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Abstract

In this paper which is the first of a series of papers on smooth structures, the concepts

of C-structures and smooth structures are introduced and studied. The notion of smooth

structure on semi-integral domains is given. It is shown that each semi-integral domain

which is not a field, admits a unique smooth structure and a large class of non-polynomial

smooth functions on some semi-integral domains is constructed. A smooth function from

Z-{0} into Z is given which does not extend to a smooth function on Z . No concept from

topology is used. As an application, it is shown that:

Theorem - Let M and N be finite dimensional smooth manifolds. Assume that ϕ :

C∞(N) → C∞(M) is a homomorphism of R -algebras. Then, there exists exactly one

smooth mapping φ :M → N such that ϕ = φ∗.
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1 Introduction

Differential calculus is a powerful technic in mathematics. To name a few, partial

differential equations, differential and analytic geometry are all based on the notion

of differentiation, and most of the applications of mathematics in other sciences

employ this concept. The whole theory of differentiation is based on topology and

the fact that the underlying rings are fields. A construction of a satisfactory theory

of differentiation on R or C without any use of topology is invisible. On the other

hand, one can redefine the notion of derivative using only the topology and the ring

structure of the fields. More precisely, it is not difficult to see that the following

definition of the derivative of a function on R is equivalent to the usual one.

Definition 1.1 Let f be a real valued function defined on a neighborhood of

λ ∈ R. Then f is differentiable at λ and its derivative at λ is α, if and only if there

exists a real valued function g defined on V, a neighborhood of λ, and continuous

at this point, such that

g(λ) = α and f(t) = f(λ) + (t− λ)g(t) for all t ∈ V.

It is clear that the function g with the above properties is unique and the only use

of topology here is to characterize g(λ) uniquely. Clearly if we can avoid this usage
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we can define derivative of functions without ambiguity. This was what we have done

some years ago in [3] where we define the derivative of functions on integral domains

which are not fields, without using any concept from topology. Such a derivative has

properties similar to the properties of usual derivative of real functions and gives

rise to very interesting problems. In this paper the definition of smooth structure is

extended to the functions on semi-integral domains. The smooth structure in this

general case have very nice properties. For example, let R be a proper semi-integral

domain. Then:

1) The R-algebra of smooth functions onR is itself a proper semi-integral domain.

2) The map ϕ : C∞(R2) −→ C∞(R,C∞(R)) given by ϕ(f)(x)(y) = f(x, y) is an

isomorphism.

3) The R-algebra of smooth functions on Rn, n � 1 is uniquely determined by

C∞(R) without any use of topology.

On the other hand, differential calculus on rings has very peculiar properties.

For example, on some integral domains R there exist

i) non-constant smooth functions with derivatives identically zero.

ii) functions f and 0 6= λ ∈ R such that λf is smooth but f is not.

Our next goal is to define smooth structures on modules. The present paper

is devoted to ”smooth structures”. It serves as a foundation for the subject. In
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addition we will provide interesting applications.

The work will be continued in the forthcoming papers. We will prove that any

projective modules over a semi-integral domain which is not a field admits a unique

smooth structure, and differential calculus on finitely generated projective modules

almost always has the same properties as the usual differential calculus on Rn .

The proof of Propositions 2 , 3 and 4 above will be given in appropriate places in

forthcoming papers.

2 Conventions

In what follows R denotes a commutative ring with identity element 1. By an

R−algebra we mean an associative and commutative R−algebra with an iden-

tity. Furthermore, for every R−algebra with an identity element e, we assume

that {λ ∈ R | λe = 0} = {0} . All algebra homomorphisms are assumed to preserve

the identity element. Any sub-algebra contains the identity element. Finally, by a

sub-module of an R−algebra A we mean a sub-module of the R−module A.

Let A be an R-algebra with the identity e. Assume that A and B are subsets of

A. The sub-module of A generated by the set {xy | x ∈ A, y ∈ B} will be denoted

by A.B. For each n ∈ N∗, let nA = {x1x2 . . . xn | xi ∈ A}. The sub-module of A
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(resp. the ideal of A) generated by nA will be denoted by An (resp. by An). We

use the convention Ao = Re. Moreover if A is a sub-module of A, A1 = A

3 Algebras of type C

Let A be an R-algebra with the identity e. An ideal Λ of A is called an ideal of

type C if A = Re ⊕Λ. We identify Re with R and denote the projection on R = Re

(resp. on Λ) by π0
Λ (resp. by πΛ). The set of all ideals of type C in A will be

denoted by Ac. We say that A is an R-algebra of type C if Ac 6= φ. Let Λ ∈ Ac.

Then π0
Λ is clearly a character of A. On the other hand, if α is a character of A,

then kerα ∈ Ac. The set of all characters of A will be denoted by Aγ. The mapping

Aγ → Ac given by α 7→ kerα is clearly bijective.

Lemma 3.1. Let R be an integral domain and let A be an R−algebra of type

C. Then each Λ ∈ Ac is a prime ideal.

Proof. Let x, y be in A and let xy ∈ Λ ∈ Ac. Then π0
Λ(xy) = π0

Λ(x)π
0
Λ(y) = 0.

Since R is an integral domain π0
Λ(x) = 0 or π0

Λ(y) = 0. Therefore, x ∈ Λ or y ∈ Λ.

The proof of the following lemma is straightforward.

Lemma 3.2. Let A and A′ be R-algebras and let ϕ : A → A′ be an R-algebra

homomorphism. Assume that A′ is an R-algebra of type C. Then A is also an

5



R-algebra of type C. Moreover, if Λ′ ∈ A′c and α′ ∈ A′γ, then ϕ−1(Λ) ∈ Ac and

ϕ∗(α′) ∈ Aγ.

Let A,A′ and ϕ be as above. The mapping A′c → Ac given by Λ′ 7→ ϕ−1(Λ′)

will be denoted by ϕc. We say that ϕc is induced by ϕ.

Lemma 3.3. Let A and A′ be two R-algebras of type C. Assume that

ϕ : A → A′ is an R-algebra homomorphism. Let Λ′ ∈ A′c and Λ = ϕ−1(Λ′). Then,

π0
Λ = π0

Λ′ ◦ ϕ and πΛ′ ◦ ϕ = ϕ ◦ πΛ.

Proof. Let y ∈ A. Then y = π0
Λ(y)e+πΛ(y) and ϕ(y) = π0

Λ′(ϕ(y))e′+πΛ′(ϕ(y)).

Hence, π0
Λ′(ϕ(y))e′ + πΛ′(ϕ(y)) = ϕ(y) = ϕ[π0

Λ(y)e + πΛ(y)] = π0
Λ(y)e

′ + ϕ(πΛ(y)).

Or, (π0
Λ′ ◦ϕ(y)−π0

Λ(y))e
′+(πΛ′ ◦ϕ(y)−ϕ◦πΛ(y)) = 0. But ϕ(Λ) ⊂ Λ′ and Λ′ ∈ A′c.

Therefore, π0
Λ′ ◦ ϕ(y) = π0

Λ(y) and πΛ′ ◦ ϕ(y) = ϕ ◦ πΛ(y). Since y ∈ A is arbitrary,

π0
Λ′ ◦ ϕ = π0

Λ and πΛ′ ◦ ϕ = ϕ ◦ πΛ.�

A sub-module A of A is called a sub-module of type C if

1) A ∈ Ac.

2) If B is a sub-module of A and B ∈ Ac, then A = B.

The set of all sub-modules of type C ofA will be denoted by C(A). A sub-module

A ∈ C(A) is called a sub-module of type D if for each k ≥ 1, Ak ∩Ak+1 = {0}. The

set of all sub-modules of type D will be denoted by D(A). If A ∈ C(A) is of type D,

then A is called an ideal of type D. The set of all ideals of type D will be denoted by
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Ad. Let A ∈ C(A) and k ∈ N. Then, Ak = Ak.A = Ak.(A0+A) = Ak.(A0+A.A) =

Ak + Ak+1.A = Ak + Ak+1. Therefore, we have the following simple lemma.

Lemma 3.4. Let A be an R-algebra and n ∈ N. Then:

i) if A ∈ C(A), then A =
∑n

k=0A
k + An+1.

ii) if A ∈ D(A) ,then A = ⊕n
k=0A

k ⊕ An+1.

Let A be a sub-module of type D. By the above lemma for n ≥ 1 , A =

⊕n
k=0A

k ⊕ An+1. The projection of A onto Ak (resp. onto An+1) in the above

decomposition will be denoted by αk (resp. by αn+1) and π
0
A : A →R · e ⋍ R will

be denoted by α0.

Lemma 3.5. Let ϕ : A → A′ be injective. Assume that A ∈ C (A) and

ϕ (A) ⊂ A′ ∈ D (A′) . Then, A ∈ D (A).

Proof. Let A ∈ C (A) and ϕ (A) ∈ D (A′). Then, for each 0 ≤ n, (ϕ (A))n ∩

(

ϕ (A)
)n+1

= {0}. Since ϕ is injective, An∩An+1 = (ϕ−1 (ϕ (A)))
n
∩
(

ϕ−1(ϕ(A)
)n+1

⊂

ϕ−1((ϕ (A))n ∩
(

ϕ (A)
)n+1

) = {0}. Therefore, A ∈ D (A).�

Let Λ and Λ′ be in Ac. Then, for each y ∈ A we have πΛ′ (y) = πΛ′(π0
Λ (y) +

πΛ (y)) = πΛ′ ◦ πΛ (y) . Thus, πΛ′ ◦ πΛ = πΛ′ , and for every x ∈ Λ′ we have x =

πΛ′ (x) = πΛ′ ◦ πΛ (x) . Therefore, πΛ′ : Λ → Λ′ is an isomorphism of R−modules

with inverse πΛ.

Let A and B be in C(A). We say that A is equivalent to B and write A ≈ B, if
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A = B. The sub-modules A and B are called strongly compatible with each other if:

A ≈ πA(B) and B ≈ πB(A).

This will be written as A ∼ B. Two sub-modules A and B are called compatible if

there exists a finite sequence A = C0 ∼ C1 ∼ C2 ∼ ... ∼ Ck = B.

Lemma 3.6. Let A,B ∈ D(A) be two equivalent sub-modules. Then

i) A is strongly compatible with B,

ii) α1 : B → A is an isomorphism with inverse β1 .

Proof. i) This is clear.

ii) By (3.4.ii) Re ⊕ A ⊕ A2 = A = Re ⊕ B ⊕ B2. Assume that y ∈ A. The

equality y = β1(y)+β2
(y) implies that y = α1(y) = α1(β1(y)). Thus α1◦β1 = id |A .

In the same way one sees that β1 ◦ α1 = id |B . Therefore, α1 is an isomorphism

with inverse β1.

Now it is clear that we have the following proposition.

Proposition 3.7 The relation A is compatible with B is an equivalence relation.

Let M be a set. Assume that A is a subalgebra of RM . Let ω ∈M . Clearly the

set of all elements of A which are zero at ω is an ideal of type C. It will be denoted

by Iω. If the elements of A separate the points ofM , then the mapping σ :M → Ac
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given by ω → Iω is injective. In this situation we identify M with its image under

the above mapping.

4 C-Structures

A C-pair (resp. A D-pair) over R is a pair (A,Σ), where A is an R-algebra of

type C, and Σ is a non-empty subset of A C−pair (resp. A D−pair). Let Λ ∈ Σ.

The set of all A ∈ D (A) such that A = Λ, will be denoted by Λ◦, and ∪Λ∈ΣΛ
◦ will

be denoted by Σ.

Let (A, Σ) and (A′, Σ′) be two C−pairs over R. A C−homomorphism ϕ : (A,

Σ) → (A′, Σ′) is a homomorphism of R−algebras ϕ : A → A′ such that for all

Λ′ ∈ Σ′, ϕ−1(Λ′) ∈ Σ. Clearly, the restriction of ϕc to Σ′ is a map from Σ′ into Σ.

This map will be denoted by ϕ. It is also clear that the map idA : (A, Σ) → (A, Σ)

is a C−homomorphism. Let (Ai,Σi), i = 1, 2, 3 be C−pairs over R. Assume that

ϕ1 : (A1, Σ1) → (A2, Σ2) and ϕ2 : (A2,Σ2) → (A3,Σ3) are C−homomorphisms.

Then, clearly ϕ2 ◦ ϕ1 is a C−homomorphism, and ϕ2 ◦ ϕ1 = ϕ1 ◦ ϕ2.

The above observations can be summarized in the following.

Proposition 4.1. The class of all C−pairs over R together with C−homomorphisms

between them form a category. This category will be denoted by R − CP.
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A C−homomorphism ϕ : (A,Σ)→ (A′,Σ′) is called injective (resp. surjective,

resp. bijective) if ϕ : A → A′ is injective (resp. surjective, resp. bijective).

A C−pair (A,Σ) over R is called

i) separated if ∩Λ∈ΣΛ = {0},

ii) analytic if for each Λ ∈ Σ, ∩∞
n=1Λ

n = 0,

iii) of polynomial type if for each Λ ∈ Σ there exists A ∈ D (A) such that A = Λ,

and each element y ∈ A can be written as y = Σkn=0yn, where yn ∈ An.

Assume that the C−pair (A,Σ) is separated. Then the mapping θ : A → RΣ

given by y 7→ (Λ :7→ π0
Λ(y)) is clearly an injective homomorphism of R−algebras.

In this situation we identify A with its image under the mapping θ.

Lemma 4.2. Let ϕ : (A,Σ) → (A′,Σ′) be a C−homomorphism. Then

i) If ϕ is injective and (A′,Σ′) is separated, then (A,Σ) is separated.

ii) If (A,Σ) is separated and ϕ is surjective, then ϕ is injective.

iii) If ϕ is surjective then ϕ is injective.

Proof. i) We have ∩Λ∈ΣΛ ⊂ ∩Λ′∈Σ′ϕ−1(Λ′) = ϕ−1(∩Λ′∈Σ′Λ′) = ϕ−1({0}) = {0}.

Therefore, (A,Σ) is separated.

ii) Let y ∈ A. Assume that ϕ (y) = 0. By Lemma 3.2 for each Λ′ ∈ Σ′, π0
ϕ(Λ′)(y) =

π0
Λ′(ϕ(y)) = 0. Since ϕ:Σ′ → Σ is surjective, for all Λ ∈ Σ, π0

Λ(y) = 0. But (A,Σ) is

separated. Therefore, y = 0 and ϕ is injective.
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iii) Let Λ′,Λ′′ ∈ Σ′ and ϕ−1(Λ′) = Λ = ϕ−1(Λ′′). Since ϕ is surjective Λ′′ =

ϕ (ϕ−1 (Λ′′)) = ϕ (Λ) = ϕ (ϕ−1 (Λ′)) = Λ′. Therefore, ϕ is injective. �

Let (A,Σ) be a C−pair. We say that (A,Σ) is complete if Σ = Ac.

Lemma 4.3. Let (A,Σ) and (A′,Σ′) be C−pairs over R. Assume that ϕ : A →

A′ is a homomorphism of R−algebras and (A,Σ) is complete. Then ϕ : (A,Σ) →

(A′,Σ′) is a C−homomorphism.

Proof. Let Λ′ ∈ Σ′. Then ϕ−1(Λ′) ∈ Ac. Since (A,Σ) is complete ϕ−1(Λ′) ∈ Σ.

Therefore, ϕ is a C−homomorphism.�

We say that the C−pair (A,Σ) is a D−pair if for each Λ ∈ Σ there exists

A ∈ D (A) such that Λ = A.

Let ϕ : (A,Σ) → (A′,Σ′) be an injective C−homomorphism between D−pairs.

We say that ϕ is a domination, or (A,Σ) is dominated by (A′,Σ′) under ϕ or (A′,Σ′)

dominates (A,Σ) under ϕ, if for each Λ′ ∈ A′c, with ϕ−1 (Λ′) ∈ Σ, we have Λ′ ∈ Σ′

and if A ∈ (ϕ−1 (Λ′))
c
, then ϕ (A) ∈ Λ′c.

Lemma 4.4. Let ϕ : (A,Σ) → (A′,Σ′) be a domination. Assume that (A,Σ)

is complete. Then, the C−pair (A′,Σ′) is also complete.

Proof. Let Λ′ ∈ A′c. Then, ϕ−1 (Λ′) ∈ Ac. Since the C−pair (A,Σ) is complete,

ϕ−1(Λ′) ∈ Σ. As ϕ is a domination, Λ′ ∈ Σ′. Therefore, (A′,Σ′) is complete.�
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Lemma 4.5. Let ϕ : (A,Σ) → (A′,Σ′) be a domination. Assume that A ∈ Σ

and ϕ (A) = A′ ∈ Σ′. Then we have α′
1 ◦ ϕ = ϕ ◦ α1 and ϕ ◦ α2 = α′

2 ◦ ϕ.

Proof. Let y ∈ A. Then, y = α0 (y) e + α1 (y) + α2 (y) , where α0 (y) ∈ R,

α1 (y) ∈ A, and α2 (y) ∈ A2. Thus, ϕ(y) = α0 (y) e
′ + ϕ(α1 (y)) + ϕ(α2 (y)). Since

ϕ (y) is an element of A′, we have ϕ (y) = α′
0 (ϕ (y)) e′ + α′

1 (ϕ (y)) + α′
2 (ϕ (y)) ,

where α′
0 (ϕ (y)) ∈ R, α′

1 (ϕ (y)) ∈ A′. and α′
2 (ϕ (y)) ∈ A′2. Thus we have

α0 (y) e
′ + ϕ(α1 (y)) + ϕ(α2 (y)) = α′

0 (ϕ (y)) e′ + α′
1 (ϕ (y)) + α′

2 (ϕ (y)) .

Or

(α0 (y)− α′
0 (ϕ (y))) e′ + (ϕ ◦ α1 (y)− α′

1 ◦ ϕ (y)) + (ϕ ◦ α2 (y)− α′
2 ◦ ϕ (y)) = 0.

But A′ ∈ D (A′) and ϕ (α2 (y)) ∈ A′2, Therefore:

ϕ ◦ α1 (y) = α′
1 ◦ ϕ (y) and ϕ ◦ α2(y) = α′

2 ◦ ϕ(y).

Since y ∈ A is arbitrary, α′
1 ◦ ϕ = ϕ ◦ α1and ϕ ◦ α2 = α′

2 ◦ ϕ.�

Lemma 4.6. Let ϕ : (A,Σ) → (A′,Σ′) be a domination. Then, ϕ:Σ′ → Σ is

injective.

Proof. Let Λ′,Λ′′ ∈ Σ′,Λ ∈ Σ. Assume that ϕ−1 (Λ′) = Λ = ϕ−1 (Λ′′). Then,
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since ϕ is a domination, for any A ∈ Λ◦, we have ϕ (A) ∈ Λ′◦ ∩ Λ′′◦. Thus, Λ′ =

ϕ (A) = Λ′′. Therefore, ϕ is injective.�

5 Smooth Structures

Let (A,Σ) be a D−pair. Assume that any 2 elements of Σ = ∪Λ∈ΣΛ
◦ are compatible

with each other. Then (A,Σ) is called a smooth pair. Let Σ be maximal with respect

to the above property. Then Σ is called a smooth structure on A, and
(

A; Σ
)

is called

a smooth algebra.

Let A be an R−algebra of type C. Assume that A admits a sub-module A of

type D. By Zorn’s lemma, there exists a smooth structure Σ on A which contains

A.

Assume that (A,Σ) and (A′,Σ′) are smooth R−pairs. A smooth morphism

between them is a morphism in the category R − CP. It is clear that the class of

all smooth R−algebras (resp. R−pairs) together with smooth morphism between

them is a full subcategory of the category R − CA (resp.R − CP ). This category

will be denoted by R − SP.

Lemma 5.1. A necessary and sufficient condition for a smooth pair (A; Σ)

to be of polynomial type is that for every Λ ∈ Σ there exists A ∈ Λ◦ such that
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A = ⊕∞
n=0A

n.

The proof is clear.

Let (A; Σ) be a smooth pair. We say that Σ is a complete smooth structure on

A if Σ = Ac. in this case
(

A; Σ
)

is called a complete smooth algebra.

Lemma 5.2. Let
(

A; Σ
)

be a complete smooth R−algebra and let (A,Σ′) be

a smooth R− pair. Then Σ′ ⊂ Σ.

The proof is clear.

The ring R is clearly an R−algebra. The singleton {{0}} is the unique smooth

structure on R. This structure will be denoted by [R] .

Here we have the following simple lemma.

Lemma 5.3. Assume that
(

A; Σ
)

is a smooth R−algebra. For Λ ∈ Ac, we

have Λ ∈ Σ if and only if π0
Λ :

(

A; Σ
)

→ (R; [R]) is smooth.

Proposition 5.4. For n ≥ 1 the R−algebra A = C∞ (Rn) , admits a complete

separated non-analytic smooth structure which is the unique smooth structure on

it.

Proof. Let xi : Rn → R denote the i−th projection and let x : Rn → Rn denote

the identity mapping and let e denotes the constant map Rn :→ {1} ⊂ R. For λ =

(λ1, λ2, ..., λn) ∈ Rn we set Mλ = Σnk=1R ·
(

x k − λke
)

and Iλ = Σnk=1A·
(

xk − λke
)

.

Clearly, Iλ is generated byMλ. By a well-known lemma whose statement will follow,
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one deduces that Iλ ∈ Ac. Assume that

Σ|i|=kµi (x− λe)i = Σ|i|=k+1ϕi (x− λe)i ∈Mk
λ ∩ Ik+1

λ

where µi ∈ R and ϕi ∈ A. Let j = (j1, j2,..., jn) ∈ Nn , |j |= k and Dj =

∂k

∂(x1)j1∂(x2)j2 ...∂(xn)jn
. Then there exists a non-zero constant Cj ∈ R such that

Cjµj = Dj
(

Σ|i|=kµi (x− λe)i
)

|x=λe= Dj
(

Σ|i|=k+1ϕi (x− λe)i
)

|x=λe= 0.

Therefore, µj = 0 and for each k ∈ N, Mk
λ ∩ Iλ

k+1 = {0}. Hence, Mλ is a sub-

module of type D. Let λ, λ′ ∈ Rn . Then, clearly Mλ and Mλ′ are compatible with

each other. Therefore, there exists a smooth structure on A which contains the set

{Mλ | λ ∈ Rn}. This smooth structure will be denoted by [Rn ]. Let Λ ∈ Ac and

λ = (π0
Λ (x

1) , π0
Λ (x

2) , ..., π0
Λ (x

n)) . Then, Mλ ∈ Λ◦. Hence, each element of [Rn ] is

equivalent to someMλ and the smooth algebra (C∞ (Rn) , [Rn ]) is complete. Clearly,

(C∞ (Rn) , [Rn ]) is separated. Consider the function ϕ : Rn → R defined by

ϕ(t) =























e
−1

∑n
1
(ti)2 if

∑n
1 (t

i)2 6= 0

0 if
∑n

1 (t
i)2 = 0

All the derivatives of ϕ are zero at (0, 0, ..., 0) . Therefore, (C∞ (Rn) , [Rn ]) is not

analytic. The uniqueness follows from Lemma 5.2.�
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In a similar way without using the above lemma one can see that the algebra of

polynomial functions on an integral domain R and the algebra of entire functions on

kn(k = R or k = C) admit unique smooth structures. The corresponding smooth

algebras will be denoted by (P (R) , [R]) and (Cω (kn) , [kn]), respectively. They are

both separated. The first is of polynomial type and the second is analytic.

Lemma 5.5. Let f ∈ C∞ (Rn) and λ ∈ Rn . Then, there exist n functions

gi ∈ C∞ (Rn) , i = 1, 2, ..., n, such that f = f (λ) e + Σnk=1

(

xk − λke
)

gk.

Now let Ω ⊂ Rn be nonempty. Assume that λ /∈ Ω. Define ϕλ : Rn − {λ} → R,

as follows

ϕλ = Σnk=1

(

xk − λke
)2
.

Let W = {ϕλ | λ /∈ Ω} and let B = 1
W
A be the localization of A = C∞(Rn )

with respect to W. Assume that Λ ⊂ Λ′. Where, Λ ∈ Ac and Λ′ ∈ Bc.Then, clearly

λ = (π0
Λ (x

1) , π0
Λ (x

2) , ..., π0
Λ (x

n)) is an element of Rn . and it is not difficult to prove

that Λ′ is generated by Λ. Therefore, σ : Ω → Bc is bijective and the C−pair (B,Ω)

is complete. It is separated if and only if Ω is dense in Rn . It is called the algebra of

smooth functions associated with Ω.Observe that the canonical injection ι : A → B

is a domination.

Proposition 5.6. Let M be a closed sub-manifold of Rn . Assume that

A =C∞ (M). Then, Ac =M and C∞ (M) is complete.
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Proof. Let A (M) denote the algebra of smooth functions associated with

M , and let ϕ : A (M) → A be the restriction homomorphism. Since (A(M),M)

is complete by Lemma 4.3. ϕ : (A (M) ,M) → (A,Ac) is a C−homomorphism.

Since ϕ is surjective, by Lemma 4.2. iii, ϕ : Ac → (A (M))c is injective. Clearly,

ϕ|M= idM . Therefore, A
c =M.�

From the above proposition and Whitney’s embedding theorem we have the

following theorems.

Theorem 5.7. Let M be a finite dimensional smooth manifold. Then, C∞ (M)

is complete.�

Theorem 5.8. Let M and N be two finite dimensional smooth manifolds.

Assume that ϕ : C∞ (N) → C∞ (M) is a homomorphism of R−algebras. Then,

there exists exactly one smooth mapping Φ :M → N such that Φ∗ = ϕ.

Proof. The uniqueness of Φ is clear. By the above theorem C∞ (M) and

C∞ (N) are complete. Therefore, ϕ is a map from M into N . Since for each

f ∈ C∞ (N), Φ∗ (f) = ϕ (f) , the mapping Φ :M → N is smooth.�

We say that smooth R-pairs (A,Σ), (A,Σ′) are consistent if each element of Σ is

compatible with each element of Σ′. In this case (A,Σ∪Σ′) is also a smooth R-pair.
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6 Maximal Smooth Structure

Proposition 6.1. Let (I,≤) be a directed set. Assume that ((Ai,Σi) , ϕji)i,j∈I , i ≤

j is a direct system of smooth pairs over R, where for each i ≤ j, Ai is a subalgebra

of Aj and ϕji, the canonical injection of Ai into Aj is a domination. Then, the

R−algebra A = ∪i∈IAi is the underlying R−algebra of a unique smooth pair over

R such as (A,Σ) which satisfies the following conditions:

i) For each i ∈ I, ϕi : (Ai,Σi) → (A,Σ) is a domination. (Here ϕi : Ai → A is

the canonical injection.)

ii) If for some p ∈ I and for all i ≥ p, (Ai,Σi) is separated (resp. analytic),

then, (A,Σ) is separated (resp. analytic).

Proof. Let µ be an element of I and let A ∈ Σµ. We are going to prove that

A is a sub-module of type D for A. Let Λ = A · A and for i ≥ µ, let Λi = A · Ai.

Clearly, we have Λ = ∪i∈IΛi. Since A = ∪i∈IAi, for each y ∈ A, there exists i ∈ I

such that y ∈ Ai. As Λi is an ideal of type D for Ai, y = π0
Λi
(y) + πΛi

(y) , where

πΛi
(y) ∈ Λi. Since Λi ⊂ Λ, πΛi

(y) ∈ Λ. Hence y ∈ R · e + Λ. But y is an arbitrary

element of A. Therefore, A =R · e+ Λ. Now assume that for some k ∈ N,

Σ|n|=kµnx
n = Σ|n|=k+1ynx

n ∈ Ak ∩ Λk+1,

where xn=xn1
1 xn2

2 ...x
nq
q , n=Σql=1nl, xi ∈A, yn ∈ A and µn ∈R. Since A = ∪i∈IAi
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and for i≤j, Ai is a subalgebra of Aj, there exists i ∈ I, i ≥ µ, such that all yn ∈ Ai.

Thus in Ai

Σ|n|=kµnx
n = Σ|n|=k+1ynx

n ∈ Ak ∩ Λk+1
i .

Since A is a sub-module of type D for Ai and generates the ideal Λi

Σ|n|=kµnx
n = 0 = Σ|n|=k+1ynx

n.

Therefore, A is a sub-module of type D for A. On the other hand, let A and A′ be

two equivalent sub-modules of type D for (Aµ,Σµ). Since each ϕjµ : Aµ → Aj is

a domination, A′ · Aj = A · Aj = Λj. Hence, A
′ · A = ∪i∈I (A

′ · Ai) = ∪i≥µΛi = Λ.

Therefore, A and A′ are equivalent in A. Let C ∈ Σµ be strongly compatible with

B ∈ Σµ. By definition πB(C) ≈ B and πC(B) ≈ C in Aµ. By the above, πB(C) ≈ B

and πC(B) ≈ C in A. Hence, if D and E are compatible in Aµ they are compatible

in A. Therefore, there exists a smooth pair (A,Σ) where Σ = ∪Λ∈Σi
ϕ (Λ) for all

i ∈ I. Clearly, each ϕi : (Ai,Σi) → (A,Σ) is a domination. The uniqueness of this

smooth pair is trivial.

Assume that for all i ≥ ν, (Ai,Σi) is separated. Let y ∈ ∩Λ∈ΣΛ. Then, there

exists i ≥ ν, such that y ∈ Ai. Thus y = ϕi
−1 (∩Λ∈ΣΛ) = ∩Λ∈Σϕ

−1
i (Λ) = ∩Λ∈Σi

Λ =

{0}. Therefore, (A,Σ) is separated.

In the same way we see that if for all i ≥ ν, (Ai,Σi) is analytic, then (A,Σ) is
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analytic.�

Let Γ be a subcategory of the category R−SP. An object (A,Σ) is calledmaximal

in Γ if every domination ϕ : (A,Σ) → (A′,Σ′) which is in Γ is an isomorphism.

Proposition 6.2. The smooth R−algebra (C∞ (Rn) , [Rn ]) is not separatedly

maximal (is not maximal in the category of separated smooth R−algebras.)

Sketch of the Proof. For simplicity we assume that n = 1. Let λ ∈ Q and

µ ∈ R−Q. Define ϕλ, ψµ : R→ R as follows

ϕλ(t) =























1
t−λ

if t ∈ R−Q

0 if t ∈ Q

ψµ(t) =























1
t−µ

if t ∈ Q

0 if t ∈ R−Q

LetA be the subalgebra of RR generated by C∞ (R)∪{ϕλ | λ ∈ Q}∪{ψµ | µ /∈ Q}.

As we have done in Proposition 5.4 one can check easily that A admits a unique com-

plete separated smooth structure Σ such that the canonical injection (C∞ (R) ,R) →

(A,Σ) is a domination which is not an isomorphism.

The proof in the general case is the same.�

Theorem 6.3. Every separated smooth R−pair (R−algebra) is dominated by

a maximal one.
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Proof. Let (A,Σ) be a separated smooth R−pair. Assume that Ω is the set

consisting of all separated smooth R−pairs which dominate (A,Σ). Since (A,Σ) ∈

Ω, Ω is not empty. Now we order Ω by domination. By Proposition 6.1, each chain

in Ω has an upper bound in Ω. By Zorn’s lemma Ω has a maximal element (A′,Σ′)

, which dominates (A,Σ) .�

7 Smooth Structures on Rings

Let R be a commutative ring with identity 1. We say that R is a semi-integral

domain, if for x, y ∈ R, and n ∈ N, the relations x 6= 0 and xn (xy + 1) = 0

imply that x is invertible. R is called proper if there is a non-unit t ∈ R such that

1 + t is also a non-unit. Clearly, each integral domain is a semi-integral domain.

Furthermore, we have the following

Lemma 7.1. Let R be a commutative ring with identity 1. Then

1) R is a semi-integral domain if and only if it contains neither nilpotent nor

idempotent elements.

2) R is proper if and only if it is not local.

3) Let R be a semi-integral domain and R′ ⊂ R a sub-ring. Then R′ is also a

semi-integral domain.
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4) Any finite semi-integral domain is a field.

Proof. 1) It follows from the definition that ifR has a nilpotent or an idempotent

element, then it cannot be a semi-integral domain. Now assume that it is not a

semi-integral domain. Then there exist x, y ∈ R, and n ∈ N , such that x 6= 0 and

xn (xy + 1) = 0. But x is not a unit. If xn = 0, there is nothing to prove. Otherwise

let z = −xy. So zn(zn − 1) = zn(z− 1)(zn−1 + zn−2 + ...+ z +1) = 0. Since z is not

a unit it is a non-trivial nilpotent or zn is an idempotent.

2) Let (R,m) be local. Then the non-units are precisely the elements of m.

Clearly for x ∈ m , 1 + x is a unit. Thus R is not proper.

Conversely, let m1 and m2 be two maximal ideals and let m1 6= m2. Then, since

the ideal generated by m1 ∪ m2 is the ring R, there exist x ∈ m1 and y ∈ m2 such

that x− y = 1. Therefore 1 + y = x.

3) The proofs are clear.

4) Let R be a finite semi-integral domain with n elements,and let 0 6= a ∈ R.

Then for some 0 ≤ i ≤ n we have an+1 = ai. Therefore, ai(1 − an−i+1) = 0. Or

ai(1 + a(−an−i)) = 0. Since R is a semi-integral domain a is invertible.�

Lemma 7.2. Let X be a non-coarse connected topological space. Then,

R = C (X,R) is a proper semi-integral domain.

Proof. Let f, g ∈ R , f 6= 0 and let Y = {x ∈ X | f (x) = 0}. Since f 6= 0,
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Y 6= X. Assume that Y 6= φ. Then, there exists a point x0 ∈ Y, such that Y is not

a neighbourhood of it. Let U be an open set containing x0 such that for all x ∈ U,

f (x) g (x) + 1 ≥ 1
2
. Since U  Y, there exists a point x ∈ U such that f (x) 6= 0.

Therefore, f (x)n (f (x) g (x) + 1) 6= 0 for all n ∈ N. It is clear that R is proper.�

Let R be a commutative ring with identity 1. A subset Ω of R is called absorbing

(resp. strongly absorbing )with respect to λ ∈ Ω, if for each λ 6= α in R there exists

β ∈ R (resp. β ∈ Ω) such that for α 6= 0, we have αβ 6= 0 and λ + βα ∈ Ω. A non-

empty subset Ω of R is called absorbing (resp.strongly absorbing) if it is absorbing

(resp.strongly absorbing) with respect to all of its elements. An absorbing subset

Ω ⊂ R is called proper if for each invertible element λ in Ω there exists a non-

invertible element x of R such that λ+ x is a non-invertible element of Ω.

Observe that all ideals are absorbing subsets and the intersection of two absorbing

subsets of a ring may be void.

In the following x : Ω → R denotes the inclusion map and e : Ω −→ R is the

constant mapping t :7−→ 1.

Lemma 7.3. Let R be a semi-integral domain which is not a field, and let Ω

be an absorbing subset of R. Assume that λ ∈ Ω, 0 6= η ∈ R . Let ϕλ,η : Ω → R be
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defined as follows

ϕλ,η(t) =























η if t = λ

0 if t 6= λ

Then there exists no function ψ : Ω → R, such that ϕλ,η is written as

(∗) ϕλ,η = ηe+ (x− λe)ψ

Proof. Assume that there exists ψ : Ω → R such that ϕλ,η can be written

as above. Since Ω is absorbing there exists β ∈ R, such that λ 6= λ + η2β ∈ Ω.

Hence

0 = ϕλ,η
(

λ+ η2β
)

= η + η2β · ψ
(

λ+ η2β
)

= η[1 + ηβ · ψ
(

λ+ η2β
)

].

Since R is a semi-integral domain, the equality η[1 + ηβ · ψ (λ+ η2β)] = 0 and

η 6= 0 imply that η [−βψ (λ+ η2β)] = 1. Thus, η is a unit. Now the definition

of ϕλ,η implies that for each α ∈ R and α 6= 0, there exists some β ∈ R such that

λ+αβ ∈ Ω, and αβ ·ψ (λ+ αβ) = −η. Since R is not a field, this is a contradiction.�

Lemma 7.4. Let R be a semi-integral domain and let Ω be an absorbing subset

of R. Then if for k ∈ N, 0 6= µ ∈ R, λ ∈ Ω and g ∈ RΩ the function h : Ω −→ R

defined by
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h(x) = (x− λe)k(µe+ (x− λe)g(x))

is identically zero, then R is a field.

Proof. Assume that h is identically zero. Since Ω is absorbing there exists

η ∈ R such that λ 6= x = λ+ µ2η ∈ Ω. So µ2kηk(µ+ ηµ2g(λ+ µ2η)) = 0. Therefore

(µη)2k+1(1 + µηg(λ+ µ2η)) = 0.

Since R is a semi-integral domain and µη 6= 0, µ is a unit. Without any loss of

generality we assume that µ = 1. Then the relation

h(x) = (x− λe)k(e+ (x− λe)g(x))

and the fact that R is a semi-integral domain imply that R is a field.

Definition 7.5. Let R be a semi-integral domain which is not a field and let Ω

be an absorbing subset of R. A smooth structure on Ω is a smooth pair (A,Σ) with

the following properties:

i) The algebra A is a sub-algebra of RΩ and Σ = σ (Ω) . In the following we

identify Σ and Ω by σ.

ii) The inclusion map x : Ω −→ R is in A.

iii) The smooth pair (A,Σ) is separated.
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iv) The pair (A,Σ) is separatedly maximal.

Theorem 7.6. Let R and Ω be as above. Then,

1) There exists a unique smooth structure (A,Σ) on Ω.

2) If Ω′ is any other absorbing subset of R contained in Ω, and if (A′,Σ′) is the

smooth structure on Ω′, then the restriction of each element of A to Ω′ is an element

of A′ If , R is an integral domain, or for some λ ∈ Ω′, ∩∞
n=0I

n
λ = {0}.

Proof. Let P (R) denote the R−algebra of polynomial functions on R. Then,

(P (R) ,Ω) is a smooth pair which satisfies conditions i-iii above. It is clear that each

smooth structure on Ω must dominate (P (R) ,Ω) . By Theorem 6.3 there exists

a separatedly maximal smooth pair (A,Ω) which dominates (P (R) ,Ω) . Clearly,

(A,Ω) satisfies all the conditions i-iv above. We are going to prove that (A,Ω) is

the unique smooth pair which satisfies all the above conditions. Suppose that (B,Ω)

is another smooth structure on Ω. Let A∨ B denote the sub-algebra of RΩ generated

by A∪ B. Consider the C−pair (A∨ B,Ω) . For λ ∈ Ω, let Mλ = R · (x− λe) and

Iλ = (x− λe) (A∨ B) . Assume that y ∈ A ∨ B . Then, there exists xi ∈ A, yi ∈ B,

i = 1, 2, ..., n, such that

y = Σni=1xi.yi = Σni=1(xi(λ)e+ (x− λe)xi)(yi(λ)e+ (x− λe)yi)

= Σnk=1xk(λ)yk(λ)e+ (x− λe)Σni=1(xi(λ)yi + yi(λ)xi + (x− λe)xi.yi)

∈ R.e + Iλ = R.e +Mλ.(A∨ B).
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Therefore, for each λ ∈ Ω, Mλ ∈ C (A ∨ B). Now assume that for some λ, µ ∈ R,

0 6= k ∈ N, and some g ∈ A ∨ B, we have µ(x − λe)k = (x − λe)k+1g. Then,

h(x) = (x− λe)k (µe+ (x− λe) (−g)) = 0. By Lemma 7.6, µ 6= 0 implies that

the above equality is impossible. Thus, for each λ ∈ Ω, Mk
λ ∩ Ik+1

λ = 0. Therefore,

(A ∨ B,Ω) is a smooth pair which dominates (A,Σ) . Since (A,Σ) is maximal we

have A = B.

Now assume that Ω′ is an absorbing subset of R included in Ω. Let y and z be

elements of A and let λ ∈ Ω′. Then there exists y,z ∈ A, such that y = y (λ) e +

(x− λe) y and z = z (λ) e + (x− λe) z. Assume that y |Ω′= z | Ω′. Then, the

above equalities imply that (x− λe) (y |Ω′ −z |Ω′) = 0. Assume that R is an integral

domain Then

z (t)− y (t) =























z (λ)− y (λ) if t = λ

0 if t 6= λ

For t ∈ Ω′.

But Ω′ is an absorbing subset of R. Thus Lemma 7.3 implies that y |Ω′= z

|Ω′ . Now assume that ∩∞
n=1I

n
λ = 0. Then if z (t) − y (t) ∈ ∩∞

n=1I
n
λ , z (t) = y (t) .

Otherwise, by Lemma 7.5 z (t) = y (t) . Therefore, the restriction of elements of

A to Ω′ is the underlying R−algebra of a separated smooth pair which admits Mλ

, λ ∈ Ω′ as modules of type D. By the unicity of smooth structure on absorbing
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subsets of R, this smooth algebra is included in (A,Σ) . �

Let Ω be as above. Each y ∈ A is called a smooth function on Ω. Let λ ∈ Ω,

k ∈ N. Then y ∈ A can be written uniquely as

y = y (λ) e+a1 (x− λe)+a2 (x− λe)2+ ...+ak (x− λe)k+z · (x− λe)k+1 ,where

ai ∈ R and z ∈ A. The element k! · ak of R is called the k − th derivative of y at λ

and is denoted by dny

dxn
(λ). The function dky

dxk
: Ω → R defined by dky

dxk
:λ 7−→ dky

dxk
(λ)

is called the k − th derivative of y. Clearly we have dk(y·z)
dxk

= Σkn=0 C
n
k

dk−ny

dxk−n · d
nz
dxn

.

Important Remark 7.7. Let Ω and A be as above. Suppose that S ⊂ RΩ .

The above theorem and its proof show that to prove that S is included in A, it is

sufficient to construct an R−algebra A′ ⊂ RΩ containing S∪{x} and prove that for

each y ∈ A′ and each λ ∈ Ω, there exists yλ ∈ A′ such that y = y (λ) e+(x− λe) yλ.

Theorem 7.8. Let Ω be an absorbing subset of R. Assume that ϕ : N → Ω

is bijective. Suppose that fi :N → N, i = 1, 2, ..., is a sequence of unbounded

increasing functions. Let (ai)i∈N be a sequence of elements of R. Then the function

H : Ω → R given by .

H = Σ∞
i=0[aiΠ

i
k=0(x− ϕ(k)e)fk(i)],

is a smooth function on Ω.

Proof. Let A be the sub-algebra of RΩ generated by all functions of the above
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form. Assume that λ ∈ Ω and H = Σ∞
i=0[aiΠ

i
k=0 (x− ϕ (k) e)fk(i)] is an element of

A. Then, there exists n ∈ N such that λ = ϕ (n) and

H = Σh−1
i=0

[

aiΠ
i
k=0 (x− ϕ (k) e)fk(i)

]

+ (x− λe) Σ∞
i=h

[

aiΠ
i
k=0 (x− ϕ (k) e)fk(i)

]

where

fk(i) =























fk(i) if k 6= n

fn(i)− 1 if k = n

and h is such that fn (h) 6= 0. Since the first part of the above sum is a polynomial

in x, for some µ ∈ R and some P (x) ∈ P (R) it can be written as

Σh−1
i=0 aiΠ

i
k=0 (x− ϕ (k) e)fk(i) = µe+ (x− λe)P (x)

Therefore,

H = µe+ (x− λe) [P (x) + Σ∞
i=h[aiΠ

i
k=0 (x− ϕ (k) e)fk(i)].

By the above remark H is a smooth function.�

Remark 7.9. Assume that the characteristic of R is k 6= 0. Then clearly all

derivatives of the non-constant function xn are identically zero. It is clear that the
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function ϕ = (x−e)x
2

is not smooth. But the function 2ϕ is smooth.

From now on the R-algebra of smooth functions on Ω ⊂ R will be denoted by

C∞(Ω).

Lemma 7.10. Let R be a proper semi-integral domain and let f ∈ C∞(R) be

a non-zero non-invertible function. Then there exists x ∈ R such that f(x) 6= 0 and

is non-invertible.

Proof. The proof is by absurd. Assume that for each x ∈ R, f(x) is zero or

invertible. Then

1) Let f(0) = 0. Then f(x) = xg(x). Hence if x is not unit f(x) must be zero.

Let f(λ) be invertible. Then f(x) = µ + (x − λ)h(x). Where µ is a unit. Assume

that x ∈ R is a non-unit such that 1 + x is also non-unit. Then −λx and −λx− λ

are also non-unit. Since f(−λx) = 0 , µ+ (−λ)(x+ 1)h(x) = 0. Which is absurd.

2) Let f(0) = α be a unit. Then f(x) = α + xg(x). Therefore if x is not unit

f(x) is invertible. Assume that λ is such that f(λ) is zero. Then λ is invertible and

f(x) = (x − λ)k(x). Now assume that x and 1 + x are not invertible. Then λx is

also non-invertible. But then f(−λx) = (−λ)(x+ 1)k(−λx) is invertible. Which is

absurd.�

Proposition 7.11. Let R be a proper semi-integral domain. Then C∞(R) is

also a proper semi-integral domain.
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The proof is an immediate consequence of the above lemma.

Let R be a local integral domain which is not a field. Suppose thatM is the max-

imal ideal of R. Assume that ψ : R → R is a smooth function. Then, clearly for each

λ ∈M , the function 1
1+λψ

is a smooth function.

Proposition 7.12. Let R be an semi-integral domain which is not a field.

Assume that Ω ⊂ R is an absorbing subset and let y be a smooth function on Ω.

Then

1) For all n ≥ 1, d
ny

dxn
: Ω → R is smooth.

2) If 1
y
is defined on an absorbing subset Ω′ ⊂ Ω, then as a function from Ω′intoR

is also smooth and
d( 1

y )
dx

= − 1
y2

· dy
dx

.

3) If y (Ω) is included in an absorbing subset of R, say Ω′ and z ∈ AΩ′, then z ◦y

is a smooth function and d(z◦y)
dx

= dz
dx

◦ y × dy

dx
.

Proof. 1) Let AΩ be the R−algebra generated by all th smooth functions on

Ω and the derivatives of all order of these functions. Let y ∈ AΩ be a smooth

function. Then for λ ∈ Ω, there exists a smooth function z ∈ AΩ such that y =

y (λ) e + (x− λe) z. Thus for each µ ∈ Ω, we have dy

dx
(µ) = z (µ) e + (µ− λ) dz

dx
(µ) .

Since z is smooth, there exists z ∈ AΩ such that z = z (λ) e+ (x− λe) z. Therefore,

dy

dx
(µ) = z (λ)+ (µ− λ) [z (µ)+ dz

dx
(µ)]. Hence dy

dx
= dy

dx
(λ) + (x− λe)

(

z + dz
dx

)

. Now

by induction on n one can see that for each n ≥ 1, there exists yn ∈ AΩ such that
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dny

dxn
= dny

dxn
(λ) e+ (x− λe) yn. By Remark 7.7, d

ny

dxn
is a smooth function. The rest of

the proposition can be proved in the same way.�

Proposition 7.13. Let R be a semi-integral domain and Q ⊂ R , orR be an

integral domain with characteristic zero. Let Ω ⊂ R be an absorbing subset. Assume

that for some λ ∈ Ω the ideal Λ = Iλ of C∞(Ω) has the property ∩∞
n=1Λ

n = {0}.

Then the function f ∈ C∞(Ω) is constant if and only if df

dx
= 0.

Proof. If f is constant then clearly df

dx
= 0. Now assume that df

dx
= 0. Then for

each n ∈ N there exists gn ∈ C∞(Ω) such that

f − f(λ)e = (x− λe)ngn.

So f − f(λ)e ∈ ∩∞
n=1Λ

n = 0. Therefore f = f(λ)e.�

A semi-integral domain is called analytic (resp. of polynomial type) if its smooth

structure is analytic (resp. of polynomial type). It is called fine, if there exists a

smooth function ϕ : R−{0} → R such that ϕ does not admit any smooth extension

to R. A semi-integral domain R is called wild if there exists a non-constant function

ψ : R → R such that dψ

dx
= 0. It is called tame if there exists a non-constant smooth

function y : R → R satisfying the following conditions:

There exists λ ∈ R such that dny

dxn
(λ) = 0, for all n = 1, 2, 3, ....

Proposition 7.14. Let R be as in Proposition 7.13. Then R is analytic if and
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only if it is not tame.

Proof. Let R be analytic. Assume that ϕ : R → R is smooth. Then,

ϕ /∈ ∩∞
n=1I0

n, where I0 = C∞(R) ·x. Therefore, there exists n ∈ N such that ϕ /∈ I0
n.

In other words there exists no function ψ : R → R such that ϕ can be written as

xn · ψ. Thus there exists k ≤ n such that dkϕ

dxn
(0) 6= 0.

The proof of the sufficiency is clear.�

By the above proposition each smooth function on a analytic semi-integral do-

main R satisfying one of the conditions of Proposition 7.13 is uniquely determined

by its derivatives at an element of R. Now assume that y : R → R is analytic.

Without any ambiguity we can write y in the following form.

(∗) y = Σ∞
n=0an (x− λe)n , λ ∈ R,

where n!an = dny

dxn
(λ). The relation (∗) is called the series representation of y at λ.

Moreover in this case we have:

Proposition 7.15. The set of all the series representations of smooth functions

on R at λ ∈ R, is a commutative R−algebra under component-wise additions and

Cauchy products. Moreover, this algebra is closed under term-wise differentiation

and substitution.

Proposition 7.16. Let X be a non-coarse connected topological space and let
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R be the ring of all continuous real functions on X . Then

1) For each f ∈ C∞(R) the mapping f : R→ R given by f(α) = f ◦α is smooth.

2) The mapping f −→ f from C∞(R) into C∞(R) given by f(α) = f ◦ α is a

monomorphism of algebras.

3) Assume that X = R. Then,C∞(R) is wild.

Proof. As we have seen earlier R is a proper semi-integral domain. So it has a

unique smooth structure. Now for each smooth function f ∈ C∞(R) , and all α ∈ R

define f(α) = f ◦ α ∈ R. By Lemma 5.5 there exists g ∈ C∞(R) such that

f(β(x)) = f(α(x)) + (β − α)(x)g(β(x)).

Or

f(β) = f(α) + (β − α)g(β)

By Remark 7.7, f is a smooth function on R. The rest of the proposition is

immediate.�

34



8 Smooth Structure on Z

Proposition 8.1. Let Ω ⊂ Z be an absorbing subset. Then the unique smooth

structure on Ω is analytic.

Proof. Let ω be an element of Ω and let f ∈ Inω . Assume that for some λ in Ω

such that λ− ω 6= ±1,we have f(λ) = µ 6= 0. Then for each n ∈ N , (λ− ω)n | µ.

Since Z is a unique factorization domain this is impossible.�

Proposition 8.2. Let z : Z− {0} → Z be defined as follows

z (t) =
(

1− t2
)

+2
(

1− t4
)2 (

24 − t4
)2
+2

(

1 + 2× 28
) (

1− t18
)3 (

218 − t18
)3 (

318 − t18
)3

+

...2
(

1 + 2× 28
)

(

1 + 2× 22×33 × 32×33
)

× ...×
(

1 + 2Πn
k=2k

2×nn)

×

Πn+1
k=1(k

2×(n+1)n − t2×(n+1)n)n+1 + ....

Then z is a smooth function and does not admit any smooth extension to Z.

Proof. Clearly z is smooth. Assume that z : Z → Z is a smooth extension of

z. Then, there exists a smooth function y : Z→ Z such that z = z (0) e+ xy. Since

z (2) = z (0) + 2y (2) = −3, z (0) 6= 0. Let
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In+1 = (1− t2) + 2 (1− t4)
2
(24 − t4)

2
+ ...+

2
(

1 + 2× 22×22
)(

1 + 2× 22×33 × 32×33
)

× ...×
(

1 + Πn
k=2k

2×n2
)

×

Πn+1
k=1

(

k2(n+1)n − t2(n+1)n
)n+1

and ωn = (1 + 2× 28) (1 + 2× 254 × 354) × ... ×
(

1 + 2Πn
k=2k

2×nn)

. Clearly, ωn

divides z− In+1. Moreover, z− In+1 is a smooth extension of z− In+1. There exists

y1 ∈ AZ such that z − In+1 = (z − In+1) (0) e + xy1. Therefore, (z − In+1) (ωn) =

(z − In+1) (0) + ωny1 (ωn). But (z − In+1) (ωn) = (z − In+1) (ωn) is divisible by ωn.

Thus, (z − In+1) (0) is divisible by ωn. Furthermore, In+1 (0) is divisible by ωn.

Therefore, for all n ≥ 3, z (0) is divisible by ωn. This is a contradiction.�

As we have proved Z is an analytic integral domain. The above proposition

shows that Z is also a fine integral domain. Some other properties of the smooth

functions on Z is contained in [2] and [3]. More about the subject of this paper will

be given later.

Some Open Problems

1) Is there any R−algebra admitting non-consistent separated smooth struc-

tures?

Let (A,Σ) be a smooth pair. A sub-module M ⊂ A is called a basic sub-module

if for each Λ ∈ Σ, we have πΛ(X) ∈ Λ◦. It is clear that any two basic sub-modules
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of (A,Σ) are isomorphic.

2) Is there any separated smooth R−algebra without any basic sub-module?

3) Conjecture : Every separated smooth Z−algebra is analytic.

4) Is every smooth function on Z in the form given in Theorem 7.8 with ai ∈ Z[x].

5) Is there any semi-integral domain of polynomial type?

6) Characterize analytic,wild and fine semi-integral domains.

7) Let (an)n∈N be a sequence in Z. Under what conditions does there exists a

smooth function y : Z → Z having Σ∞
n=0anx

n as its series representation around

zero?

8) Characterize semi- integral domains R having the property that C∞(R) are

semi- integral domains.

9) Is (Cω (R) , [Rn ]) analytically and separatedly maximal?

10) Are any two analytically and separatedly maximal analytic subalgebras of

the R−algebra RR isomorphic?

11) Let R be a semi-integral domain and let Ω ⊂ Ω′ ⊂ R be absorbing subsets.

Under what condition a function h ∈ C∞(Ω) can be extended to Ω′.
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