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A BEREZIN-LI-YAU TYPE INEQUALITY FOR THE FRACTIONAL

LAPLACIAN ON A BOUNDED DOMAIN

SELMA YILDIRIM YOLCU AND TÜRKAY YOLCU

Abstract. A Berezin-Li-Yau type inequality for (−∆)α/2|Ω, the fractional Laplacian op-
erators restriced to a bounded domain Ω ⊂ R

d for α ∈ (0, 2], d ≥ 2, has not been known so
far. First we positively answer this question. Second, we provide an improvement to this
inequality consistent with the work in [13, 14] by using a pure analytical approach.

1. Introduction

The purpose of this article is two-fold: First, we state a Berezin-Li-Yau type inequality
for (−∆)α/2|Ω, the fractional Laplacian operators restricted to Ω, where α ∈ (0, 2] and Ω is
a bounded domain in R

d with d ≥ 2. The second main goal of this article, aligned with the
work in [13, 14], is to provide a refinement of the Berezin-Li-Yau type inequality we obtain.

Throughout this article, unless otherwise clearly indicated, we also assume that |Ω| denotes
the volume of the set Ω, t 7→ χA(t) denotes the characteristic function defined to be 1 when
t ∈ A and 0 when t ∈ Ac, the complement of A. Moreover, we assume that BR := {x ∈ R

d :
|x| ≤ R} denotes the ball of radius R in R

d, and wd denotes the volume of d dimensional
unit ball B1 in R

d given by

wd =
πd/2

Γ (1 + d/2)
.

In this setting, the surface area of the unit ball B1 in R
d is dwd.

One defines the fractional Laplacian (−∆)α/2 by

(−∆)α/2u(x) = p.v.

∫

Rd

u(x)− u(y)

|x− y|d+α
dy, (1.1)

where p.v. denotes the principal value and u : Rd → R. With the aid of the Fourier transform,
fractional Laplacians restricted to Ω, denoted by (−∆)α/2|Ω, can be conveniently defined to
be a pseudo differential operator as follows

(−∆)α/2|Ωu := F−1[|ξ|αF [uχΩ]]. (1.2)

Here, F [u] denotes the Fourier transform of a function u : Rd → R and is defined by

F [u](ξ) = û(ξ) =
1

(2π)d

∫

Rd

e−ix·ξu(x) dx.

1
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We refer the reader to the book [10] or the article [15] for the proof of the equivalence between
(1.1) and (1.2). Moreover, the fractional Laplacian operator (−∆)α/2 can be considered as
the infinitesimal generator of the symmetric α-stable process, which is defined as follows:

Definition 1.1. ([1],[2]) A symmetric α-stable process of order α ∈ (0, 2] is a stochastic
process with stationary and independent increments and with the transition density (i.e.,
convolution kernel) pα(t,x,y) = pα(t,x− y) given by

∫

Rd

eiξ·ypα(t,y) dy = e−t|ξ|α,

with t > 0 and when x,y ∈ R
d.

Two important examples of symmetric α-stable processes are Brownian motion, which is
obtained by setting α = 2, and the Cauchy process, which is obtained by setting α = 1.
Moreover, the transition density in the case of the Brownian motion is given by

p2(t,x,y) =
1

(4πt)
d
2

exp

(

−|x− y|2
4t

)

, t > 0, x,y ∈ R
d.

and the transition density in the case of the Cauchy process is represented by

p1(t,x,y) =
cdt

(t2 + |x− y|2)(d+1)/2
, t > 0, x,y ∈ R

d

where cd = π− d+1
2 Γ

(

d+1
2

)

is the semiclassical constant that appears in the Weyl estimate
for the eigenvalues of the Laplacian. Therefore, the infinitesimal generator of the Brownian
motion for paths that are killed upon leaving the domain Ω is the Dirichlet Laplacian, and the
generator of the Cauchy process with the corresponding killing condition on ∂Ω is (−∆)1/2|Ω.
For more interesting results involving stable processes and Cauchy processes, please refer to
the papers [1], [2], [3] ,[5] and references therein.

Let ̺j and uj denote the jth eigenvalue and the corresponding normalized eigenvector of
(−∆)α/2|Ω, respectively. Eigenvalues ̺j (including multiplicities) satisfy

0 < ̺1 < ̺2 ≤ ̺3 ≤ · · · ≤ ̺j ≤ · · · → ∞.

In Section 2, we prove the following Berezin-Li-Yau type inequality:

Theorem 1.2. (Berezin-Li-Yau type inequality for the fractional Laplacian on Ω) The eigen-
values ̺j of (−∆)α/2|Ω satisfy

k
∑

j=1

̺j ≥
d

d+ α
(4π)

α
2

(

Γ(1 + d/2)

|Ω|

)
α
d

k1+α
d . (1.3)

These types of bounds have already been of more interest and investigated earlier in the
context of Dirichlet Laplacian, which can be regarded as the fractional Laplacian when α = 2,
and Klein- Gordon operators (−∆)1/2, α = 1, restricted to Ω. The work presented here in
Section 2 is inspired by the work in [6] and [12]. Indeed, in [12] , P. Li and S.-T. Yau proved
the following inequality for the eigenvalues λj of the Dirichlet Laplacian on Ω:
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Theorem 1.3. (Berezin-Li-Yau inequality) The eigenvalues λj of the Dirichlet Laplacian
on Ω satisfy

k
∑

j=1

λj ≥
d

d+ 2
(4π)

(

Γ(1 + d
2
)

|Ω|

)
2
d

k1+ 2
d . (1.4)

We prefer to call this inequality as Berezin-Li-Yau inequality instead of Li-Yau inequality
because (1.4) can be obtained by a Legendre transform of an earlier result by Berezin[4] as
it was first mentioned [11].

As for the case when α = 1, E. Harrell and the first author proved an analogue of the
Berezin-Li-Yau inequality for the eigenvalues of the Klein-Gordon operators

√
−∆ restricted

to Ω in [6]:

Theorem 1.4. (Analogue of the Berezin-Li-Yau inequality for α = 1) Eigenvalues βk the
Klein-Gordon operators

√
−∆ restricted to Ω satisfy

k
∑

j=1

βj ≥
d

d+ 1
(4π)

1
2

(

Γ(1 + d/2)

|Ω|

)
1
d

k1+ 1
d . (1.5)

Clearly, the results given in (1.4) and (1.5) can be regarded as special cases of (1.3).
Although it is not closely related to the work presented here, it is worth pointing out the

result appeared in [8] in which A. Ilyin proved a type of Berezin-Li-Yau inequality for the
eigenvalues of the Stokes operators. For details see [8].

In Section 3 we prove the following improvement:

Theorem 1.5. (Refinement of the Berezin-Li-Yau Inequality in the Case of Fractional Lapla-
cian (−∆)α/2|Ω restricted to Ω)

k
∑

j=1

̺j ≥ d(4π)
α
2

d+ α

(

Γ (1 + d/2)

|Ω|

)
α
d

k1+α
d

+
ℓ|Ω|1+ 2−α

d

4I(Ω)
(

4πΓ(1 + d/2)
)

2−α
d

k1− 2−α
d . (1.6)

where ℓ is given by

ℓ = min

{

1

12
,

4αdπ2

(2d+ 2− α)w
4
d
d

}

. (1.7)

Improvements to the Berezin-Li-Yau inequality in (1.4) in the case of Dirichlet Laplacian
have appeared recently, for example see [9],[13] and [16]. In particular, in [13], A.D. Melas
proved that
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k
∑

j=1

λj ≥
d

d+ 2
(4π)

(

Γ(1 + d/2)

|Ω|

)
2
d

k1+ 2
d +Mdk

|Ω|
I(Ω)

, (1.8)

where the constant Md depends only on the dimension and I(Ω) denotes the second moment
of inertia.

Melas’s work in [13] not only motivated our work in Section 3 but also motivated the
works in [7], [14]. We are particulary interested in the result appeared in [14] because our
improvement is a generalization of the results in [13] and [14]. This approach uses some
elementary techniques and we follow the basic strategy used there with some important
differences of detail.

Before we prove our main result, we need to make some key observations. Since the set
of eigenfunctions {uj}∞j=1 is an orthonormal set in L2(Ω), the set of {ûj}∞j=1 also forms an

orthonormal set in L2(Rd) by using Plancherel’s theorem. Set

Uk(ξ) :=

k
∑

j=1

|ûj(ξ)|2 =
k
∑

j=1

∣

∣

∣

∣

1

(2π)d/2

∫

Ω

e−ix·ξuj(x) dx

∣

∣

∣

∣

2

. (1.9)

Notice that the integral is taken over Ω instead of Rd because the support of u is Ω. Inter-
changing the sum and integral and using ‖ûj‖2 = 1, we obtain

∫

Rd

Uk(ξ)dξ = k. (1.10)

Also notice that since ujs form an orthonormal set in L2(Ω), by Bessel’s inequality, we get
an upper bound for Uk:

Uk(ξ) ≤
1

(2π)d

∫

Ω

∣

∣e−ix·ξ
∣

∣

2
dx =

|Ω|
(2π)d

. (1.11)

2. Proof of Theorem 1.2

The clincher in proving the Berezin-Li-Yau type inequality (1.3) in the case of fractional
Laplacian is the following lemma, which is the adaptation of a result given in [6] ( i.e., gen-
eralization of a lemma that was attributed in [12] to Hörmander), establishing a connection
between L∞ and L1 norms of a function.

Lemma 2.1. Let f : Rd → [0,∞) be a real valued nonnegative function in L∞(Rd). Assume
that there exists a number M > 0 such that

∫

Rd

|ξ|αf(ξ)dξ ≤ M. (2.1)

Then, f ∈ L1(Rd) and

‖f‖L1(Rd) ≤
(

‖f‖L∞(Rd)π
d
2

Γ(1 + d/2)

)
α

d+α (

d+ α

d
M

)
d

d+α

. (2.2)
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Proof. Let g(ξ) = ‖f‖L∞(Rd)χBR
(ξ). Also, set

R =

(

M(d+ α)

‖f‖L∞(Rd)dwd

)
1

d+α

.

It is not difficult to see that (|ξ|α −Rα)(f(ξ)− g(ξ)) ≥ 0. Notice that this can be written as
Rα(f(ξ)− g(ξ)) ≤ |ξ|α(f(ξ)− g(ξ)). Integrating both sides, using (2.1) and the definition of
g(ξ), we obtain that

Rα

∫

Rd

(f(ξ)− g(ξ)) dξ ≤
∫

Rd

|ξ|α(f(ξ)− g(ξ)) dξ ≤ 0.

Therefore, we are left with
∫

Rd

f(ξ)dξ ≤
∫

Rd

g(ξ) dξ

= ‖f‖L∞(Rd)

∫

BR

dξ

= ‖f‖L∞(Rd)

(

dwd
Rd

d

)

= ‖f‖L∞(Rd)wd

(

M(d + α)

‖f‖L∞(Rd)dwd

)
d

d+α

=

(

‖f‖L∞(Rd)π
d
2

Γ(1 + d/2)

)
α

d+α (

d+ α

d
M

)
d

d+α

which concludes the proof of (2.2). �

Now, we are ready to prove our first result.

Proof of Theorem 1.2: Since the support of ui is Ω, we observe that

̺j = 〈uj, (−∆)α/2|Ωuj〉
= 〈uj,F−1[|ξ|αF [uj]]〉

=

∫

Rd

|ξ|α|ûj(ξ)|2 dξ. (2.3)

Now, define

f(ξ) := Uk(ξ) =
k
∑

j=1

|ûj(ξ)|2.

Then

k =

∫

Rd

f(ξ) dξ, and

k
∑

j=1

̺j =

∫

Rd

|ξ|αf(ξ) dξ = M.



6 SELMA YILDIRIM YOLCU AND TÜRKAY YOLCU

Thus, (2.2) yields

k ≤
(

π
d
2‖f‖L∞(Rd)

Γ(1 + d/2)

)
α

d+α
(

d+ α

d

(

k
∑

j=1

̺j

))

d
d+α

. (2.4)

After rearranging the terms, we obtain

k
∑

j=1

̺j ≥
d

d+ α

(

Γ(1 + d/2)

π
d
2 ‖f‖L∞(Rd)

)
α
d

k1+α
d . (2.5)

Moreover, we already have an estimate for ‖f‖L∞(Rd). Indeed, in view of (1.11), for any

ξ ∈ R
d we have

f(ξ) =
k
∑

j=1

|ûj(ξ)|2 ≤
|Ω|
(2π)d

(2.6)

After substituting this into (2.5) and simplifying the expressions, we obtain (1.3). �

3. Proof of Theorem 1.5

First, we find an estimate for |∇Uk|. Notice that

k
∑

j=1

|∇ûj(ξ)|2 ≤
1

(2π)d

∫

Ω

∣

∣ixe−ix·ξ
∣

∣

2
dx =

I(Ω)

(2π)d
, (3.1)

where I(Ω), the moment of inertia, is defined by

I(Ω) = min
y∈Rd

∫

Ω

|x− y|2 dx.

After translation, we may assume that

I(Ω) =

∫

Ω

|x|2 dx.

Furthermore, by applying Hölder’s inequality, and invoking (1.11) and (3.1), we obtain
that for every ξ,

|∇Uk(ξ)| ≤ 2

(

k
∑

j=1

|ûj(ξ)|2
)1/2( k

∑

j=1

|∇ûj(ξ)|2
)1/2

≤ 2(2π)−d
√

|Ω|I(Ω) (3.2)

:= m. (3.3)

Also, we may find a lower bound for m. Indeed, let R be the number such that |Ω| = wdR
d.

Then,

I(Ω) ≥
∫

BR

|x|2 dx =
dwd

d+ 2
Rd+2 =

d

d+ 2
w

− 2
d

d |Ω| d+2
d .
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Hence, we have

m = 2(2π)−d
√

|Ω|I(Ω)

≥ 2(2π)−d

√

d

d+ 2
w

−2/d
d |Ω|(2d+2)/d

≥ (2π)−dw
−1/d
d |Ω|(d+1)/d. (3.4)

Let U∗
k (ξ) denote the decreasing radial rearrangement of Uk(ξ). Therefore, by approxi-

mating Uk, we may assume that there exists a real valued absolutely continuous function
ζ : [0,∞) → [0, |Ω|/(2π)d] such that U∗

k (ξ) = ζ(|ξ|). Also, we define the distribution function
µk by

µk(r) := |{Uk(ξ) > r}| = |{U∗
k (ξ) > r}|.

Then, µk(ζ(t)) = wdt
d. Invoking the coarea formula in view of (1.11), we have

µk(r) =

∫ ∞

r

∫

{U−1
k (s)}

1

|∇Uk|
dσ ds =

∫ |Ω|/(2π)d

r

∫

{Uk=s}

1

|∇Uk|
dσ ds,

where σ is the (d− 1) dimensional Hausdorff measure. The isoperimetric inequality,

σ(∂S) ≥ dw
1/d
d |S̄|(d−1)/d, S ⊂ R

d,

gives

dwdt
d−1

ζ ′(t)
= µ′(ζ(t))

= −
∫

{Uk=ζ(t)}

1

|∇Uk|
dσ

≤ − 1

m
σ({Uk = ζ(t)})

≤ − 1

m
dw

1/d
d µk(ζ(t))

(d−1)/d

= − 1

m
dwdt

d−1.

where m = 2(2π)−d
√

|Ω|I(Ω) due to (3.2). This inequality together with ζ ′ < 0 simply
yields

0 ≤ −ζ ′(t) ≤ m,

which is the required assumption in Lemma 3.3.
The key point in proving the improvement is to use the following lemma suitably:

Lemma 3.1. For t > 0, s > 0, 2 ≤ d ∈ N, 0 < α ≤ 2 we have the following inequality:

td+α ≥ d+ α

d
tdsα − α

d
sd+α +

α

d
sd+α−2(t− s)2 (3.5)
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Proof. We will sketch the proof as it is not elementary. First, let’s see that

dzd+α − (d+ α)zd + α− α(z − 1)2 ≥ 0. (3.6)

Indeed, let α = m
n
be a rational number with gcd(m,n) = 1 and m,n ∈ N. It is not difficult

to see that

dzd+
m
n −

(

d+
m

n

)

zd +
m

n
− m

n
(z − 1)2 =

m

n
z
(

z
1
n − 1

)2

[A+B + C],

where

A =

n
∑

k=1

2kz
k−1
n ≥ 0,

B =

(d−2)n
∑

k=1

(2n+ k)z1+
k−1
n ≥ 0,

C =
m−1
∑

k=1

dn

(

1− k

m

)

zd−1+ (k−1)
n ≥ 0.

To prove (3.6) for a real number α define f(α) := dzd+α− (d+α)zd+α−α(z−1)2. Thus, we
have f(m/n) ≥ 0 for every m,n ∈ N. By the density of rational numbers in real numbers,
for a real number α, we can find a sequence {αm,n} of rational numbers such that αm,n → α
as n,m → ∞. Since f is a continuous function, we therefore have

f(α) = f
(

lim
n,m→∞

αn,m

)

= lim
n,m→∞

f(αn,m) ≥ 0.

This proves the inequality stated in (3.6) for any real number α > 0, particularly, 0 < α ≤ 2.
Now, let z = t/s. Multiplying (3.6) through by 1

d
sd+α and rearranging the terms, we deduce

the inequality stated in (3.5). �

The following result is elementary but very crucial because it helps us make a connection
between two integrals defined in (3.15).

Lemma 3.2. Suppose that v : [0,∞) → [0, 1] such that

0 ≤ v ≤ 1 and

∫ ∞

0

v(t) dt = 1. (3.7)

Then, there exists δ ≥ 0 so that
∫ δ+1

δ

td dt =

∫ ∞

0

tdv(t) dt (3.8)

Moreover, we have
∫ δ+1

δ

td+α dt ≤
∫ ∞

0

td+αv(t) dt (3.9)
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Proof. Define f : [0,∞) → (0,∞) by

f(z) =

∫ z+1

z

td dt.

Observe that
(

td − 1
)(

v(t)− χ[0,1](t)
)

≥ 0 on [0,∞). (3.10)

Integrating (3.10) on [0,∞) gives
∫ ∞

0

tdv(t) dt ≥ 1/(d+ 1) = f(0).

Since f is continuous and non-decreasing and f(z) → ∞ as z → ∞, by the Intermediate
Value Theorem, there exists δ ≥ 0 such that

f(δ) =

∫ ∞

0

tdv(t) dt.

This proves (3.8). To see the proof of (3.9) we consider the following function

Λ(t) = td+α − c1t
d + c2

where c1 ≥ 0 and c2 ≥ 0 are chosen so that Λ(δ) = 0 and Λ(δ + 1) = 0 and Λ remains
negative on (δ, δ + 1) and positive on [0,∞)\[δ, δ + 1]. Notice that

Λ(t)
(

χ[δ,δ+1](t)− v(t)
)

≤ 0 on [0,∞). (3.11)

Integration of (3.11) on [0,∞) together with (3.7) gives
∫ δ+1

δ

td+α dt ≤
∫ ∞

0

td+αv(t) dt− c1

(
∫ ∞

0

tdv(t) dt−
∫ δ+1

δ

td dt

)

,

which combined with (3.8) yields the required inequality (3.9). This completes the proof. �

In light of Lemma 3.1 and Lemma 3.2, we obtain the following core result for obtaining
Theorem 1.5.

Lemma 3.3. Let d ≥ 2 and ζ : [0,∞) → [0,∞) be a decreasing, absolutely continuous
function. Assume that

0 ≤ −ζ ′(t) ≤ m, t ≥ 0, (3.12)

where m is given by (3.2). Then, for any 0 < ℓ < 1/12, we have

∫ ∞

0

td+α−1ζ(t) dt ≥ ζ(0)−
α
d

d+ α

(

d

∫ ∞

0

td−1ζ(t) dt

)1+α
d

+
ℓζ(0)2+

2−α
d

m2d(d+ α)

(

d

∫ ∞

0

td−1ζ(t) dt

)1−
(2−α)

d

. (3.13)
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Proof. Let us first define

θ(t) :=
1

ζ(0)
ζ

(

ζ(0)

m
t

)

. (3.14)

Note that θ is positive, θ(0) = 1 and 0 ≤ −θ′(t) ≤ 1. To ease the notation, we also set

v(t) := −θ′(t) for t ≥ 0. Hence, 0 ≤ v(t) ≤ 1 for t ≥ 0 and

∫ ∞

0

v(t) dt = θ(0) = 1. Now,

define

κ :=

∫ ∞

0

td−1θ(t) dt and ω :=

∫ ∞

0

td+α−1θ(t) dt. (3.15)

If ω = ∞, there is nothing to prove. Therefore, we suppose that that ω < +∞. Suppose
that xd+αθ(t) → a > 0 as t → ∞. Then for any 0 < ε ≤ a we can find a finite R > 0 such
that

0 <
a− ε

t
< td+α−1θ(t) <

a+ ε

t
(3.16)

for any t > R. This would yield a contradiction, because 0 ≤ ω < ∞ and

∞ =

∫ ∞

R

td+α−1θ(t) dt ≤
∫ ∞

0

td+α−1θ(t) dt < ∞

due to (3.16). Thus, td+αθ(t) → 0 as t → ∞. Moreover, it is straightforward to see that
tdθ(t) → 0 as t → ∞ as well. Thus, using integration by parts, we obtain

∫ ∞

0

tdv(x) dt = κd, and

∫ ∞

0

td+αv(t) dt = ω(d+ α).

By Lemma 3.2 there exists δ ≥ 0 such that
∫ δ+1

δ

td dt = κd (3.17)

and
∫ δ+1

δ

td+αdt ≤
∫ ∞

0

td+αv(t) dt = ω(d+ α). (3.18)

Notice that (3.5) gives the key inequality in the proof of this lemma. Indeed, integrating
(3.5) in t from δ to δ + 1 we obtain

∫ δ+1

δ

td+α dt ≥ d+ α

d
sα
∫ δ+1

δ

td dt− α

d
sd+α +

α

d
td+α−2

∫ δ+1

δ

(t− s)2 dt (3.19)

Notice that setting s = (κd)
1
d and using (3.17) and (3.18), we obtain that (3.19) yields

ω(d+ α) ≥ (κd)1+
α
d +

α

d
(κd)1+

(α−2)
d

∫ δ+1

δ

(t− s)2 dt. (3.20)

Observe that
∫ δ+1

δ

(t− s)2 dt ≥ min
δ∈R

∫ δ+1

δ

(t− s)2 dt =

∫ s+ 1
2

s− 1
2

(t− s)2 dt =
1

12
. (3.21)
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Therefore, combining (3.20) with (3.21) and then simplifying the terms yields

ω ≥ 1

d+ α
(κd)1+

α
d +

α

12d(d+ α)
(κd)1−

(2−α)
d . (3.22)

Note that back substitution of (3.14) gives
∫ ∞

0

tpθ(t) dt =
mp+1

ζ(0)p+2

∫ ∞

0

tpζ(t) dt. (3.23)

which together with p = d− 1 and p = d+ α− 1 in (3.15) turns (3.22) into
∫ ∞

0

td+α−1ζ(t) dt ≥ ζ(0)−
α
d

d+ α

(

d

∫ ∞

0

td−1ζ(t) dt

)1+α
d

+
ζ(0)2+

2−α
d

12m2d(d+ α)

(

d

∫ ∞

0

td−1ζ(t) dt

)1−
(2−α)

d

,

concluding the proof of the lemma. �

As a result of Lemma 3.3 we get the following upshot.

Lemma 3.4. For any ℓ ∈ (0, 1/12), We have the following inequality

k
∑

j=1

̺j ≥
d

d+ α
wd

−α
d ζ(0)−

α
d k1+α

d +
ℓ

m2(d+ α)
w

2−α
d

d ζ(0)2+
2−α
d k1− 2−α

d (3.24)

Proof. Due to (2.3) we have

̺j =

∫

Rd

|ξ|α|ûj(ξ)|2 dξ.

Using this together with the definition of Uk in (1.9), we obtain

k
∑

j=1

̺j =

∫

Rd

|ξ|αUk(ξ) dξ. (3.25)

On the other hand, we observe that

k =

∫

Rd

Uk(ξ)dξ =

∫

Rd

U∗
k (ξ)dξ = dwd

∫ ∞

0

td−1ζ(t)dt, (3.26)

and since the map ξ 7→ |ξ|α is radial and increasing, in view of (3.25) we therefore have

k
∑

j=1

̺j =

∫

Rd

|ξ|αUk(ξ)dξ ≥
∫

Rd

|ξ|αU∗
k (ξ)dξ = dwd

∫ ∞

0

td+α−1ζ(t)dt. (3.27)

Equations (3.26), (3.27), when combined with Lemma 3.3 provide us with required the
inequality in (3.24). �
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Now, we see that Theorem 1.5 falls out as a by-product of Lemmas 3.1, 3.2, 3.3 and 3.4.

Proof of Theorem 1.5: Set

C1 :=
d

d+ α
wd

−α
d k1+α

d , C2 :=
1

m2(d+ α)
w

2−α
d

d k1− 2−α
d . (3.28)

and consider G : (0,∞) → R defined by

G(z) = C1z
−α

d + ℓC2z
2+

(2−α)
d .

It is elementary to see that G is decreasing when

0 < z ≤
(

αC1

(2d+ 2− α)C2ℓ

)
d

2d+2

.

In other words, G is decreasing in the interval (0, τ ] if

ℓ ≤ (2d+ 2− α)C2

αC1
τ

2d+2
d .

It therefore turns out that G is decreasing on (0, |Ω|/(2π)d] when

|Ω|
(2π)d

≤
(

αdm2k
2
d

ℓ(2d+ 2− α)w
2
d
d

)
d

2d+2

.

In other words, in view of the lower bound for m given in (3.4), we may choose ζ(0) ≤
|Ω|/(2π)d when

ℓ ≤ αd(2π)2w
− 4

d
d

2d+ 2− α
(3.29)

Therefore, we can replace ζ(0) with (2π)−d|Ω| in (3.24) when we set

ℓ = min

{

1

12
,

4αdπ2

(2d+ 2− α)w
4
d
d

}

(3.30)

Thus, substitution ofm given in (3.2) together with ζ(0) = (2π)−d|Ω| and wd = π
d
2/Γ (1 + d/2)

turns (3.24) into the following inequality:

k
∑

j=1

̺j ≥ d(4π)
α
2

d+ α

(

Γ (1 + d/2)

|Ω|

)
α
d

k1+α
d

+
ℓ|Ω|1+ 2−α

d

4I(Ω)
(

4πΓ(1 + d/2)
)

2−α
d

k1− 2−α
d . (3.31)

where ℓ is given by (3.30). Note that the first term on the right of (3.31) is same bound as
in (1.3) and it is straightforward to check that if α = 1 and α = 2, we immediately obtain
the asymptotic results in [14] and [13] respectively.
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Note that we could have used the following lemma instead of Lemma 3.1

Lemma 3.5. If d ≥ 1, α > 0, t > 0 and s > 0, then we have

td+α > tdyα +
α

d
tdsα ln((t/s)d). (3.32)

Proof. Let f(r) = zr+α. Note that f ′(r) = zr+α ln(z) and f ′′(r) = zr+α(ln(z))2 + zr+α−1 > 0
when 1 6= z > 0 Therefore, f is strictly convex. Thus,

f(d) > f(d− α) + αf ′(d− α)

gives

zd+α > zd +
α

d
zd ln(zd).

Setting z = t/s and multiplying both sides by sd+α, we obtain (3.32). �

To conclude, let us also remark that one can basically employ Lemma 3.5 and adapt the
strategy in Lemma 3.3 and apply Jensen’s inequality to get another improvement of the
Brezin-Li-Yau type inequality in Theorem 1.2. The advantage of (3.5) is to have a simple
lower bound as shown in (3.21). However, both Lemmas yield the same expression on the
right hand side of (1.3) at once. This work is left to the reader.

Acknowledgements. The authors wish to thank Rodrigo Bañuelos and Evans Harrell for
suggestions, comments and helpful discussions.
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