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Abstract—Recently, Ebrahimi and Fragouli proposed an al-
gorithm to construct scalar network codes using small fields
(and vector network codes of small lengths) satisfying muiltast
constraints in a given single-source, acyclic network. Theontri-
bution of this paper is two fold. Primarily, we extend the scéar
network coding algorithm of Ebrahimi and Fragouli (hence-
forth referred to as the EF algorithm) to block network-error
correction. Existing construction algorithms of block network-
error correcting codes require a rather large field size, wheh
grows with the size of the network and the number of sinks,
and thereby can be prohibitive in large networks. We give an
algorithm which, starting from a given network-error corre cting
code, can obtain another network code using a small field, whit
the same error correcting capability as the original code. @r
secondary contribution is to modify the EF Algorithm itself.
The major step in the EF algorithm is to find a least degree
irreducible polynomial which is coprime to another large degree
polynomial. We suggest an alternate method to compute this
coprime polynomial, which is faster than the brute force mehod
in the work of Ebrahimi and Fragouli.

I. INTRODUCTION
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notions of the Hamming weight, Hamming distance, minimum
distance and various classical error control coding bounds
to their network counterparts. Algorithms for construgtin
network-error correcting codes which meet a generaliratio
of the classical Singleton bound for networks can be found in
[10]-[12]. Using the algorithm of [12], a network code which
can correct any errors occurring in at mestedges can be
constructed, as long as the field sizés such that

o,

q>N(2a

wheref is the set of edges in the network. The algorithms of
[10], [11] have similar requirements to construct such roekw
error correcting codes. This can be prohibitive wHénh is
large, as the sink nodes and the coding nodes of the network
have to perform operations over this large field, possibly
increasing the overall delay in communication.

In this work, we extend the EF algorithm to block network-
error correction using small fields. As in|[7], we shall rastr

Network coding was introduced ifl[1] as a means to improwr @lgorithms and analysis to fields with binary charastiri
the rate of transmission in networks. Linear network codinghe techniques presented can be extended to finite fields of

was introduced in[]2]. Deterministic algorithms exist [[H}
to constructscalar network codegn which the input symbols

other characteristics without much difficultly. The cohtri
tions of this work are as follows.

and the network coding coefficients are scalars from a finitee We extend the EF algorithm ofl[7] to construct network-

field) which achieve the maxflow-mincut capacity in the case
of acyclic networks with a single source which wishes to

multicast a set of finite field symbols to a set &f sinks,
as long as the field sizg > N. Finding the minimum field

size over which a network code exists for a given network is
known to be a hard probleml[6]. Most recently, an algorithm
was proposed in_[7] which attempts to find network codes
using small field sizes, given a network coding solution for

the network over some larger field sige- N. The algorithms
of [[7] also apply to linear deterministic networks [8], arat f

vector network codeévhere the source seeks to multicast a
set of vectors, rather than just finite field symbols). In this

error correcting codes using small fields, by bridging the
techniques of the EF algorithm and the network-error
correction algorithm of[[12].

o The major step in the EF algorithm is to compute a
polynomial of least degree coprime with a polynomial,
f(X), of possibly large degree. While it is shown [A [7]
that this can be done in polynomial time, the complexity
can still be large. Optimizing based on our requirement,
we propose a alternate algorithm for computing the
polynomial coprime withf(X). This is shown to have
lesser complexity than that of the EF algorithm, which
simply adopts a brute force method to do the same.

work, we are explicitly concerned about the scalar network The rest of this paper is organized as follows. In Sedfibn I,
coding problem, although the same techniques can be easily give the basic notations and definitions related to né¢wor
extended to accommodate for vector network coding anddineading, required for our purpose. In Section 111, we revide t

deterministic networks, if permissible, as in the case_{f [7

EF algorithm briefly and then propose our modification to it,

Network-error correction, which involved a trade-off beand prove that the modified algorithm has lesser complexity
tween the rate of transmission and the number of correctaliban the original technique in the EF algorithm. Secfion IV
network-edge errors, was introduced [n [9] as an extensipresents our algorithm for constructing network-erroreot-

of classical error correction to a network setting. Alonghwi

ing codes using small field sizes, along with calculations of

subsequent works$ [10] and [11], this generalized the adaksithe complexity of the algorithm. Examples illustrating the
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algorithm performance for network coding and error coiicect variable (and the total degree) of the polynomigsand f
are presented in Sectigd V. Finally, we conclude the paperane at most:’A and Nh'A respectively.
Sectior V] with comments and directions for further resharc

Il. NOTATIONS AND DEFINITIONS m

The model for acyclic networks considered in this paper is
as in [13]. An acyclic network can be represented as a acyclicA
directed mu!tl—graprG = (1.8), wherev is the set of all modify its key step so that the overall complexity of the
nodes and is the set of all edges in the network. lqorithm is reduced

. . . ahgont m is reduced.

We assume that every edge in the directed multi-grap
representing the network has ug#pacity(can carry utmost
one symbol fromF,). Network links with capacities greatery 1. EE Algorithm - Review
than unity are modeled as parallel edges. The network is

assume_d to be instantaneous, i.e., all nodes process tte SeRigorithm 1: Scalar network coding algorthm using smal
generation(the set of symbols generated at the source at gq|4s - 71

particular time instant) of input symbols to the network in & (1) Assign valuesy;s to the scalar coding coefficients
given coding order (ancestral ordér [13]). X;s from an appropriate field

Let s € V be the source node arfdbe the set ofV (= |T) Fy. (25 = 2/les)141 5 N} such that the network
receivers. Let:,. be the unicast capacity for a sink nolles | 5 ser matricesis to all the sinks are invertible.

T, i.e., the maximum number of edge-disjo_int paths fre_m (2) Express eveng; = o, as a binary polynomiap; (X)
to T". Thenh = minre7 h, is the max-flow min-cut capacity | degree at most — 1 using the usual polynomial

of the n/1u|_ticast _connection. _ ) representation of the finite fieldl,., for a particular
An h/-dimensional network codeh( < h) is one which choice of the primitive polynomial of degree

p :
can be used to transmﬁ symbols S|multaneo_usly frqm (3) Substituting these polynomials representing s
to T, and can be described by the three matrige¢of sizé | i the matrices\iy, calculate the determinants of; as

KW x|&]), F (of size|€]| x |£]), and Dr (of size |E| x k' for the polynomialsf, (X) € F[X], and also find
every sinkT € T), each having elements from some finite FX) =TI £.(X). Then, f(X) is non-zero and has
field IF,. Further details on the structure of these matrices CBNgegree at :rpneoTsNT(k Z1hA ir’1 the variableX
be found in[[3] and[7]. We then have the following definition| '

. M ODIFYING THE EF ALGORITHM

fter briefly recollecting the EF algorithm, we shall prodee

(4) Find an irreducible polynomial of least degreé€X),
which is coprime withf (X).

ID_efinitio_n 1: [3] The network transfer rr_latrijT fpr a (5) Let X; = p:(X)(mod g(X)). Thus, eachX; can be
h'-dimensional network code,, corresponding to a sink nojeviewed as an element inXL . Also, for each SinkT,

. , , : ' o . S g(X)
T € T is a full rank A’ x K/ matrix defined as My = the matrices)M; remain ﬁ'\vertlble as

AFDyp = AFr. X dg(X 0 X dg(X 0
The matrixMr governs the input-output relationship at sinl f2(X)(modg(X)) # 0, as /(X)(modg(X)) # 0.

T. The problem of designing &'-dimensional network code The following lemma ensures that such a coprifi&’) exists

then implies making a choice for the matricdsF, and D, @nd can be found in polynomial time.

such that the matrice§Mr : T € T} have rankh’ each. We  Lemma 1: [7] If f(X) is a non-zero binary polynomial of

thus consider each element 4f F', and D+ to be a variable degreen, there exists a coprime polynomig{X) of degree

X; for some positive integei, which takes values from the at mostlog(n + 1) — 1, and we can identify it in polynomial

finite field F,. Let {X;} be the set of all variables, whosetime.

values define the network code. Remark 1: [7] The worst-case complexity of computing
The variablesX;s are known as thiocal encoding coeffi- ¢(X) is O (n?log(n)) , wheren = NhAlog(N).

cients[13]. For an edge in a network with ah’-dimensional

network code in place, thglobal encoding vectofl13] is

a I/ dimensional vector which defines the particular lineag. Fast algorithm for computing least degree coprime poly-

combination of theéy’ input symbols which flow through. It nomial

is known [3]-[5] that deterministic methods of construgtia

h-dimensional network code exist, as long@s N. We now present a fast algorithm for computing the least
Let A be the length of the longest path from the sourcgegree irreducible polynomiay(X) that is coprime with

to any sink. Because of the structure of the matriged” f(X). Note that any polynomigj(X) coprime with f(X) is

and Dr, it is seen [[V] that the matrix\/r has degree at useful only if the degree of(X) is less than[log(N)] + 1,

most A in any particular variableX; and also a total degreeas only such ag(X) can result in a network code using

(sum of the degrees across all variables in any monomial) @fsmaller field than the one we started with. Using this

A. Let f. (X17X2,..X|{Xi}‘) be the determinant af/r and fact, we give AlgorithmR2 which computes a least degree

f(X1,Xo,. X¢x,3)) = [lres fr- Then the degree in anyirreducible polynomialg(X) that is coprime with f(X).




Algorithm 2: Fast algorithm for computing a least degree
coprime polynomial to the given polynomigl X).

: _ Jo fi fo e e e fal

(1) Let P = {X2 FX:i=1,2,., nog(N)]}. R
(2) foreachp;(X) € P do Jfonm1 o [yt e e fanes

Calculater(X) = f(X)(mod p;(X)). . . .

if 7(X) is non-zerathen . . .

| Break. fan—a+1 f]u 0 .. 0 ,
endend whereaq is the largest positive integer such that—a+1 < M.
(3) Let p;(X) be the first polynomial for which(X) is Now, note that calculating the polynomigl(mod p), is

non-zero. Note that eveny;(X) € P is the product of al equivalent to adding up the rows of the arrangement, while

ireducible polynomials whose degree dividedlso, all | rétaining the coefficienf, as it is. There are{% rows in
irreducible polynomials of degree< j divide f(X) as the arrangement, and adding any two rows requires at most
all p;(X)|f(X) for all i < j. Therefore, at least one of | 7 — 1 additions. Thus, the total number of bit additions is
the irreducible polynomials of degreeis coprime with | O(M). L]
f(X). Find one such polynomiaj(X). Proposition 1: The complexity of Algorithn{R is at most
O(N?) + O(hN(log(N))?A).

Proof: The worst-case for Algorithri]2 would bg =
[log(N)]. By Lemmal3, computingf(X)(mod p;(X)) for
somep;(X) € P takes at mosOD(hANlog(N)) operations.

The following lemma ensures that all polynomials whici\S there arglog(IV)| suchp;(X)s, evaluating the remainders
are found to be coprime wit}i(X) by directly computing the 7(X)s costsO(hN (log(N))?A) operations at most. Let
gcd (or the remainder for irreducible polynomials) in theter 5
force method (as done in Algorithi 1), can also be found by F(X)(modp; (X)) = f(X)
running Algorithm2, using the set of polynomigksupto the pe the polynomial of degree at maztes(M)1 = 23

appropriate degree. Now, we have to determine the complexity in obtaining the
Lemma 2:For some fieldF, let f,g € F[.X] be two poly- polynomial of degreglog(N)] which is coprime withf(X)
nomials relatively prime with each other. Lgte F[X] such (or equivalently withf(X)).

that g[p. Theng is also relatively prime with the polynomial  There are approximateR irreducible polynomials of order
f(modp). j. It is known (see [14%L for example) that for any two
Proof: As f andg are coprime with each other, we carpolynomialsp(X) andq(X) (atleast one of them of degres,
obtain polynomials, b € F[X] such thatf+bg = 1. Let f = the complexity of dividingy(X) by ¢(X) (or equivalently, cal-
gp+r for the appropriate quotient and remainder polynomiaisilatingp(X)(mod ¢(X))) is wlog(w). Thus, the complexity

q,r € F[X] with deg(r) < deg(p). Also, asg|p, let p = hg. of dividing f(X) by every possible irreducible polynomial of

C. Justification for Algorithni]2

Then, degreej = [log(N)] is at most2-O (27log(27)) = O(N?).
Thus, the total complexity for finding the least degree
1=a(gp+r)+bg polynomial g(X) coprime with f(X) (which is assured of
= a(ghg + 1) + bg having a coprime factor of degrééog(N)] + 1) is at most
O(N?%) + O(hN(log(N))2A). [ |

= ar+ (agh +b)g, Remark 2:Note that the worst-case complexity of Algo-

. : _ rithm[2 is lesser than the worst-case complexity of findirg th
WhICh means thay andr are coprime with each other, henceCoprime polynomialg(X) according to [[7] (which assumes
proving the lemma. a direct test for coprimeness of(X) and the candidate

polynomials), indicated in Remark 1. Even if we test for
D. Complexity of Algorithri]2 coprimeness only for polynomials upto degriéeg(N)], the
algorithm of [7] would still have a worst-case complexity of

We now prove that our method for Stepof Algorithm [l O (N2hAlog(n)) , wheren = NhAlog(N).
has less complexity than that of [7]. Towards that end, we firs
prove the following lemma. IV. NETWORK-ERRORCORRECTING CODES USING SMALL

Lemma 3:Let f,p € F»[X], be such thatleg(f) = M and FIELDS
p = X" + X, for some non-negative integefd andn. The  This section presents the major contribution of this work.
polynomial f(mod p) can be calculated using at mastM)  After briefly reviewing the network-error correcting codene
bit additions. struction algorithm in[[12], we proceed to give an algorithm

Proof: Let f = Zf\io fiX*. We arrange the coefficientswhich can obtain network-error correcting codes using bmal
of f as follows. finite fields.



A. Network-Error Correcting Codes - Approach 6f [12] Algorithm 3: Algorithm of [12] for constructing a
An edge is said to be in error if its input symbol ang Network-error correcting code that meets the network Sin-

output symbol (both from some appropriate fi@ig) are not | gleton bound.

the same. We model the edge error as an additive error from(1) Let 7 be the set of all subsets of edge set of size

F,. A network-erroris a |£| length vector overF,, whose | Add an imaginary source’ and drawk = h — 2a edges

components indicate the additive errors on the correspgndj from s’ to s.

edges. A network code which enables every sink to correct(2) foreach ' € F do

any errors in any set of edges of cardinality at mess said (1) Add an imaginary node at the midpoint of each

to be aa network-error correcting codeThere have been edgec € F and add an edge of unit capacity frarh

different approaches to network-error correction [9} Me to eachw.

concern ourselves with the notations and approach of [K2],|a (1) foreachsinkT € T do

the algorithm in[[12] lends itself to be extended according Draw as many edge disjoint paths frarhto T

the techniques of [7]. passing through the imaginary edges added at
It is known [9] that the number of messag#$ in an « Step(i) as possible. Letn’ (< 2a) be the

network-error correcting code is upper bounded according|t number of paths.

the network Singleton bounds Draw k edge disjoint paths passing througlhat
are also edge disjoint from thaf paths drawn

in the previous step.
end

(7i1) Use the algorithm from_[4] using the identifieg
edge disjoint paths such that it ultimately gives a
k< h-—2a. network code with the following property. Lé8% be

_ . the (k + m%) x (k + 2a) matrix, the columns of
This bound was later refined [11] to accommodate for the | \yhich are theh length global encoding vectors

M S qh72oc'

Assuming that the message set is a vector spacelyvef
dimensionk, we have

different mincuts and different error capabilities at elifnt (representing the linear combination of thénput
sinks as symbols anda error symbols) of the incoming
k<h,—2a,, edges at sink’ corresponding to thé + m! edge

disjoint paths. TherB must be full rank. As proved
in [12], this ensures that the network code thus
obtained isc network-error correcting and meets the

network Singleton bound.
end

where sinkT € T can correct any network-error with errorg
in at mosta,. edges.

Algorithm [3 is a brief version of the algorithm given in
[12] for constructing any network-error correcting code for
a given single source, acyclic network that meets the ndtwar
Singleton bound. The construction af [12] is based on the
network code construction algorithm df| [4]. The algorithm
constructs a network code such that all network-errors o ugHowever, the following lemma shows that both are equivalent
2« edges will be corrected as long as the sinks know where
the errors have occurred. Such a network code is then showhemma 4:Let Y = {f;: f; € F[X],i=1,2,..,n} be a
[12] to be equivalent to an: network-error correcting code. collection of univariate polynomials with coefficients fino

It is shown in [12] that AlgorithniI3 results in a networksome fieldF. A polynomialg € F[X] is relatively prime with
code which is ax network-error correcting code meeting thell the polynomials iri/ if and only if it is relatively prime

network Singleton bound, as long as the field size with their product.
Proof: If part: If g is relatively prime with the product of
q>|T||F|=N ( 2‘2 ) (1) all the polynomials i/, then there exist polynomials, b €
F[X] such that

Algorithm[4, shown in the next page, constructs a network-
error correcting code using small field sizes (conditionad o
the existence of an irreducible polynomial of small degreeor eachj € 1,2, ...,n, we can rewrite[(R2) as
satisfying the necessary requirements).

B. Network Error Correction using Small Fields - Algorithm (
a

Hﬂ-) +bg = 1. (2

i=1

C. Justification for Step of Algorithm[@ a H Ji| [i+bg=1,

In order to ensure that the error correction property of the i=Lizj

original network code is preserved, it is sufficient if a polywhich implies thatg is coprime with eacty; € U.
nomial g(X) is coprime with each polynomiaﬂf(X), rather Only if part: Supposeg is relatively prime with all the
than their producif (X ), as shown in Step of Algorithm[4. polynomials inl{. Then, for eachy € 1,2, ...,n, we can find



Algorithm 4 : Network-error correcting codes under smdg
field sizes

(1) With g = 2[lsWNIFD1+1 " run Algorithm[3 to find an
« network-error correcting code meeting the network
Singleton bound. Let the encoding coefficients 0y be
(678
(2) Express evenX; = «; as a binary polynomia;(X)
of degree at most — 1 using the usual polynomial
representation of the finite field,.
(3) foreach F € F do
foreach sink T € 7 do
Find a non-zero minor of the matris’:,
obtained from a(k + m®) x (k+mk)
submatrix. At least one such minor exists A%
has rank =k + mZ’. Let the minor bef (X),
which can be of degree at mast\iog(N|F]),

according to Sectioflll and(1).
end

end
(4) Calculate the polynomial

F) =11 IT 700
FeFTeT

(5) Using Algorithm[2 with the set
P={x?+Xx:i=12.., [zog(zv|f|)1}, find an
irreducible polynomial of least degreg(X), which is
coprime with f(X).
(6) Let X; = p;(X)(mod ¢g(X)). Thus, eachX; can be
viewed as an element iﬁ%. Because of the fact tha
fF(X)(mod g(X)) # 0, the newBZ matrices obtained
after the modulo operation are also full rank, which
implies that the error correcting capability of the code
preserved.

ar > such minors, and calculating each takes

®\k+ mE
O ((k + mf)?’ multiplications overF,. As (k+ml) can
take values upt@, clearly the function to be maximized is of

the formf(m) =

gives the value of for which such a function is maximized,
based on which the value in Taljle | has been calculated.

Proposition 2: For some positive integen, let m be an
integer such tha® < m < n. The function

fomy = ()

is maximized at
_ [ (H1+1) ifnx2
e { 1 if n=1.
Proof: The statement of the theorem is easy to verify for
n = 1. Therefore, leth > 2. Let g(k) = f(k) — f(k+ 1), for
somek, such thatd < £k <n — 1. Then,

m?, form = 0,1, ..., h. Proposition

m

g(k)z(Z)k?’—(kil )(k+1)3
“(0) (2 (i) oew)
— < Z ) (2k% + k*(2 = n) + k(1 — 2n) — n)
—<Z)mw

[ where (k) = (2k% + k%(2 — n) + k(1 — 2n) — n) . Proving
the statement of the theorem is then equivalent to showiaty th
both of the following two statements are true, which we shall

is do separately for even and odd valuesnof

o g(k) <0 for all integersd < k < [%].

polynomialsa; andb; such thata; f;+b;9 = 1. In particular,

o g(k) >0 forallintegers[ 5] +1<k<n-—1.
Case-A(n is even: Let k = 5 + i, for some integetr such
that—% <i < % — 1. Then,

G(k) = 2k% + k%(2 — 2k + 2i) + k(1 — 4k + 4i) — 2k + 2i

a1f1+blg:17 (3) Ak kQ 9 9; (4 0 5

s fo + bag = 1. 4) g(k) = k*(=2 +2i) + k(4i — 1) + 2. (5)

) _ For -4 < i <0, it is clear from [5) thatg(k) < 0. If
Using [4) in [3), 1 <i<(2-1),itis clear thatg(k) > 0. Thus, for even

1=a1f1(aafa + bag) + brg
= (a1a2) f1f2 + (a1 fibs + b1)g.

Thus, g is relatively prime with f; fo. Continuing with th

same argument, it is clear that is relatively prime with

[T fi-
D. Complexity of Algorithril4

values ofn, the theorem is proved.
Case-B(n is odd: Let k = [2] +i = (2EL) + 4, for some
integeri such that— (241) <i < (252). Then,
G(k) =2K* + k*(2 -2k +2i+1)
+ k(1 — 4k +4i42) — 2k +2i + 1
G(k) = k*(=1+2i) + k(1 + 4i) + 26 + 1. (6)
Now, fori = 0, k = (2£!) > 2 (asn > 2 and is odd).

e

The complexity of Algorithni# is given by Tablé I, alongHence,j(k) = —k* +k+1 < 0 for i = 0. If — (%) <
with the references and reasoning for the mentioned compléx< 0, then by [®), it is clear thag(k) < 0. Thus for all

ities for every step of the algorithm.

The only complexity calculation of Tab[é | which remains For1 < i < (

— (") <i<0,g(k) <O0.

n=3)  again by [(), it is clear thaj(k) > 0,

to be explained is the complexity involved in identifyingand thus the theorem holds for odd valuesoT his completes

and calculating the non-zero minor of the matf.. There the proof.



TABLE |

COMPLEXITY CALCULATIONS FORALGORITHMHA

Step(s) Complexity Reasoning
Algorithm[3 A =0 (FINL(EFIN + €|+ h + 2a)). 2]
Identifying non-zero minor of matrixB% B:=0 (( :1 ) m3> , with m = ([27+1) Theoren{2
Computing the non-zero minor (ov&%[X]) of BY | C := O (h*Alog(N|Fl)) + O ((hAlog (N|}'|))3) [71
from a (k + m%) square submatrix
Calculatingf(X) = [[pe 7 [I7er S5 (X). D := O (alog(a)), wherea = Nh|F|Alog (N|F|) [14]
Computing the coprime polynomigl X) E := O (N?|F]?) + O(Nh|F|Alog (N|F])?). Propositior_ 1L

| Total complexity

A+ N|F|(B+C+D)+FE |

V. ILLUSTRATIVE EXAMPLES

Fig. 1. C3 network with20 sinks

Example 1:Consider th

g 2 network shown in Fig.]1.

This network has20 sinks, each of which ha8 incoming
edges from som8&-combination of thes intermediate nodes,
thus the mincuk being3. Using the methods i [3]=[5], &

Letb1(X) = X5+ X2 +1andby(X) = X5+ X3+ X2+
X +1, both of them being primitive polynomials of degrée
Note that.A and B are valid choices (using eithég (X) or
b2(X) as the primitive) for the global encoding vectors of the
6 outgoing edges from the source, representing deterndnisti
network coding solutions for a&-dimensional network code for
this network. We assume that the intermediate nodes simply
forward the incoming symbols to their outgoing edges, i.e.,
their local encoding coefficients are all

Table[] illustrates the results obtained with the exeautio
of Algorithm [, with Algorithm[2 being used to compute
the coprime polynomial for this network with the original
deterministic solutions beingl or B, with b;(X) andbz(X)
as the primitive polynomial oFss.

The solutions (global encoding vectors of tlée edges

6

3
modulo operations of the individual coding coefficientsngsi

the polynomialg(X), are also shown in Tablelll. It can be
checked that both of these sets of vectors are valid network

coding solutions for a3-dimensional network code for the
6

3
It is seen that for the sed being the choice of the network

from the source) obtained for th network, after the

network.

dimensional netvyork c_ode can be constructed for t.his n&twagode in the first step of Algorithfil 1 and with (X ) being the
as long as the field sizg > 20. Let ¢ = 2°. Consider the primitive polynomial, the final coprime polynomial has degr
following sets of vectors inf3,, with 3 being a primitive 2 and thus resulting in a cod, which is in fact the smallest

element offFs,.

possible field for which a solution exists for this networkrF
B with the primitive polynomiab.(X'), no solutions are found
using characteristic two finite fields of cardinality lesaril32.

Example 2:Consider the network, witi8 edges, shown
in Fig.[2. This network is from[[15], in which a network-
error correcting code meeting the network Singleton bound
is given by brute-force construction for this network over
F4, which is the smallest possible field over which such a
code exists. According to the algorithm in_[12],1anetwork-

error correcting code can be constructed determinisgigall

¢ > 2 128 = 306. In Fig. 2, let the variableX;

denote the encoding coefficient between edges> v, and
vy — vg. Similarly, the variableX, (X3) denote the local
encoding coefficients betweem, — wvs (v — wv7) and



TABLE I

6C3 NETWORK - ALGORITHM[ (TOGETHER WITHALGORITHM[Z)

Algorithm parameter Global encoding vectors.A Global encoding vectorsB
Prim. poly. b:(X) Prim. poly. b2(X) Prim. poly. b:(X) Prim. poly. b2(X)
Degree of f(X), the product of the|
20 determinant polynomials 20 40 30 55
p(X): First p;(X) for which None of the form
f(X)(mod p;(X)) is non-zero X'+ X X8+ X X8+ X X2 4 X, fori<4
f(X)(mod p(X)) X+ X X+ X+ X+ X | X+ X+ X"+ X7 Not applicable
g(X): Least degree
polynomial coprime tof (X) X2 4 X +1 X34 X +1 X34 X +1 Not applicable
1 0 1 0 1 0
0 1 0 1 0 1
0 0 0 0 0 0
o] [1] o] [1] o[ 1]
Resultant network code 0 1 0 1 0 1 Not applicable
1 1 1 1 1 1
17T 1 1 ][ 1 17T 1
Ba A Bs Bs Bs 3
i Ba Bs B8 § s

TABLE Il

USING ALGORITHM[ FOR THE NETWORK INFIG.[2

Algorithm parameter Network code defined by.A | Network code defined byB
Degree off(X),
the product of the306 determinant polynomials 260 978
p(X): Firstp; (X) for which £(X)(mod p;(X)) is non-zero X2+ X X+ X
f(X)(mod p(X)) X"+ X°+X°+X° X+ X
Least degree polynomial coprime fqX) X34+ X +1 X7+ X +1
{X1, X2, X3} after the algorithm {83,538, B3 } {B4, Ba, Ps}

Vs — U8 (’U7 — Ug).

Fig. 2.

Example network for network-error correction

Let ¢ = 2° Let A = {B,p', %} and B

{p132, 3391, 33911, where 3 is a primitive element ofF .
Let b1(X) = X? + X* + 1 be the primitive polynomial of

degree9 under consideration.

Let A and B be two choices for the s€tX;, X2, X3} with

all the other local encoding coefficients being unity. It den
verified that these two network codes can be used to transmit
one error-fredfys symbol from the source to both sinks, as
long as not more than single edge errors occur in the network.
Table[Il gives the results of running Algorithid 4 for this
network starting from these two codes, with and 8g being

the primitive elements ofy andFg respectively.

Except for{X;, X2, X3}, all the other coding coefficients
remainl over the respective fields. As in Example 1, the initial
choice of the setsd and B for {X;, X», X3} results in the

final network code being over different field sizes.

With B, the resultant network-error correcting code is over
F,4, exactly the one reported in_[15] by brute force construc-

tion.

VI. CONCLUSION

A new and faster method of computing a coprime poly-
nomial to a given polynomial has been presented. thereby

= improving the performance of the EF algorithm, which is
applicable to scalar and vector network coding. Based on the
EF algorithm, a method has been presented which can obtain
network-error correcting codes using small fields that meet
Consider two suchl network-error correcting codes ob-the network Singleton bound. This technique can be adapted

tained using Algorithri3 for the network of Figl 2 as followsto obtain network-error correcting codes meeting the rdfine




Singleton bound, or for linear deterministic networks whic
permit solutions similar to those obtained In [7].

As in the original paperi]7], questions remain open about
the achievability of a code using the minimal field size. As
illustrated by the examples in Sectibn V, factors such as the
initial choice of the network code and the primitive polyriaim
of the field over which the initial code is defined (using which
the local encoding coefficients are represented as polynomi
als), control the resultant field size after the algorithm.
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