problem

Euclidean space E
3 Eisenhart, 1934

Boyer et al , 1976

Horwood et al , 2005

Horwood, 2007

Minkowski space M
3 Horwood and

McLenaghan, 2007
Horwood et al, 2009

Sphere S
3 Olevsky, 1950 Cochran et al, 2010

Appendix

The following is a list of canonical forms for the six orthogonally separable coordinate
systems of S3. Webs II, III, IV and VI are defined by K = αK1 + βK2 + γC, where
K1,K2 come from Eisenhart’s equations, C is the Casimir tensor, and α, β, γ ∈ R.
Since it is possible to determine the presence of the Casimir tensor for webs I and
V, and thus subtract it, these webs are defined by K = αK1 + βK2, where K1,K2

come from Eisenhart’s equations and α, β ∈ R.

Rotational webs

I. Spherical web

K = c1R12 ⊙R12 + c2(R13 ⊙R13 +R23 ⊙R23)

Rij = diag(c1 + c2, c1 + c2, 2c2, 0)

II. Cylindrical web

K = c1R12 ⊙R12 + c2(R13 ⊙R13 +R14 ⊙R14 +R23 ⊙R23 +R24 ⊙R24)+

c3R34 ⊙R34

Rij = diag(c1 + 2c2, c1 + 2c2, 2c2 + c3, 2c2 + c3)

III. Elliptic-cylindrical web of type 1

K = c1R12⊙R12+c2(R13⊙R13+R23⊙R23)+c3(R14⊙R14+R24⊙R24)+

c4R34 ⊙R34

Essential parameter: k2 =
c4 − c2
c4 − c3

Rij = diag(c1 + c2 + c3, c1 + c2 + c3, 2c2 + c4, 2c3 + c4)
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IV. Elliptic-cylindrical web of type 2

K = c1R12⊙R12+c2(R13⊙R13+R23⊙R23)+c3(R14⊙R14+R24⊙R24)+

c4R34 ⊙R34

Essential parameter: k2 =
c4 − c3
c2 − c3

Rij = diag(c1 + c2 + c3, c1 + c2 + c3, 2c2 + c4, 2c3 + c4)

Translational web

V. Spheroelliptic web

K = c1R12 ⊙R12 + c2R13 ⊙R13 + c3R23 ⊙R23

Essential parameter: k′2 =
c2 − c3
c1 − c3

Rij = diag(c1 + c2, c1 + c3, c2 + c3, 0)

Asymmetric web

VI. Ellipsoidal web

K = c1R12⊙R12+c2R13⊙R13+c3R14⊙R14+c4R23⊙R23+c5R24⊙R24+

c6R34 ⊙R34

where the ci satisfy the constraint

(c3 + c4)(c1c6 − c2c5) + (c2 + c5)(c3c4 − c1c6) + (c1 + c6)(c2c5 − c3c4) = 0

Essential parameters:

a =
c1(c2 − c4) + c6(c2 − c3)− c2(c3 + c4) + 2c3c4

c1(c2 − c4) + c4(c6 − c2) + c5(c4 − c6)
,

b =
c2(c1 − c4) + c1(c5 − c4)− c3(c1 + c5) + 2c3c4

c1(c2 − c4) + c4(c6 − c2) + c5(c4 − c6)

Rij = diag(c1 + c2 + c3, c1 + c4 + c5, c2 + c4 + c6, c3 + c5 + c6)
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