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Abstract—Recently, Ebrahimi and Fragouli proposed an al-
gorithm to construct scalar network codes using small fields
(and vector network codes of small lengths) satisfying multicast
constraints in a given single-source, acyclic network. Thecontri-
bution of this paper is two fold. Primarily, we extend the scalar
network coding algorithm of Ebrahimi and Fragouli (hence-
forth referred to as the EF algorithm) to block network-erro r
correction. Existing construction algorithms of block network-
error correcting codes require a rather large field size, which
grows with the size of the network and the number of sinks,
and thereby can be prohibitive in large networks. We give an
algorithm which, starting from a given network-error corre cting
code, can obtain another network code using a small field, with
the same error correcting capability as the original code. Our
secondary contribution is to modify the EF Algorithm itself.
The major step in the EF algorithm is to find a least degree
irreducible polynomial which is coprime to another large degree
polynomial. We suggest an alternate method to compute this
coprime polynomial, which is faster than the brute force method
in the work of Ebrahimi and Fragouli.

I. I NTRODUCTION

Network coding was introduced in [1] as a means to improve
the rate of transmission in networks. Linear network coding
was introduced in [2]. Deterministic algorithms exist [3]–[5]
to constructscalar network codes(in which the input symbols
and the network coding coefficients are scalars from a finite
field) which achieve the maxflow-mincut capacity in the case
of acyclic networks with a single source which wishes to
multicast a set of finite field symbols to a set ofN sinks,
as long as the field sizeq > N . Finding the minimum field
size over which a network code exists for a given network is
known to be a hard problem [6]. Most recently, an algorithm
was proposed in [7] which attempts to find network codes
using small field sizes, given a network coding solution for
the network over some larger field sizeq > N. The algorithms
of [7] also apply to linear deterministic networks [8], and for
vector network codes(where the source seeks to multicast a
set of vectors, rather than just finite field symbols). In this
work, we are explicitly concerned about the scalar network
coding problem, although the same techniques can be easily
extended to accommodate for vector network coding and linear
deterministic networks, if permissible, as in the case of [7].

Network-error correction, which involved a trade-off be-
tween the rate of transmission and the number of correctable
network-edge errors, was introduced in [9] as an extension
of classical error correction to a network setting. Along with
subsequent works [10] and [11], this generalized the classical

notions of the Hamming weight, Hamming distance, minimum
distance and various classical error control coding bounds
to their network counterparts. Algorithms for constructing
network-error correcting codes which meet a generalization
of the classical Singleton bound for networks can be found in
[10]–[12]. Using the algorithm of [12], a network code which
can correct any errors occurring in at mostα edges can be
constructed, as long as the field sizeq is such that

q > N

(

|E|
2α

)

,

whereE is the set of edges in the network. The algorithms of
[10], [11] have similar requirements to construct such network-
error correcting codes. This can be prohibitive when|E| is
large, as the sink nodes and the coding nodes of the network
have to perform operations over this large field, possibly
increasing the overall delay in communication.

In this work, we extend the EF algorithm to block network-
error correction using small fields. As in [7], we shall restrict
our algorithms and analysis to fields with binary characteristic.
The techniques presented can be extended to finite fields of
other characteristics without much difficultly. The contribu-
tions of this work are as follows.

• We extend the EF algorithm of [7] to construct network-
error correcting codes using small fields, by bridging the
techniques of the EF algorithm and the network-error
correction algorithm of [12].

• The major step in the EF algorithm is to compute a
polynomial of least degree coprime with a polynomial,
f(X), of possibly large degree. While it is shown in [7]
that this can be done in polynomial time, the complexity
can still be large. Optimizing based on our requirement,
we propose a alternate algorithm for computing the
polynomial coprime withf(X). This is shown to have
lesser complexity than that of the EF algorithm, which
simply adopts a brute force method to do the same.

The rest of this paper is organized as follows. In Section II,
we give the basic notations and definitions related to network
coding, required for our purpose. In Section III, we review the
EF algorithm briefly and then propose our modification to it,
and prove that the modified algorithm has lesser complexity
than the original technique in the EF algorithm. Section IV
presents our algorithm for constructing network-error correct-
ing codes using small field sizes, along with calculations of
the complexity of the algorithm. Examples illustrating the
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algorithm performance for network coding and error correction
are presented in Section V. Finally, we conclude the paper in
Section VI with comments and directions for further research.

II. N OTATIONS AND DEFINITIONS

The model for acyclic networks considered in this paper is
as in [13]. An acyclic network can be represented as a acyclic
directed multi-graphG = (V , E), whereV is the set of all
nodes andE is the set of all edges in the network.

We assume that every edge in the directed multi-graph
representing the network has unitcapacity(can carry utmost
one symbol fromFq). Network links with capacities greater
than unity are modeled as parallel edges. The network is
assumed to be instantaneous, i.e., all nodes process the same
generation(the set of symbols generated at the source at a
particular time instant) of input symbols to the network in a
given coding order (ancestral order [13]).

Let s ∈ V be the source node andT be the set ofN(= |T |)
receivers. Leth

T
be the unicast capacity for a sink nodeT ∈

T , i.e., the maximum number of edge-disjoint paths froms
to T . Thenh = minT∈T h

T
is the max-flow min-cut capacity

of the multicast connection.
An h′-dimensional network code (h′ ≤ h) is one which

can be used to transmith′ symbols simultaneously froms
to T, and can be described by the three matricesA (of size
h′ × |E|), F (of size |E| × |E|), andDT (of size |E| × h′ for
every sinkT ∈ T ), each having elements from some finite
field Fq. Further details on the structure of these matrices can
be found in [3] and [7]. We then have the following definition.

Definition 1: [3] The network transfer matrix, MT for a
h′-dimensional network code,, corresponding to a sink node
T ∈ T is a full rank h′ × h′ matrix defined as MT :=
AFDT = AFT .

The matrixMT governs the input-output relationship at sink
T. The problem of designing ah′-dimensional network code
then implies making a choice for the matricesA,F, andDT ,

such that the matrices{MT : T ∈ T } have rankh′ each. We
thus consider each element ofA,F , andDT to be a variable
Xi for some positive integeri, which takes values from the
finite field Fq. Let {Xi} be the set of all variables, whose
values define the network code.

The variablesXis are known as thelocal encoding coeffi-
cients[13]. For an edgee in a network with ah′-dimensional
network code in place, theglobal encoding vector[13] is
a h′ dimensional vector which defines the particular linear
combination of theh′ input symbols which flow throughe. It
is known [3]–[5] that deterministic methods of constructing a
h-dimensional network code exist, as long asq > N.

Let Λ be the length of the longest path from the source
to any sink. Because of the structure of the matricesA,F

and DT , it is seen [7] that the matrixMT has degree at
mostΛ in any particular variableXi and also a total degree
(sum of the degrees across all variables in any monomial) of
Λ. Let f

T

(

X1, X2, ..X|{Xi}|

)

be the determinant ofMT and
f(X1, X2, ..X|{Xi}|) =

∏

T∈T f
T
. Then the degree in any

variable (and the total degree) of the polynomialsf
T

and f

are at mosth′Λ andNh′Λ respectively.

III. M ODIFYING THE EF ALGORITHM

After briefly recollecting the EF algorithm, we shall proceed
to modify its key step so that the overall complexity of the
algorithm is reduced.

A. The EF Algorithm - Review

Algorithm 1 : Scalar network coding algorithm using small
fields - [7]
(1) Assign valuesαis to the scalar coding coefficients
Xis from an appropriate field
F2k

(

2k = 2⌈log(N)⌉+1 > N
)

such that the network
transfer matricesMT s to all the sinks are invertible.
(2) Express everyXi = αi as a binary polynomialpi(X)
of degree at mostk − 1 using the usual polynomial
representation of the finite fieldF2k , for a particular
choice of the primitive polynomial of degreek.
(3) Substituting these polynomials representing theXis
in the matricesMT , calculate the determinants ofMT as
the polynomialsf

T
(X) ∈ F[X ], and also find

f(X) =
∏

T∈T f
T
(X). Then,f(X) is non-zero and has

degree at mostN(k − 1)hΛ in the variableX.

(4) Find an irreducible polynomial of least degree,g(X),
which is coprime withf(X).
(5) Let Xi = pi(X)(mod g(X)). Thus, eachXi can be
viewed as an element inF[X]

(g(X)) . Also, for each sinkT,
the matricesMT remain invertible as
f
T
(X)(mod g(X)) 6= 0, asf(X)(mod g(X)) 6= 0.

The following lemma ensures that such a coprimeg(X) exists
and can be found in polynomial time.

Lemma 1: [7] If f(X) is a non-zero binary polynomial of
degreen, there exists a coprime polynomialg(X) of degree
at mostlog(n+ 1)− 1, and we can identify it in polynomial
time.

Remark 1: [7] The worst-case complexity of computing
g(X) is O

(

n2log(n)
)

, wheren = NhΛlog(N).

B. Fast algorithm for computing least degree coprime poly-
nomial

We now present a fast algorithm for computing the least
degree irreducible polynomialg(X) that is coprime with
f(X). Note that any polynomialg(X) coprime withf(X) is
useful only if the degree ofg(X) is less than⌈log(N)⌉+ 1,
as only such ag(X) can result in a network code using
a smaller field than the one we started with. Using this
fact, we give Algorithm 2 which computes a least degree
irreducible polynomialg(X) that is coprime withf(X).



Algorithm 2 : Fast algorithm for computing a least degree
coprime polynomial to the given polynomialf(X).

(1) Let P =
{

X2i +X : i = 1, 2, ..., ⌈log(N)⌉
}

.

(2) foreach pi(X) ∈ P do
Calculater(X) = f(X)(mod pi(X)).
if r(X) is non-zerothen

Break.
end

end
(3) Let pj(X) be the first polynomial for whichr(X) is
non-zero. Note that everypi(X) ∈ P is the product of all
irreducible polynomials whose degree dividesi. Also, all
irreducible polynomials of degreei < j divide f(X) as
all pi(X)|f(X) for all i < j. Therefore, at least one of
the irreducible polynomials of degreej is coprime with
f(X). Find one such polynomialg(X).

C. Justification for Algorithm 2

The following lemma ensures that all polynomials which
are found to be coprime withf(X) by directly computing the
gcd (or the remainder for irreducible polynomials) in the brute
force method (as done in Algorithm 1), can also be found by
running Algorithm 2, using the set of polynomialsP upto the
appropriate degree.

Lemma 2:For some fieldF, let f, g ∈ F[X ] be two poly-
nomials relatively prime with each other. Letp ∈ F[X ] such
that g|p. Theng is also relatively prime with the polynomial
f(mod p).

Proof: As f andg are coprime with each other, we can
obtain polynomialsa, b ∈ F[X ] such thataf+bg = 1. Let f =
qp+r for the appropriate quotient and remainder polynomials
q, r ∈ F[X ] with deg(r) < deg(p). Also, asg|p, let p = hg.

Then,

1 = a(qp+ r) + bg

= a(qhg + r) + bg

= ar + (aqh+ b)g,

which means thatg andr are coprime with each other, hence
proving the lemma.

D. Complexity of Algorithm 2

We now prove that our method for Step4 of Algorithm 1
has less complexity than that of [7]. Towards that end, we first
prove the following lemma.

Lemma 3:Let f, p ∈ F2[X ], be such thatdeg(f) = M and
p = Xn +X, for some non-negative integersM andn. The
polynomialf(mod p) can be calculated using at mostO(M)
bit additions.

Proof: Let f =
∑M

i=0 fiX
i. We arrange the coefficients

of f as follows.

f0 f1 f2 ... ... ... fn−1

fn fn+1 ... ... ... f2n−2

f2n−1 fn+1 ... ... ... f3n−3

. . ... ... ... .

. . ... ... ... .

fan−a+1 ... fM 0 ... 0 ,

wherea is the largest positive integer such thatan−a+1 ≤ M.

Now, note that calculating the polynomialf(mod p), is
equivalent to adding up the rows of the arrangement, while
retaining the coefficientf0 as it is. There are

⌈

M
n−1

⌉

rows in
the arrangement, and adding any two rows requires at most
n − 1 additions. Thus, the total number of bit additions is
O(M).

Proposition 1: The complexity of Algorithm 2 is at most
O(N2) +O(hN(log(N))2Λ).

Proof: The worst-case for Algorithm 2 would bej =
⌈log(N)⌉. By Lemma 3, computingf(X)(mod pi(X)) for
somepi(X) ∈ P takes at mostO(hΛNlog(N)) operations.
As there are⌈log(N)⌉ suchpi(X)s, evaluating the remainders
r(X)s costsO(hN(log(N))2Λ) operations at most. Let

f(X)(mod pj(X)) = f̃(X)

be the polynomial of degree at most2⌈log(N)⌉ = 2j .
Now, we have to determine the complexity in obtaining the

polynomial of degree⌈log(N)⌉ which is coprime withf(X)
(or equivalently withf̃(X)).

There are approximately2
j

j
irreducible polynomials of order

j. It is known (see [14], for example) that for any two
polynomialsp(X) andq(X) (atleast one of them of degreew),
the complexity of dividingp(X) by q(X) (or equivalently, cal-
culatingp(X)(mod q(X))) is wlog(w). Thus, the complexity
of dividing f̃(X) by every possible irreducible polynomial of
degreej = ⌈log(N)⌉ is at most2

j

j
O
(

2j log(2j)
)

= O(N2).
Thus, the total complexity for finding the least degree

polynomial g(X) coprime with f(X) (which is assured of
having a coprime factor of degree⌈log(N)⌉ + 1) is at most
O(N2) +O(hN(log(N))2Λ).

Remark 2:Note that the worst-case complexity of Algo-
rithm 2 is lesser than the worst-case complexity of finding the
coprime polynomialg(X) according to [7] (which assumes
a direct test for coprimeness off(X) and the candidate
polynomials), indicated in Remark 1. Even if we test for
coprimeness only for polynomials upto degree⌈log(N)⌉, the
algorithm of [7] would still have a worst-case complexity of
O
(

N2hΛlog(n)
)

, wheren = NhΛlog(N).

IV. N ETWORK-ERRORCORRECTING CODES USING SMALL

FIELDS

This section presents the major contribution of this work.
After briefly reviewing the network-error correcting code con-
struction algorithm in [12], we proceed to give an algorithm
which can obtain network-error correcting codes using small
finite fields.



A. Network-Error Correcting Codes - Approach of [12]

An edge is said to be in error if its input symbol and
output symbol (both from some appropriate fieldFq) are not
the same. We model the edge error as an additive error from
Fq. A network-error is a |E| length vector overFq, whose
components indicate the additive errors on the corresponding
edges. A network code which enables every sink to correct
any errors in any set of edges of cardinality at mostα is said
to be aα network-error correcting code. There have been
different approaches to network-error correction [9]–[12]. We
concern ourselves with the notations and approach of [12], as
the algorithm in [12] lends itself to be extended according to
the techniques of [7].

It is known [9] that the number of messagesM in an α

network-error correcting code is upper bounded according to
the network Singleton boundas

M ≤ qh−2α.

Assuming that the message set is a vector space overFq of
dimensionk, we have

k ≤ h− 2α.

This bound was later refined [11] to accommodate for the
different mincuts and different error capabilities at different
sinks as

k ≤ h
T
− 2α

T
,

where sinkT ∈ T can correct any network-error with errors
in at mostα

T
edges.

Algorithm 3 is a brief version of the algorithm given in
[12] for constructing anα network-error correcting code for
a given single source, acyclic network that meets the network
Singleton bound. The construction of [12] is based on the
network code construction algorithm of [4]. The algorithm
constructs a network code such that all network-errors in upto
2α edges will be corrected as long as the sinks know where
the errors have occurred. Such a network code is then shown
[12] to be equivalent to anα network-error correcting code.

It is shown in [12] that Algorithm 3 results in a network
code which is aα network-error correcting code meeting the
network Singleton bound, as long as the field size

q > |T ||F| = N

(

E
2α

)

. (1)

B. Network Error Correction using Small Fields - Algorithm

Algorithm 4, shown in the next page, constructs a network-
error correcting code using small field sizes (conditioned on
the existence of an irreducible polynomial of small degree
satisfying the necessary requirements).

C. Justification for Step5 of Algorithm 4

In order to ensure that the error correction property of the
original network code is preserved, it is sufficient if a poly-
nomialg(X) is coprime with each polynomialfF

T
(X), rather

than their productf(X), as shown in Step5 of Algorithm 4.

Algorithm 3 : Algorithm of [12] for constructing a

network-error correcting code that meets the network Sin-
gleton bound.

(1) Let F be the set of all subsets of edge set of size2α.
Add an imaginary sources′ and drawk = h− 2α edges
from s′ to s.

(2) foreach F ∈ F do
(i) Add an imaginary nodev at the midpoint of each
edgee ∈ F and add an edge of unit capacity froms′

to eachv.
(ii) foreach sink T ∈ T do

Draw as many edge disjoint paths froms′ to T

passing through the imaginary edges added at
Step(i) as possible. LetmF

T
(≤ 2α) be the

number of paths.
Draw k edge disjoint paths passing throughs that
are also edge disjoint from themF

T
paths drawn

in the previous step.
end
(iii) Use the algorithm from [4] using the identified
edge disjoint paths such that it ultimately gives a
network code with the following property. LetBF

T be
the
(

k +mF
T

)

× (k + 2α) matrix, the columns of
which are theh length global encoding vectors
(representing the linear combination of thek input
symbols and2α error symbols) of the incoming
edges at sinkT corresponding to thek +mF

T
edge

disjoint paths. ThenBF
T must be full rank. As proved

in [12], this ensures that the network code thus
obtained isα network-error correcting and meets the
network Singleton bound.

end

However, the following lemma shows that both are equivalent.

Lemma 4:Let U = {fi : fi ∈ F[X ], i = 1, 2, ..., n} be a
collection of univariate polynomials with coefficients from
some fieldF. A polynomialg ∈ F[X ] is relatively prime with
all the polynomials inU if and only if it is relatively prime
with their product.

Proof: If part: If g is relatively prime with the product of
all the polynomials inU , then there exist polynomialsa, b ∈
F[X ] such that

a

(

n
∏

i=1

fi

)

+ bg = 1. (2)

For eachj ∈ 1, 2, ..., n, we can rewrite (2) as


a

n
∏

i=1,i6=j

fi



 fj + bg = 1,

which implies thatg is coprime with eachfj ∈ U .
Only if part: Supposeg is relatively prime with all the

polynomials inU . Then, for eachj ∈ 1, 2, ..., n, we can find



Algorithm 4 : Network-error correcting codes under small
field sizes
(1) With q = 2⌈log(N |F|)⌉+1, run Algorithm 3 to find an
α network-error correcting code meeting the network
Singleton bound. Let the encoding coefficients forXi be
αi.

(2) Express everyXi = αi as a binary polynomialpi(X)
of degree at mostk − 1 using the usual polynomial
representation of the finite fieldF2k .

(3) foreach F ∈ F do
foreach sink T ∈ T do

Find a non-zero minor of the matrixBF
T ,

obtained from a
(

k +mF
T

)

×
(

k +mF
T

)

submatrix. At least one such minor exists asBF
T

has rank =k +mF
T
. Let the minor befF

T
(X),

which can be of degree at mosthΛlog(N |F|),
according to Section II and (1).

end
end
(4) Calculate the polynomial

f(X) =
∏

F∈F

∏

T∈T

fF
T
(X).

(5) Using Algorithm 2 with the set

P =
{

X2i +X : i = 1, 2, ..., ⌈log(N |F|)⌉
}

, find an

irreducible polynomial of least degree,g(X), which is
coprime withf(X).
(6) Let Xi = pi(X)(mod g(X)). Thus, eachXi can be
viewed as an element inF[X]

(g(X)) . Because of the fact that
fF
T
(X)(mod g(X)) 6= 0, the newBF

T matrices obtained
after the modulo operation are also full rank, which
implies that the error correcting capability of the code is
preserved.

polynomialsaj andbj such that,ajfj+bjg = 1. In particular,

a1f1 + b1g = 1, (3)

a2f2 + b2g = 1. (4)

Using (4) in (3),

1 = a1f1(a2f2 + b2g) + b1g

= (a1a2)f1f2 + (a1f1b2 + b1)g.

Thus, g is relatively prime withf1f2. Continuing with the
same argument, it is clear thatg is relatively prime with
∏n

i=1 fi.

D. Complexity of Algorithm 4

The complexity of Algorithm 4 is given by Table I, along
with the references and reasoning for the mentioned complex-
ities for every step of the algorithm.

The only complexity calculation of Table I which remains
to be explained is the complexity involved in identifying
and calculating the non-zero minor of the matrixBF

T . There

are

(

h

k +mF
T

)

such minors, and calculating each takes

O
(

(

k +mF
T

)3
)

multiplications overFq. As
(

k +mF
T

)

can
take values uptoh, clearly the function to be maximized is of

the formf(m) =

(

h

m

)

m3, for m = 0, 1, ..., h. Proposition

2 gives the value ofm for which such a function is maximized,
based on which the value in Table I has been calculated.

Proposition 2: For some positive integern, let m be an
integer such that0 ≤ m ≤ n. The function

f(m) =

(

n

m

)

m3

is maximized at

m =

{ (

⌈n
2 ⌉+ 1

)

if n ≥ 2
1 if n = 1.

Proof: The statement of the theorem is easy to verify for
n = 1. Therefore, letn ≥ 2. Let g(k) = f(k)− f(k+1), for
somek, such that0 ≤ k ≤ n− 1. Then,

g(k) =

(

n

k

)

k3 −

(

n

k + 1

)

(k + 1)3

=

(

n

k

)(

k3 −

(

n− k

k + 1

)

(k + 1)3
)

=

(

n

k

)

(

2k3 + k2(2 − n) + k(1− 2n)− n
)

=

(

n

k

)

g̃(k),

where g̃(k) =
(

2k3 + k2(2 − n) + k(1− 2n)− n
)

. Proving
the statement of the theorem is then equivalent to showing that
both of the following two statements are true, which we shall
do separately for even and odd values ofn.

• g̃(k) < 0 for all integers0 ≤ k ≤ ⌈n
2 ⌉.

• g̃(k) > 0 for all integers⌈n
2 ⌉+ 1 ≤ k ≤ n− 1.

Case-A(n is even): Let k = n
2 + i, for some integeri such

that−n
2 ≤ i ≤ n

2 − 1. Then,

g̃(k) = 2k3 + k2(2− 2k + 2i) + k(1− 4k + 4i)− 2k + 2i

g̃(k) = k2(−2 + 2i) + k(4i− 1) + 2i. (5)

For −n
2 ≤ i ≤ 0, it is clear from (5) thatg̃(k) < 0. If

1 ≤ i ≤
(

n
2 − 1

)

, it is clear thatg̃(k) > 0. Thus, for even
values ofn, the theorem is proved.
Case-B(n is odd): Let k = ⌈n

2 ⌉ + i =
(

n+1
2

)

+ i, for some
integeri such that−

(

n+1
2

)

≤ i ≤
(

n−3
2

)

. Then,

g̃(k) = 2k3 + k2(2− 2k + 2i+ 1)

+ k(1− 4k + 4i+ 2)− 2k + 2i+ 1

g̃(k) = k2(−1 + 2i) + k(1 + 4i) + 2i+ 1. (6)

Now, for i = 0, k =
(

n+1
2

)

≥ 2 (as n ≥ 2 and is odd).
Hence,g̃(k) = −k2 + k + 1 < 0 for i = 0. If −

(

n+1
2

)

≤
i < 0, then by (6), it is clear that̃g(k) < 0. Thus for all
−
(

n+1
2

)

≤ i ≤ 0, g̃(k) < 0.
For 1 ≤ i ≤

(

n−3
2

)

, again by (6), it is clear that̃g(k) > 0,
and thus the theorem holds for odd values ofn. This completes
the proof.



TABLE I
COMPLEXITY CALCULATIONS FOR ALGORITHM 4

Step(s) Complexity Reasoning
Algorithm 3 A := O (|F|Nh (|E||F|N + |E|+ h+ 2α)) . [12]

Identifying non-zero minor of matrixBF
T B := O

((

h

m

)

m3

)

, with m =
(

⌈h
2 ⌉+ 1

)

Theorem 2

Computing the non-zero minor (overF2[X ]) of BF
T C := O

(

h4Λlog(N |F|)
)

+O
(

(hΛlog (N |F|))
3
)

[7]

from a (k +mF
T
) square submatrix

Calculatingf(X) =
∏

F∈F

∏

T∈T fF
T
(X). D := O (alog(a)) , wherea = Nh|F|Λlog (N |F|) [14]

Computing the coprime polynomialg(X) E := O
(

N2|F|2
)

+O(Nh|F|Λlog (N |F|)
2
). Proposition 1

Total complexity A+N |F|(B + C +D) + E

V. I LLUSTRATIVE EXAMPLES

Fig. 1. 6C3 network with20 sinks

Example 1:Consider the

(

6
3

)

network shown in Fig. 1.

This network has20 sinks, each of which has3 incoming
edges from some3-combination of the6 intermediate nodes,
thus the mincuth being3. Using the methods in [3]–[5], a3-
dimensional network code can be constructed for this network
as long as the field sizeq > 20. Let q = 25. Consider the
following sets of vectors inF3

32, with β being a primitive
element ofF32.

A =



































1
0
0



 ,





0
1
0



 ,





0
0
1



 ,





1
1
1



 ,





1
β

β18



 ,





1
β18

β5



































,

B =



































1
0
0



 ,





0
1
0



 ,





0
0
1



 ,





1
1
β6



 ,





1
β

β18



 ,





1
β18

β5



































.

Let b1(X) = X5 +X2 +1 andb2(X) = X5 +X3+X2+
X+1, both of them being primitive polynomials of degree5.
Note thatA andB are valid choices (using eitherb1(X) or
b2(X) as the primitive) for the global encoding vectors of the
6 outgoing edges from the source, representing deterministic
network coding solutions for a3-dimensional network code for
this network. We assume that the intermediate nodes simply
forward the incoming symbols to their outgoing edges, i.e.,
their local encoding coefficients are all1.

Table II illustrates the results obtained with the execution
of Algorithm 1, with Algorithm 2 being used to compute
the coprime polynomial for this network with the original
deterministic solutions beingA or B, with b1(X) andb2(X)
as the primitive polynomial ofF32.

The solutions (global encoding vectors of the6 edges

from the source) obtained for the

(

6
3

)

network, after the

modulo operations of the individual coding coefficients using
the polynomialg(X), are also shown in Table II. It can be
checked that both of these sets of vectors are valid network
coding solutions for a3-dimensional network code for the
(

6
3

)

network.

It is seen that for the setA being the choice of the network
code in the first step of Algorithm 1 and withb1(X) being the
primitive polynomial, the final coprime polynomial has degree
2 and thus resulting in a codeF4, which is in fact the smallest
possible field for which a solution exists for this network. For
B with the primitive polynomialb2(X), no solutions are found
using characteristic two finite fields of cardinality less than32.

Example 2:Consider the network, with18 edges, shown
in Fig. 2. This network is from [15], in which a1 network-
error correcting code meeting the network Singleton bound
is given by brute-force construction for this network over
F4, which is the smallest possible field over which such a
code exists. According to the algorithm in [12], a1 network-
error correcting code can be constructed deterministically if

q > 2

(

18
2

)

= 306. In Fig. 2, let the variableX1

denote the encoding coefficient between edgesv1 → v4 and
v4 → v6. Similarly, the variableX2 (X3) denote the local
encoding coefficients betweenv2 → v5 (v6 → v7) and



TABLE II
6C3 NETWORK - ALGORITHM 1 (TOGETHER WITHALGORITHM 2)

Algorithm parameter Global encoding vectorsA Global encoding vectorsB
Prim. poly. b1(X) Prim. poly. b2(X) Prim. poly. b1(X) Prim. poly. b2(X)

Degree off(X), the product of the
20 determinant polynomials 20 40 30 55
p(X): First pi(X) for which None of the form

f(X)(mod pi(X)) is non-zero X4 +X X8 +X X8 +X X2
i

+X, for i ≤ 4
f(X)(mod p(X)) X2 +X X7 +X6 +X3 +X X7 +X6 +X5 +X2 Not applicable
g(X): Least degree

polynomial coprime tof(X) X2 +X + 1 X3 +X + 1 X3 +X + 1 Not applicable

Resultant network code





1
0
0









0
1
0









0
0
1









1
1
1









1
β4

β2

4









1
β2

4

β4









1
0
0









0
1
0









0
0
1









1
1
1









1
β8

β4

8









1
β4

8

β2

8









1
0
0









0
1
0









0
0
1









1
1
1









1
β8

β3

8









1
β3

8

β6

8





Not applicable

TABLE III
USING ALGORITHM 4 FOR THE NETWORK INFIG. 2

Algorithm parameter Network code defined byA Network code defined byB
Degree off(X),

the product of the306 determinant polynomials 260 978
p(X): First pi(X) for which f(X)(mod pi(X)) is non-zero X8 +X X4 +X

f(X)(mod p(X)) X7 +X6 +X3 +X2 X3 +X

Least degree polynomial coprime tof(X) X3 +X + 1 X2 +X + 1
{X1, X2, X3} after the algorithm

{

β1

8 , β
3

8 , β
3

8

}

{β4, β4, β4}

v5 → v8 (v7 → v9).

Fig. 2. Example network for network-error correction

Let q = 29. Let A =
{

β, β130, β130
}

and B =
{

β132, β391, β391
}

, whereβ is a primitive element ofF29 .

Let b1(X) = X9 + X4 + 1 be the primitive polynomial of
degree9 under consideration.

Consider two such1 network-error correcting codes ob-
tained using Algorithm 3 for the network of Fig. 2 as follows.

Let A andB be two choices for the set{X1, X2, X3} with
all the other local encoding coefficients being unity. It canbe
verified that these two network codes can be used to transmit
one error-freeF29 symbol from the source to both sinks, as
long as not more than single edge errors occur in the network.
Table III gives the results of running Algorithm 4 for this
network starting from these two codes, withβ4 andβ8 being
the primitive elements ofF4 andF8 respectively.

Except for{X1, X2, X3} , all the other coding coefficients
remain1 over the respective fields. As in Example 1, the initial
choice of the setsA andB for {X1, X2, X3} results in the
final network code being over different field sizes.

With B, the resultant network-error correcting code is over
F4, exactly the one reported in [15] by brute force construc-
tion.

VI. CONCLUSION

A new and faster method of computing a coprime poly-
nomial to a given polynomial has been presented. thereby
improving the performance of the EF algorithm, which is
applicable to scalar and vector network coding. Based on the
EF algorithm, a method has been presented which can obtain
network-error correcting codes using small fields that meet
the network Singleton bound. This technique can be adapted
to obtain network-error correcting codes meeting the refined



Singleton bound, or for linear deterministic networks which
permit solutions similar to those obtained in [7].

As in the original paper [7], questions remain open about
the achievability of a code using the minimal field size. As
illustrated by the examples in Section V, factors such as the
initial choice of the network code and the primitive polynomial
of the field over which the initial code is defined (using which
the local encoding coefficients are represented as polynomi-
als), control the resultant field size after the algorithm.
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