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THRESHOLD RESULTS FOR SEMILINEAR PARABOLIC SYSTEMS

QIUYI DAI HAIYANG HE JUNHUI XIE

Abstract. In this paper, we study initial boundary value problem of semi-linear parabolic
systems



































ut −∆u = vp (x, t) ∈ Ω× (0, T ),

vt −∆v = uq (x, t) ∈ Ω× (0, T ),

u(x, t) = v(x, t) = 0 (x, t) ∈ ∂Ω× [0, T ],

u(x, 0) = u0(x) ≥ 0 x ∈ Ω,

v(x, 0) = v0(x) ≥ 0 x ∈ Ω

(0.1)

and prove that any positive solution of its steady-state problem














−∆u = vp x ∈ Ω,

−∆v = uq x ∈ Ω,

u = v = 0 x ∈ ∂Ω

(0.2)

is an initial datum threshold for the existence and nonexistence of global solution to prob-
lem(0.1). For the precisely statement of this result, see Theorem 1.1 in the introduction of
this paper.

Key words: Initial boundary value problem, Semi-linear parabolic systems, Threshold
result, Steady-state problem.
AMS classification: 35J50, 35J60.

1. Introduction

Let Ω be a bounded domain in RN . We consider the following initial-boundary value
problem



































ut −∆u = vp (x, t) ∈ Ω× (0, T ),

vt −∆v = uq (x, t) ∈ Ω× (0, T ),

u(x, t) = v(x, t) = 0 (x, t) ∈ ∂Ω× [0, T ],

u(x, 0) = u0(x) ≥ 0 x ∈ Ω,

v(x, 0) = v0(x) ≥ 0 x ∈ Ω,

(1.1)
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where ut, vt are, respectively, the partial derivatives of u(x, t) and v(x, t) with respect to

variable t, ∆ =
N
∑

i=1

∂2

∂x2
i

is the Laplace operator, and N ≥ 2, p, q > 1 satisfy

1

p + 1
+

1

q + 1
>
N − 2

N
. (1.2)

It is well known that for any u0(x), v0(x) ∈ L∞(Ω), problem (1.1) has an unique classical
solution (u(x, t), v(x, t)) in a short time, which is called a local solution of problem (1.1).
Let Tmax denote the maximum existence time of (u(x, t), v(x, t)) as a classical solution. If
Tmax = +∞, then we say that (u(x, t), v(x, t)) exists globally, or problem (1.1) has global
solution. If Tmax < +∞, then we have

lim
t→T−

max

sup
x∈Ω

u(x, t) = lim
t→T−

max

sup
x∈Ω

v(x, t) = +∞,

for which we say that (u(x, t), v(x, t)) blows up in a finite time (see for example [11] for more
details).

It is also well known that the solution (u(x, t), v(x, t)) exists globally when the initial
value (u0(x), v0(x)) is small enough in some sense, and blows up in a finite time when the
initial value (u0(x), v0(x)) is large enough in a suitable sense (see [1][4][5][6][11] for the exact
statement). However, the classification of the initial datum (u0(x), v0(x)) according to the
existence or nonexistence of global solutions to problem (1.1) is still far from complete.
Hence, an important task in the study of problem (1.1) is to find exact conditions on the
initial datum (u0(x), v0(x)) which can ensure the existence or nonexistence of global solutions
to problem (1.1). On this direction, we present here a so called threshold result for problem
(1.1) by making use of its positive equilibriums. To state our result simply and precisely,
we introduce some notations and definitions first. For any planar vector (a, b) and (c, d), we
use (a, b) ≥ (c, d) to mean that a ≥ c and b ≥ d, and (a, b) = (c, d) to mean that a = c and
b = d. If a, b, c, d are functions of variable x, we use (a(x), b(x)) 6≡ (c(x), d(x)) to mean that
there exists at least one point x0 such that (a(x0), b(x0)) 6= (c(x0), d(x0)). Finally, we say
that (U(x), V (x)) is a positive equilibrium of problem (1.1) if it is a solution of the following
steady-state problem related to problem (1.1).















−∆U = V p x ∈ Ω,
−∆V = U q x ∈ Ω,
(U, V ) > (0, 0) x ∈ Ω
(U, V ) = (0, 0) x ∈ ∂Ω.

(1.3)

Keeping the above notations and definitions in mind, our main result of this paper can be
stated as

Theorem 1.1. Assume that p, q > 1 satisfy (1.2), and that (U(x), V (x)) is an arbitrary
smooth solution of problem (1.3). Then there holds

(i) If
(

0, 0
)

≤
(

u0(x), v0(x)
)

≤
(

U(x), V (x)
)

and
(

u0(x), v0(x)
)

6≡
(

U(x), V (x)
)

, then
problem (1.1) has a global solution (u(x, t), v(x, t)). Moreover, lim

t→∞
(u(x, t), v(x, t)) = (0, 0).

(ii) If
(

u0(x), v0(x)
)

≥
(

U(x), V (x)
)

and
(

u0(x), v0(x)
)

6≡
(

U(x), V (x)
)

, then the solution
(u(x, t), v(x, t)) of problem (1.1) blows up in a finite time.
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We remark here that Theorem 1.1 is a natural generalization of results on scalar equations
proved by P.L.Lions in [9] and A.A.Lacey in [10],but the method we use here is different.
Roughly speaking, Theorem 1.1 says that any smooth solution of problem (1.3) is an initial
datum threshold for the existence and nonexistence of global solutions to problem (1.1). It is
also worth pointing out that the restriction (1.2) on the exponents p and q is optimal in the
sense that problem (1.3) has no solutions for star-shaped domains Ω when (1.2) is violated
(see [2]).

The plan of this paper is as follows. Section 2 devotes to prove two lemmas need in the
proof of theorem 1.1. The proof of Theorem 1.1 is given in Section 3. Some further remarks
are included in Section 4.

2. Preliminaries

In this section, we prove two lemmas which will be used later in the proof of our main
result.

Lemma 2.1. Let (g(x), h(x)) and (U(x), V (x)) be two distinct smooth solutions of problem
(3.3). Then we have

∫

Ω

g(x)U(x)(gq−1 − U q−1) dx =

∫

Ω

h(x)V (x)(V p−1 − hp−1) dx.

Proof. This result can be found in [3]. However, for the reader’s convenience, We give a
proof here. Since (g(x), h(x)) and (U(x), V (x)) are solutions of problem (1.3), we have











−∆g(x) = hp x ∈ Ω,

−∆h(x) = gq x ∈ Ω,

g = h = 0 x ∈ ∂Ω

(2.1)

and










−∆U(x) = V p x ∈ Ω,

−∆V (x) = U q x ∈ Ω,

U = V = 0 x ∈ ∂Ω.

(2.2)

From these, we can derive
∫

Ω

hpV (x) dx = −

∫

Ω

∆g(x)V (x) dx = −

∫

Ω

g(x)∆V dx =

∫

Ω

g(x)U q,

∫

Ω

hV p dx = −

∫

Ω

∆U(x)h(x) dx = −

∫

Ω

U(x)∆h(x) dx =

∫

Ω

Ugq.

Consequently

∫

Ω

g(x)U(x)(gq−1 − U q−2) dx =

∫

Ω

h(x)V (x)(V p−1 − hp−1) dx.

�

Lemma 2.2. Assume that x > 0, y > 0, and 0 < a < 1. Then

xa + ya ≤ 21−a(x+ y)a.
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Proof. Let g(t) = ta + (1− t)a, 0 < t < 1. An easy computations yields

g′(t) = ata−1 − a(1− t)a−1.

Hence, we have










g′(t) > 0 0 < t < 1
2
,

g′(t) = 0 t = 1
2
,

g′(t) < 0 1
2
< t < 1

From this, we conclude that

g(t) = ta + (1− t)a ≤ 21−a.

Substituting t = x
x+y

into the above inequality, we finally obtain that

xa + ya ≤ 21−a(x+ y)a.

�

3. Proof of Theorem 1.1

Proof of Theorem 1.1: (i) Since (0, 0) ≤ (u0(x), v0(x)) ≤ (U(x), V (x)), and U(x), V (x) ∈
L∞(Ω), we know that problem (1.1) has a global solution (u(x, t), v(x, t)). Noticing that
(u0(x), v0(x)) 6≡ (U(x), V (x)), it follows from the maximum principle and the strong com-
parison principle that

(0, 0) ≤ (u(x, t), v(x, t)) < (U(x), V (x)

for any (x, t) ∈ Ω× (0,+∞).
Therefore, we may assume, by replacing (u0(x), v0(x)) with (u(x, T ), v(x, T )) for some

T > 0 if necessary, that (u0(x), v0(x)) ≤ (αU(x), αV (x)) for some constant 0 < α < 1. Let
(gα(x), hα(x)) = (αU(x), αV (x)). It is easy to verify that (gα(x), hα(x)) satisfies























−∆gα > (hα)
p x ∈ Ω,

−∆hα > (gα)
q x ∈ Ω,

gα = hα = 0 x ∈ ∂Ω,

gα > 0, hα > 0 x ∈ Ω.

(3.1)

This implies that (gα(x), hα(x)) is a strict super-solution of the following problem


































Gt −∆G = Hp (x, t) ∈ Ω× (0, T ),

Ht −∆H = Gq (x, t) ∈ Ω× (0, T ),

G = H = 0 (x, t) ∈ ∂Ω × [0, T ],

G(x, 0) = gα ≥ 0 x ∈ Ω,

H(x, 0) = hα ≥ 0 x ∈ Ω.

(3.2)

Let (G(x, t), H(x, t)) be the solution of (3.2). By strong comparison principle we know that
(G(x, t), H(x, t)) is strictly decreasing with respect to t, and (0, 0) ≤ (G(x, t), H(x, t)) ≤
(U(x), V (x)). Therefore, (G(x, t), H(x, t)) exists globally. Moreover, there are some func-
tions g(x) and h(x) such that

lim
t→∞

G(x, t) = g(x), lim
t→∞

H(x, t) = h(x).
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uniformly on Ω, and (g(x), h(x)) is a smooth solution of the following problem.






−∆g = hp x ∈ Ω,
−∆h = gq x ∈ Ω,
(g, h) = (0, 0) x ∈ ∂Ω.

(3.3)

From this, we conclude that (g(x), h(x)) ≡ (0, 0). Otherwise, by strong maximum principle,
we have (g(x), h(x)) > (0, 0). On the other hand, we have (g(x), h(x)) < (U(x), V (x)) since
(G(x, t), H(x, t)) is strictly decreasing with respect to t. Thus

∫

Ω

g(x)U(x)(gq−1 − U q−1) dx < 0,

∫

Ω

h(x)V (x)(V p−1 − hp−1) dx > 0.

This is a contradiction with Lemma 2.1. Therefore

lim
t→∞

(G(x, t), H(x, t)) = (0, 0).

Noticing that (0, 0) ≤ (u0, v0) ≤ (gα(x), hα(x)), comparison principle ensures

(0, 0) ≤ (u(x, t), v(x, t)) ≤ (G(x, t), H(x, t)).

By applying squeeze principle, we obtain

lim
t→∞

(u(x, t), v(x, t)) = (0, 0).

(ii) we prove the conclusion (ii) of Theorem 1.1 by contradiction. To this end, we assume
that (u0(x), v0(x)) ≥ (U(x), V (x)), (u0(x), v0(x)) 6≡ (U(x), V (x)) and problem (1.1) has a
global solution (u(x, t), v(x, t)). By strong comparison principle, we have

(u(x, t), v(x, t)) > (U(x), V (x)),

for any (x, t) ∈ Ω̄ × (0,+∞). Therefore, we may assume, by replacing (u0(x), v0(x)) with
(u(x, T ), v(x, T ; u0, v0)) for some T > 0 if necessary, that (u0(x), v0(x)) ≥ (βU(x), βV (x))
for some constant β > 1. Let (gβ, hβ) = (βU(x), βV (x)). It is easy to verify that (gβ, hβ)
satisfies











−∆gβ < (hβ)
p x ∈ Ω,

−∆hβ < (gβ)
q x ∈ Ω,

gβ = hβ = 0 x ∈ ∂Ω.

(3.4)

Hence, (gβ, hβ) is a strict sub-solution of the following problem


































Gt −∆G = Hp (x, t) ∈ Ω× (0, T ),

Ht −∆H = Gq (x, t) ∈ Ω× (0, T ),

G = H = 0 (x, t) ∈ ∂Ω× [0, T ],

G(x, 0) = gβ ≥ 0 x ∈ Ω,

H(x, 0) = hβ ≥ 0 x ∈ Ω.

(3.5)

Let (G(x, t), H(x, t)) be the solution of problem (3.5). Then it follows from the comparison
principle that

(G(x, t), H(x, t)) ≤ (u(x, t), v(x, t))

for any (x, t) due to (gβ(x), hβ(x)) ≤
(

u0, v0
)

. Consequently, (G(x, t), H(x, t)) exists globally
and is strictly increasing with respect to t.

Let
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ϕ(t) =

∫

Ω

G(x, t)H(x, t) dx.

E(t) =

∫

Ω

∇G∇H dx−
1

p+ 1

∫

Ω

Hp+1 dx−
1

q + 1

∫

Ω

Gq+1 dx,

By making use of (3.5), we can verify that ϕ(t) and E(t) satisfy

dϕ

dt
= −2E(t) +

p− 1

p+ 1

∫

Ω

Hp+1 dx+
q − 1

q + 1

∫

Ω

Gq+1 dx,

dE(t)

dt
=

∫

Ω
∇Gt∇H dx+

∫

Ω
∇Ht∇G dx−

∫

Ω
HpHt dx−

∫

Ω
GqGt dx

= −2
∫

Ω
GtHt dx ≤ 0.

Let γ = (p+1)(q+1)
p+q+2

. It follows from the assumption p > 1 and q > 1 that

γ > 1,
q + 1

γ
> 1,

p+ 1

γ
> 1,

γ

q + 1
+

γ

p+ 1
= 1.

By Hölder’s inequality, Young’s inequality, and Lemma 2.2, we have

ϕ(t) ≤ q+1
γ

∫

Ω
G

q+1

γ dx+ p+1
γ

∫

Ω
H

p+1

γ dx

≤ max{p,q}+1
γ

|Ω|1−
1

γ

(

(
∫

Ω
Gq+1 dx)

1

γ + (
∫

Ω
Hp+1 dx)

1

γ

)

≤ max{p,q}+1
γ

|Ω|1−
1

γ 21−
1

γ [
∫

Ω
Gq+1 dx+

∫

Ω
Hp+1 dx]

1

γ .

Hence, there exists a positive constant C such that

dϕ

dt
≥ −2E(t) + Cϕγ(t).

Since E(t) is decreasing in t, we have E(t) ≤ E(0) for any t > 0. Consequently,

dϕ

dt
≥ −2E(0) + Cϕγ(t).

From this, we may conclude that

sup
t≥0

∫

Ω

GH dx < +∞.

Otherwise, we have
∫

Ω
GH dx → +∞, as t → ∞ due to

∫

Ω
GH dx = ϕ(t) is strictly

increasing in t. Hence, there exists a constant T > 0 large enough such that

d

dt

∫

Ω

GH dx ≥
C

2
(

∫

Ω

GH dx)γ ,

for any t > T . This implies that (G(x, t), H(x, t)) must blow up in a finite time which
contradicts the fact that (G(x, t), H(x, t)) is a global solution of problem (3.5).

Let

T (t) =

∫

Ω

Gq+1 dx+

∫

Ω

Hp+1 dx.



THRESHOLD RESULTS FOR PARABOLIC SYSTEMS 7

Then, T (t) is strictly increasing in t because (G(x, t), H(x, t)) does. Thus, for any t > 0, we
have

C ≥
∫ t+1

t
d
ds

∫

Ω
GH dx ds = −2

∫ t+1

t
E(s)ds+ p−1

p+1

∫ t+1

t

∫

Ω
Gp+1 dx ds

+ q−1
q+1

∫ t+1

t

∫

Ω
Hq+1 dx ds,

≥ −2E(0) + min{p−1
p+1

, q−1
q+1

}T (t).

From this, we can easily see that

sup
t≥0

T (t) < +∞.

Consequently, there are functions g(x) ∈ Lp+1(Ω) and h(x) ∈ Lq+1(Ω) such that

G(x, t) → g(x) weakly in Lp+1(Ω),

H(x, t) → h(x) weakly in Lq+1(Ω).

Multiplying the first and the second equation in (3.5) by ϕ and ψ respectively, and integrating
the result equations on [t, t+ 1], we obtain

∫

Ω

[G(x, t+ 1)−G(x, t)]ϕ dx ds+

∫ t+1

t

∫

Ω

G(−∆ϕ) dx ds =

∫ t+1

t

∫

Ω

Hpϕ dx ds,

∫

Ω

[H(x, t+ 1)−H(x, t)]ψ dx ds+

∫ t+1

t

∫

Ω

H(−∆ψ) dx ds =

∫ t+1

t

∫

Ω

Gpψ dx ds,

Passing to the limit as t→ ∞, we find that
∫

Ω

g(−∆ϕ) dx =

∫

Ω

hpϕ dx,

∫

Ω

h(−∆ψ) dx =

∫

Ω

gpψ dx.

This implies that (g(x), h(x)) is a L1 solution of problem (1.3) (For the definition of the L1

solution, we refer to [11]).
Noticing that p, q > 1 satisfy (1.2) and

∫

Ω

gq+1 dx < +∞,

∫

Ω

hp+1 dx < +∞,

it follows from the regularity theory (bootstrap method) of L1 solution that g, h ∈ L∞(Ω)
(see [11]). With L∞ estimate in hand, we can establish the H1

0 estimate of g(x) and h(x) by
making use of the following facts











−∆G ≤ Hp (x, t) ∈ Ω× (0,+∞),

−∆H ≤ Gq (x, t) ∈ Ω× (0,+∞),

G = H = 0 (x, t) ∈ ∂Ω× [0,+∞).

(3.6)

Now, we can conclude that (g, h) is a classical solution of problem (1.3) by the standard
regularity theory of elliptic differential equations (see [7]).

Since (gβ(x), hβ(x)) > (U(x), V (x)), it follows from the strong comparison principle that

G(x, t) > U(x), H(x, t) > V (x)
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for any (x, t). Consequently

g(x) > U(x), h(x) > V (x).

From this, we have
∫

Ω

g(x)U(x)(gq−1 − U q−1) dx > 0 and

∫

Ω

h(x)V (x)(V p−1 − hp−1) dx < 0.

This is a contradiction with the conclusion of Lemma 2.1 and we complete the proof of
Theorem 1.1 (ii). �

4. Further Remarks

The method used in the proof of theorem 1.1 can be applied to study the following inho-
mogeneous problem























ut −∆u = vp + λf(x) (x, t) ∈ Ω× (0, T ),

vt −∆v = uq + λg(x) (x, t) ∈ Ω× (0, T ),

(u, v) = (0, 0) (x, t) ∈ ∂Ω× [0, T ],

(u(x, 0), v(x, 0)) = (u0(x), v0(x)) ≥ (0, 0) x ∈ Ω,

(4.1)

where p, q > 1 satisfy (1.2), and (0, 0) ≤ (f(x), g(x)) 6≡ (0, 0).
The main difference between problem (1.1) and (4.1) lies in the structure of their equilib-

rium sets. From lemma 2.1, we can easily see that any two distinct equilibriums of problem
(1.1) must intersect. However, problem (4.1) has an unique minimal equilibrium for λ > 0
small enough which separates from other equilibriums. To state our results precisely, we
consider the following steady-state problem of problem (4.1)



















−∆u = vp + λf(x) x ∈ Ω,

−∆v = uq + λg(x) x ∈ Ω,

(u, v) > (0, 0) x ∈ Ω,
(u, v) = (0, 0) x ∈ ∂Ω.

(4.2)

By sub-solution and sup-solution method, it is not difficult to prove the following

Lemma 4.1. There exists a positive number λ∗ such that the following two statements are
true.

(i) If λ > λ∗, then problem (4.2) has no solution.

(ii) If 0 < λ < λ∗, then problem (4.2) has an unique minimal solution (umin(x), vmin(x))
in the sense that ((umin(x), vmin(x)) ≤ (u(x), v(x)) for any solution (u(x), v(x)) of problem
(4.2). Moreover, if (u(x), v(x)) 6≡ (umin(x), vmin(x)), then ((umin(x), vmin(x)) < (u(x), v(x)).

Let u(x) = U(x) + umin(x) and v(x) = V (x) + vmin(x). Then, it is easy to see that (U, V )
satisfies







−∆U = (V + vmin)
p − v

p
min x ∈ Ω,

−∆V = (U + umin)
q − u

q
min x ∈ Ω,

(U, V ) = (0, 0) x ∈ ∂Ω.
(4.3)

By variational method, we can prove that problem (4.3) has at least one positive solution
provided that (1.2) holds (see [8]). Hence, we have
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Theorem 4.1. Assume that p, q > 1 satisfy (1.2). Let λ∗ be the number obtained in lemma
4.1. Then, for any λ ∈ (0, λ∗), problem (4.2) has at least two solutions, and among them
there exists a minimal one.

By the same method as that used in the proof of lemma 2.1, we can prove the following

Lemma 4.2. Let (U1, V1) and (U2, V2) be any two smooth solutions of problem (4.3), G(u) =
(u+umin)

q−u
q

min

u
and H(v) =

(v+vmin)
p−v

p

min

v
. Then we have

∫

Ω

U1U2(G(U2)−G(U1)) dx =

∫

Ω

V1V2(H(V1)−H(V2)) dx.

Noting that G(u) and H(v) are strictly increasing in u and v respectively due to p, q > 1,
we infer from lemma 4.2 that the following result on the structure of solution set of problem
(4.2) holds

Theorem 4.2. With the same assumption as that of theorem 4.1, problem (4.2) has at
least two solutions, and among them there exists a minimal one. Moreover, any two distinct
solutions of problem (4.2) which are also different from the minimal one must intersect
somewhere.

With theorem 4.2 established, by a similar argument to that used in the proof of theorem
1.1, we can reach the following

Theorem 4.3. Assume that p, q > 1 satisfy (1.2). Let λ∗ be the number obtained in lemma
4.1. Then, we have

(i) If λ > λ∗, then, for any initial value (u0(x), v0(x)) ≥ (0, 0), the solution (u(x, t), v(x, t))
of problem (4.1) must blow up in a finite time.

(ii) If 0 < λ < λ∗, and (U(x), V (x)) is an arbitrary smooth solution of problem(4.2) which
is different from the minimal one, then problem (4.1) has a global solution (u(x, t), v(x, t))
with lim

t→∞
(u(x, t), v(x, t)) = (umin(x), vmin(x)) provided that (0, 0) ≤ (u0(x), v0(x)) ≤ (U(x), V (x))

and (u0(x), v0(x)) 6≡ (U(x), V (x)); whereas, the solution (u(x, t), v(x, t)) of problem (4.1)
must blow up in a finite time if (u0(x), v0(x)) ≥ (U(x), V (x)) and (u0(x), v0(x)) 6≡ (U(x), V (x)).

Finally, we point out that the method of this paper can also be applied to study the
following initial-boundary value problem with Robin boundary conditions.























ut −∆u = vp (x, t) ∈ Ω× (0, T ),

vt −∆v = uq (x, t) ∈ Ω× (0, T ),

∂
∂n
(u, v) + β(u, v) = (0, 0) (x, t) ∈ ∂Ω× [0, T ],

(u(x, 0), v(x, 0)) = (u0(x), v0(x)) ≥ (0, 0) x ∈ Ω,

(4.4)

where n is the outer unit vector normal to the boundary ∂Ω of Ω, and β is a positive constant.
By similar arguments to that used in the proof of theorem 1.1, we can also prove the

following result.

Theorem 4.4. Assume that p, q > 1 satisfy (1.2), and that (U(x), V (x)) is an arbitrary
smooth positive equilibrium of problem (4.4). Then there holds

(i) If (0, 0) ≤ (u0(x), v0(x)) ≤ (U(x), V (x)) and (u0(x), v0(x)) 6≡ (U(x), V (x)), then prob-
lem (4.4) has a global solution (u(x, t), v(x, t)). Moreover, lim

t→∞
(u(x, t), v(x, t)) = (0, 0).
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(ii) If (u0(x), v0(x)) ≥ (U(x), V (x)) and (u0(x), v0(x)) 6≡ (U(x), V (x)), then the solution
(u(x, t), v(x, t)) of problem (4.4) must blows up in a finite time.
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