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CALCULI, HODGE OPERATORS AND LAPLACIANS

ON A QUANTUM HOPF FIBRATION

GIOVANNI LANDI AND ALESSANDRO ZAMPINI

Abstract. We describe Laplacian operators on the quantum group SUq(2) equipped

with the four dimensional bicovariant differential calculus of Woronowicz as well as on

the quantum homogeneous space S2
q
with the restricted left covariant three dimensional

differential calculus. This is done by giving a family of Hodge dualities on both the

exterior algebras of SUq(2) and S2
q
. We also study gauged Laplacian operators acting on

sections of line bundles over the quantum sphere.
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1. Introduction

We continue our program devoted to Laplacian operators on quantum spaces with the

study of such operators on the quantum (standard) Podleś sphere S2
q and their coupling

with gauge connections on the quantum principal U(1)-fibration A(S2
q) →֒ A(SUq(2)).

While in [20] one worked with a left 3D covariant differential calculus on SUq(2) and its

restriction to the (unique) 2D left covariant differential calculus on the sphere S2
q , in the

present paper we use the somewhat more complicate 4D+ bicovariant calculus on SUq(2)

introduced in [33] and its restriction to a 3D left covariant calculus on the sphere S2
q .

Laplacian operators on all Podleś spheres, related to the 4D+ bicovariant calculus on

SUq(2) were already studied in [27]. Our contribution to Laplacian operators comes from

the use of Hodge ⋆-operators on both the manifold of SUq(2) and S2
q that we introduce

by improving and diversifying on existing definitions.

We then move on to line bundles on the standard sphere S2
q and to a class of operators

on such bundles that are ‘gauged’ with the use of a suitable class of connections on

the principal bundle A(S2
q) →֒ A(SUq(2)) and of the corresponding covariant derivative

on (module of sections of) the line bundles. These gauged Laplacians are completely

diagonalized and are split in terms of a Laplacian operator on the total space SUq(2)

of the bundle minus vertical operators, paralleling what happens on a classical principal

bundle (see e.g. [2, Prop. 5.6]) and on the Hopf fibration of the sphere S2
q with calculi

coming from the left covariant one on SUq(2) as shown in [20, 34]

In §2 we describe all we need of the principal fibration A(S2
q) →֒ A(SUq(2)) and as-

sociated line bundles over S2
q . We also give a systematic description of the differential

calculi we are interested in, the 4D+ bicovariant calculus on SUq(2) and its restriction

to a 3D left covariant calculus on the sphere S2
q . A thoughtful construction of Hodge

⋆-dualities on SUq(2) are in §3 while the ones on S2
q are in §4. These are used in §5 for

the definition of Laplacian operators. A digression on connections on the principal bundle

and of covariant derivatives on the line bundles is in §6 and the following §7 is devoted to

the corresponding gauged Laplacian operators of modules of sections if the line bundles.

To make the paper relatively self-contained it concludes with two appendices, §A giving

general facts on differential calculi on Hopf algebras and §B concerning with general facts

on quantum principal bundles endowed with connections.

We like to mention that examples of Hodge operators on the exterior algebras of the

quantum homogeneous q-Minkowski and q-Euclidean spaces – satisfying a covariance re-

quirement with respect to the action of the quantum groups SOq(3, 1) and SOq(4) – have
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been given in [24, 22] using the formalism of braided geometry and with a construction of

a q-epsilon tensor. On the exterior algebra over the quantum planes RN
q a Hodge operator

has been studied in [12].

Conventions and notations. When writing about connections and covariant deriva-

tives we shall pay attention in keeping the two notions distinct: a connection will be

a projection on a principal bundle while a covariant derivative will be an operator on

section, both of concepts fulfilling suitable properties. The ‘q-number’ is defined as:

(1.1) [x] = [x]q :=
qx − q−x

q − q−1
,

for q 6= 1 and any x ∈ R. For a coproduct ∆ we use the conventional Sweedler notation

∆(x) = x(1) ⊗ x(2) (with implicit summation) with iterations. The convention is iterated

to (id⊗∆) ◦∆(x) = (∆⊗ id) ◦∆(x) = x(1) ⊗ x(2) ⊗ x(3), and so on.

Acknowledgments. We are grateful to S. Albeverio, L.S. Cirio and I. Heckenberger for

comments and suggestions. AZ thanks P. Lucignano for his help with Maple. GL was

partially supported by the Italian Project ‘Cofin08–Noncommutative Geometry, Quantum

Groups and Applications’. AZ gratefully acknowledges the support of the Max-Planck-

Institut für Mathematik in Bonn, the Hausdorff Zentrum für Mathematik der Univer-

sität Bonn, the Stiftelsen Blanceflor Boncompagni-Ludovisi född Bildt (Stockholm), the

I.H.E.S. (Bures sur Yvette, Paris).

2. Prelude: calculi and line bundles on quantum spheres

We introduce the manifolds of the quantum group SUq(2) and its quantum homogeneous

space S2
q – the standard Podleś sphere. The corresponding inclusion A(S2

q) →֒ A(SUq(2))

of the corresponding coordinate algebras is a (topological) quantum principal bundle.

Following App. A we then equip A(SUq(2)) with a 4-dimensional bicovariant calculus,

whose restriction gives a 3-dimensional left covariant calculus on A(S2
q).

2.1. Spheres and bundles. The polynomial algebra A(SUq(2)) of the quantum group

SUq(2) is the unital ∗-algebra generated by elements a and c, with relations

ac = qca ac∗ = qc∗a cc∗ = c∗c,

a∗a + c∗c = aa∗ + q2cc∗ = 1.(2.1)

For the sake of the present paper, the deformation parameter q ∈ R can be restricted to

the interval 0 < q < 1 without loss of generality. In the limit q → 1 one recovers the

commutative coordinate algebra on the group manifold SU(2). If we use the matrix

U =

(
a −qc∗
c a∗

)
,
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whose being unitary is equivalent to relations (2.1), the Hopf algebra structure forA(SUq(2))

is given by coproduct, antipode and counit:

∆U = U ⊗ U, S(U) = U∗, ε(U) = 1,

that is ∆(a) = a ⊗ a − qc∗ ⊗ c, and ∆(c) = c ⊗ a + a∗ ⊗ c; S(a) = a∗ and S(c) = −qc;
ε(a) = 1 and ε(c) = 0 and their ∗-conjugated relations.

The quantum universal envelopping algebra Uq(su(2)) is the unital Hopf ∗-algebra gen-

erated as an algebra by four elements K±1, E, F with KK−1 = 1 and subject to relations:

(2.2) K±E = q±EK±, K±F = q∓FK±, [E, F ] =
K2 −K−2

q − q−1
.

The ∗-structure is K∗ = K, E∗ = F , and the Hopf algebra structure is provided by

coproduct

∆(K±) = K± ⊗K±, ∆(E) = E ⊗K +K−1 ⊗E, ∆(F ) = F ⊗K +K−1 ⊗ F,

while the antipode is S(K) = K−1, S(E) = −qE, S(F ) = −q−1F and the counit reads

ε(K) = 1, ε(E) = ε(F ) = 0. The quadratic element

(2.3) Cq =
qK2 − 2 + q−1K−2

(q − q−1)2
+ FE − 1

4

is a quantum Casimir operator that generates the centre of Uq(su(2)).

The Hopf ∗-algebras Uq(su(2)) and A(SUq(2)) are dually paired. The ∗-compatible

bilinear mapping 〈 , 〉 : Uq(su(2))×A(SUq(2)) → C is on the generators given by

〈K±, a〉 = q∓1/2, 〈K±, a∗〉 = q∓1/2,

〈E, c〉 = 1, 〈F, c∗〉 = −q−1,(2.4)

with all other couples of generators pairing to zero. This pairing is proved [18] to be non-

degenerate. The algebra Uq(su(2)) is recovered as a ∗-Hopf subalgebra in the dual algebra

A(SUq(2))
o, the largest Hopf ∗-subalgebra contained in the vector space dual A(SUq(2))

′.

There are [32] ∗-compatible canonical commuting actions of Uq(su(2)) on A(SUq(2)):

h⊲x := x(1)
〈
h, x(2)

〉
, x⊳h :=

〈
h, x(1)

〉
x(2).

On powers of generators one computes, for s ∈ N, that

(2.5)

K± ⊲ as = q∓
s
2as F ⊲ as = 0 E ⊲ as = −q(3−s)/2[s]as−1c∗

K± ⊲ a∗s = q±
s
2a∗s F ⊲ a∗s = q(1−s)/2[s]ca∗s−1 E ⊲ a∗s = 0

K± ⊲ cs = q∓
s
2 cs F ⊲ cs = 0 E ⊲ cs = q(1−s)/2[s]cs−1a∗

K± ⊲ c∗s = q±
s
2 c∗s F ⊲ c∗s = −q−(1+s)/2[s]ac∗s−1 E ⊲ c∗s = 0;

and:

(2.6)

as ⊳ K± = q∓
s
2as as ⊳ F = q(s−1)/2[s]cas−1 as ⊳ E = 0

a∗s ⊳ K± = q±
s
2a∗s a∗s ⊳ F = 0 a∗s ⊳ E = −q(3−s)/2[s]c∗a∗s−1

cs ⊳ K± = q±
s
2 cs cs ⊳ F = 0 cs ⊳ E = q(s−1)/2[s]cs−1a

c∗s ⊳ K± = q∓
s
2 c∗s c∗s ⊳ F = −q(s−3)/2[s]a∗c∗s−1 c∗s ⊳ E = 0.
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Consider the algebra A(U(1)) := C[z, z∗]
/
< zz∗ − 1 >. The map

(2.7) π : A(SUq(2)) → A(U(1)), π

(
a −qc∗
c a∗

)
:=

(
z 0

0 z∗

)

is a surjective Hopf ∗-algebra homomorphism. As a consequence, U(1) is a quantum

subgroup of SUq(2) with right coaction:

(2.8) δR := (id⊗π) ◦∆ : A(SUq(2)) → A(SUq(2))⊗A(U(1)).

The coinvariant elements for this coaction, elements b ∈ A(SUq(2)) for which δR(b) = b⊗1,

form the algebra of the standard Podleś sphere A(S2
q) →֒ A(SUq(2)). This inclusion gives

a topological quantum principal bundle, following the formulation reviewed in appendix B.

The above right U(1) coaction on SUq(2) is dual to the left action of the element K,

and allows one [23] to give a decomposition

(2.9) A(SUq(2)) = ⊕n∈ZLn

in terms of A(S2
q)-bimodules defined by

(2.10) Ln := {x ∈ A(SUq(2)) : K⊲x = qn/2x ⇔ δR(x) = x⊗ z−n},

with A(S2
q) = L0. It is easy to see that L∗

n = L−n and LnLm = Ln+m, with

(2.11) E⊲Ln ⊂ Ln+2, F⊲Ln ⊂ Ln−2, Ln⊳u ⊂ Ln,

for any u ∈ Uq(su(2)). The bimodules Ln will be described at length later on when we

endow them with connections. Here we only mention that the bimodules Ln have a vector

space decomposition (cf. e.g. [21]):

(2.12) Ln :=
⊕

J=
|n|
2
,
|n|
2

+1,
|n|
2

+2,···
V

(n)
J ,

where V
(n)
J is the spin J (with J ∈ 1

2
N) irreducible ∗-representation spaces for the right

action of Uq(su(2)), and basis elements

(2.13) φn,J,l = (cJ−n/2a∗J+n/2)⊳El

with n ∈ Z, J = |n|
2
+ N, l = 0, . . . , 2J .

2.2. The 4D exterior algebra over the quantum group SUq(2). We present here

the exterior algebra over the so called 4D+ bicovariant calculus on SUq(2), which was

introduced as a first order differential calculus in [33], and described in details in [30].

The ideal QSUq(2) ⊂ ker εSUq(2) corresponding to the 4D+ calculus is generated by the

nine elements {c2; c(a∗−a); q2a∗2−(1+q2)(aa∗−cc∗)+a2; c∗(a∗−a); c∗2; [q2a+a∗−q−1(1+

q4)]c; [q2a+a∗−q−1(1+q4)](a∗−a); [q2a+a∗−q−1(1+q4)]c∗; [q2a+a∗−q−1(1+q4)][q2a+a∗−
(1 + q2)]}. One has Ad(QSUq(2)) ⊂ QSUq(2) ⊗A(SUq(2)) and dim(ker εSUq(2)/QSUq(2)) = 4.
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The quantum tangent space turns out to be a four dimensional XQ ⊂ Uq(su(2)). A choice

for a basis is given by the elements

L− = q
1
2FK−1, Lz =

K−2 − 1

q − q−1
, L+ = q−

1
2EK−1;

L0 =
q(K2 − 1) + q−1(K−2 − 1)

(q − q−1)2
+ FE =

q(K−2 − 1) + q−1(K2 − 1)

(q − q−1)2
+ EF,(2.14)

from the last commutation rule in (2.2). The vector L0 belongs to the centre of Uq(su(2)):
it differs from the quantum Casimir (2.3) by a constant term,

(2.15) Cq = L0 +

(
q

1
2 − q−

1
2

q − q−1

)2

− 1
4
= L0 + [1

2
]2 − 1

4
.

The coproducts of the basis (A.5) give ∆Lb = 1 ⊗ Lb +
∑

a La ⊗ fab: once chosen the

ordering (−, z,+, 0), such a tensor product can be represented as a row by column matrix

product where

(2.16)

fab =




1 0 0 q−
1
2KE

(q − q−1)q
1
2FK−1 K−2 (q − q−1)q−

1
2EK−1 (q − q−1)[FE + q−1 K−2−K2

(q−q−1)2
]

0 0 1 q−
1
2FK

0 0 0 K2


 .

The differential d : A(SUq(2)) 7→ Ω1(SUq(2)) is written for any x ∈ A(SUq(2)) as

(2.17) dx =
∑

a
(La⊲x)ωa =

∑
a
ωa(Ra⊲x)

on the dual basis of left invariant forms ωa ∈ Ω1(SUq(2)) with ∆
(1)
L (ωa) = 1 ⊗ ωa. Here

Ra := −S−1(La) and explicitly:

(2.18) R± = L±K
2, Rz = LzK

2, R0 = −L0.

On the generators of the algebra the differential acts as:

da = (q − q−1)−1(q − 1)aωz − qc∗ω+ + λ1aω0,

da∗ = cω− + (q − q−1)−1(q−1 − 1)a∗ωz + λ1a
∗ω0,

dc = (q − q−1)−1(q − 1)cωz + a∗ω+ + λ1cω0,

dc⋆ = −q−1aω− + (q − q−1)−1(q−1 − 1)c∗ωz + λ1c
⋆ω0,(2.19)

with λ1 = [1
2
][3
2
]. These relations can be inverted, giving

ω− = c∗da∗ − qa∗dc∗, ω+ = adc− qcda,

ωz = a∗da+ c∗dc− (ada∗ + q2cdc∗),

ω0 = (1 + q)−1λ−1
1 [a∗da+ c∗dc+ q(ada∗ + q2cdc∗)].(2.20)

It is then easy to see that for q → 1 one has ω0 → 0. This differential calculus reduces in

the classical limit to the natural three-dimensional bicovariant calculus on SU(2).
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This first order differential 4D+ calculus is a ∗-calculus: the ∗-structure on A(SUq(2))

is extended to an antilinear ∗-structure on Ω1(SUq(2)), such that (dx)∗ = d(x∗) for any

x ∈ A(SUq(2)). For the basis of left invariant 1-forms is just

(2.21) ω∗
− = −ω+, ω∗

z = −ωz, ω∗
0 = −ω0.

From (A.6) one works out the bimodule structure of the calculus, obtaining:

(2.22)

ω−a = aω− − qc∗ω0, ω+a = aω+, ω0a = q−1aω0,

ω−a
∗ = a∗ω−, ω+a

∗ = a∗ω+ + cω0, ω0a
∗ = qa∗ω0,

ω−c = cω− + a∗ω0, ω+c = cω+, ω0c = q−1cω0,

ω−c
∗ = c∗ω−, ω+c

∗ = c∗ω+ − q−1aω0, ω0c
∗ = qc∗ω0;

as well as:

ωza = qaωz − q(q − q−1)c∗ω+ + qaω0,

ωza
∗ = (q − q−1)cω− + q−1a∗ωz − q−1a∗ω0,

ωzc = qcωz + (q − q−1)a∗ω+ + qcω0,

ωzc
∗ = −q−1(q − q−1)aω− + q−1c∗ωz − q−1c∗ω0.(2.23)

The A(SUq(2))-bicovariant bimodule Ω2(SUq(2)) of exterior 2-forms is defined by the

projection given in (A.9), with S(2)
Q = ker A(2) = ker (1 − σ) ⊂ Ω1(SUq(2))

⊗2. This

necessitates computing the braiding as in (A.8), a preliminary step being the computation

as in (A.7) of the right coaction on the left invariant basis forms, ∆
(1)
R (ωa) = ωb⊗Jba. For

the calculus at hand:

(2.24) Jba =




a∗2 (1 + q2)a∗c −qc2 (1− q2)a∗c

−qa∗c∗ aa∗ − cc∗ −ac (q2 − 1)cc∗

−qc∗2 (q + q−1)ac∗ a2 (q−1 − q)ac∗

0 0 0 1


 .
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The braiding map σ : Ω1(SUq(2))
⊗2 → Ω1(SUq(2))

⊗2 is then worked out [7] to be:

σ(ω− ⊗ ω−) = ω− ⊗ ω−, σ(ω+ ⊗ ω+) = ω+ ⊗ ω+, σ(ω0 ⊗ ω0) = ω0 ⊗ ω0,

σ(ωz ⊗ ωz) = ωz ⊗ ωz + (q2 − q−2)(ωz ⊗ ω0 + ω− ⊗ ω+ − ω+ ⊗ ω−),

σ(ω− ⊗ ω+) = ω+ ⊗ ω− − ωz ⊗ ω0,

σ(ω+ ⊗ ω−) = ω− ⊗ ω+ + ωz ⊗ ω0,

σ(ω− ⊗ ωz) = ωz ⊗ ω− + (1 + q2)ω− ⊗ ω0,

σ(ωz ⊗ ω−) = (1− q−2)ωz ⊗ ω− + q−2ω− ⊗ ωz − (1 + q−2)ω− ⊗ ω0,

σ(ω− ⊗ ω0) = ω0 ⊗ ω− + (1− q2)ω− ⊗ ω0,

σ(ω0 ⊗ ω−) = q2ω− ⊗ ω0,

σ(ωz ⊗ ω+) = q2ω+ ⊗ ωz + (1− q2)ωz ⊗ ω+ + (1 + q2)ω+ ⊗ ω0,

σ(ω+ ⊗ ωz) = ωz ⊗ ω+ − (1 + q−2)ω+ ⊗ ω0,

σ(ωz ⊗ ω0) = ω0 ⊗ ωz + (q − q−1)2(ω+ ⊗ ω− − ω− ⊗ ω+)− (q − q−1)2ωz ⊗ ω0,

σ(ω0 ⊗ ωz) = ωz ⊗ ω0,

σ(ω+ ⊗ ω0) = ω0 ⊗ ω+ + (1− q−2)ω+ ⊗ ω0,

σ(ω0 ⊗ ω+) = q−2ω+ ⊗ ω0.(2.25)

By defining θ ∧ θ′ = (1− σ)(θ ⊗ θ′), the q-wedge product on 1-forms is:

ω− ∧ ω− = ω+ ∧ ω+ = ω0 ∧ ω0 = 0,

ωz ∧ ωz − (q2 − q−2)ω+ ∧ ω− = 0,

ωz ∧ ω± + q±2ω± ∧ ωz = 0,

ω± ∧ ω0 + ω0 ∧ ω± = 0,

ω+ ∧ ω− + ω− ∧ ω+ = 0,

ωz ∧ ω0 + ω0 ∧ ωz − (q − q−1)2ω− ∧ ω+ = 0.(2.26)

These relations show that dimΩ2(SUq(2)) = 6. The exterior derivative on basis 1-forms

result into:

dω± = ∓ q±1ω− ∧ ωz,
dωz = (q + q−1)ω+ ∧ ω−,

dω0 =
(q − q−1)2(q + q−1 − 1)

(q − q−2)(1 + q)
ω− ∧ ω+.(2.27)

The antisymmetriser operator A(2) : Ω2(SUq(2)) → Ω2(SUq(2)) has an interesting spectral

decomposition, which will be used later on to introduce Hodge operators. On the basis

(2.28)

ϕ0 = ω− ∧ ω0, ϕz = ω− ∧ ω0 + (1− q−2)ω− ∧ ωz
ψ0 = ω+ ∧ ω0, ψz = ω+ ∧ ω0 − (1− q2)ω+ ∧ ωz
ψ± = ω0 ∧ ωz + (1− q±2)ω− ∧ ω+,
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which is such that ϕ∗
0 = ψ0, ϕ

∗
z = ψz and ψ

∗
− = ψ+, it holds that

(2.29)
A(2)(ϕ0) = (1 + q2)ϕ0, A(2)(ψz) = (1 + q2)ψz, A(2)(ψ+) = (1 + q2)ψ+

A(2)(ϕz) = (1 + q−2)ϕz, A(2)(ψ0) = (1 + q−2)ψ0, A(2)(ψ−) = (1 + q−2)ψ−.

For later use we shall use the labelling ξ(±) ∈ E(±) with

(2.30) E(+) = {ϕ0, ψz, ψ+}, and E(−) = {ϕz, ψ0, ψ−}.

By proceeding further, theA(SUq(2))-bimodule Ω3(SUq(2)) is found to be 4-dimensional

with left invariant basis elements:

(2.31)
χ− = ω+ ∧ ω0 ∧ ωz, χ+ = ω− ∧ ω0 ∧ ωz
χ0 = ω− ∧ ω+ ∧ ωz, χz = ω− ∧ ω+ ∧ ω0,

with χ∗
− = −q−2χ+, χ

∗
0 = χ0 and χ∗

z = χz. These exterior forms are closed,

(2.32) dχa = 0,

and in addition satisfy

(2.33) A(3)(χa) = 2(1 + q2 + q−2)χa

for a = −,+, z, 0, thus providing the spectral decomposition for the antisymmetriser

operator A(3) : Ω3(SUq(2)) → Ω3(SUq(2)):

The A(SUq(2))-bimodule Ω4(SUq(2)) of top forms (Ωk(SUq(2)) = ∅ for k > 4) is 1

dimensional. Its left invariant basis element µ = ω−∧ω+∧ωz∧ω0 is central, i.e. xµ = µ x

for any x ∈ A(SUq(2)) and its eigenvalue for the action of the antisymmetriser is

(2.34) A(4)(µ) = 2(q4 + 2q2 + 6 + 2q−2 + q−4)µ.

2.3. The exterior algebra over the quantum sphere S2
q. The restriction of the 4D+

bicovariant calculus endows the sphere S2
q with a left covariant 3-dimensional calculus

[1, 27]. The exterior algebra Ω(S2
q) over such a calculus can be characterised in terms

of some of the bimodules Ln introduced in §2 . Given f ∈ A(S2
q) ≃ L0, the exterior

derivative d : A(S2
q) 7→ Ω1(S2

q) from (2.17) acquires the form:

(2.35) df = (L−⊲f)ω− + (L+⊲f)ω+ + (L0⊲f)ω0.

Notice that the basis 1-forms {ωa, a = −,+, 0} are graded commutative (cf. (2.26)).

Furthermore, relation (2.11) shows that (L±⊲f) ∈ L±2 and that (L0⊲f) ∈ L0, while the

A(SUq(2))-bimodule structure of Ω1(SUq(2)) described by the coproduct (2.16) of the

quantum derivations La gives:

(2.36)

φω− = ω− φ− q−1ω0(L+⊲φ), ω−φ = φω− + q(L+K
2⊲φ)ω0,

φ′ω+ = ω+φ
′ − qω0(L−⊲φ

′), ω+φ
′ = φ′ω+ + q−1(L−K

2⊲φ′)ω0,

φ′′ω0 = ω0(K
−2⊲φ′′), ω0φ

′′ = (K2⊲φ′′)ω0.
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These identities are valid for any φ, φ′, φ′′ ∈ A(SUq(2)). They allow one to prove by

explicit calculations the following identities:

φ ∈ L−2 : d(φω−) = (L+⊲φ)ω+ ∧ ω− + (L0⊲φ)ω0 ∧ ω−,

φ′ ∈ L2 : d(φ′ω+) = (L−⊲φ
′)ω− ∧ ω+ + (L0⊲φ

′)ω0 ∧ ω+,

φ′′ ∈ L0 : d(φ′′ω0) = (L−⊲φ
′′)ω− ∧ ω0 + (L+⊲φ

′′)ω− ∧ ω0 + φ′′dω0,(2.37)

and

φ ∈ L−2 : d(φω− ∧ ω0) = (L+⊲φ)ω+ ∧ ω− ∧ ω0,

φ′ ∈ L2 : d(φ′ω0 ∧ ω+) = (L−⊲φ
′)ω− ∧ ω0 ∧ ω+,

φ′′ ∈ L0 : d(φ′′ω− ∧ ω+) = (L0⊲φ
′′)ω0 ∧ ω− ∧ ω+.(2.38)

Together with the anti-symmetry properties (2.26) of the wedge product in Ω(SUq(2)),

these identities give:

Proposition 2.1. The exterior algebra Ω(S2
q) obtained as a restriction of Ω(SUq(2)) asso-

ciated to 4D+ calculus on SUq(2) can be written in terms of A(S2
q)-bimodule isomorphisms:

Ω1(S2
q) ≃ L−2 ω− ⊕L2 ω+ ⊕L0 ω0

Ω2(S2
q) ≃ L−2 (ω− ∧ ω0)⊕ L0 (ω− ∧ ω+)⊕ L2 (ω0 ∧ ω+)

Ω3(S2
q) ≃ L0 ω− ∧ ω+ ∧ ω0

The basis element ω− ∧ ω+ ∧ ω0 commutes with all elements in L0 ≃ A(S2
q). Such

a calculus is 3 dimensional, since from (2.32) one has d(φ′′ω− ∧ ω+ ∧ ω0) = 0, for any

φ′′ ∈ A(S2
q), and from (2.26) one has that Ω1(S2

q) ∧ (ω− ∧ ω+ ∧ ω0) = 0.

From (2.17) and (2.18) the differential can also be written as

(2.39) df = ω−(R−⊲f) + ω+(R+⊲f) + ω0(R0⊲f),

and it is easy to check the following relations, analogues of the previous (2.37), (2.38):

φ ∈ L−2 : d(ω− φ) = −ω− ∧ ω+ (R+⊲φ)− ω− ∧ ω0 (R0⊲φ),

φ′ ∈ L2 : d(ω+ φ
′) = −ω+ ∧ ω− (R−⊲φ

′)− ω+ ∧ ω0 (R0⊲φ
′),

φ′′ ∈ L0 : d(ω0 φ
′′) = dω0 ∧ φ′′ − ω0 ∧ ω− (R−⊲φ

′′)− ω0 ∧ ω+ (R+⊲φ
′′);(2.40)

and

φ ∈ L−2 : d(ω− ∧ ω0 φ) = ω− ∧ ω0 ∧ ω+ (R+⊲φ),

φ′ ∈ L2 : d(ω0 ∧ ω+ φ
′) = ω0 ∧ ω+ ∧ ω− (R−⊲φ

′),

φ′′ ∈ L0 : d(ω− ∧ ω+ φ
′′) = ω− ∧ ω+ ∧ ω0 (R0⊲φ

′′).(2.41)
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3. Hodge structures on Ω(SUq(2))

As described in §2.2, it holds for the bicovariant forms of the 4D+ first order bico-

variant calculus that the spaces Ωk(SUq(2)) of forms are free A(SUq(2))-bimodules with

dim Ωk(SUq(2)) = dim Ω4−k(SUq(2)), and dimΩ4(SUq(2)) = 1. Our strategy to intro-

duce Hodge operators on Ω(SUq(2)) in §3.2 uses first suitable contraction maps in order to

define Hodge operators on the vector spaces Ωkinv(SUq(2)) of left invariant k-forms; we ex-

tend them next to the whole Ωk(SUq(2)) by requiring (one side) linearity over A(SUq(2)).

This follows an alternative although equivalent approach to Hodge operators on classical

group manifold that we describe first in §3.1. A somewhat complementary approach to

the one of §3.2, more suitable when restricting to the sphere S2
q, is then given in §3.3.

3.1. Hodge operators on classical group manifolds. Let G be an N -dimensional

compact connected Lie group given as a real form of a complex connected Lie group. The

algebra A(G) = Fun(G) of complex valued coordinate functions on G is a ∗-algebra,
whose ∗-structure can be extended to the whole tensor algebra. A metric on the group G

is a non degenerate tensor g : X(G)⊗X(G) → A(G) which is symmetric – i.e. g(X, Y ) =

g(Y,X), with X, Y ∈ X(G) – and real – i.e. g∗(X, Y ) = g(Y ∗, X∗) –. Any metric has

a normal form: there exists a basis {θa, a = 1, . . . N} of the A(G)-bimodule Ω1(G) of

1-forms which is real, θa∗ = θa, such that

(3.1) g =
∑N

a,b=1
ηab θ

a ⊗ θb

with ηab = ±1 · δab. Given the volume N -form µ = µ∗ := θ1 ∧ . . .∧ θN , the corresponding

Hodge operator ⋆ : Ωk(G) → ΩN−k(G) is the A(G)-linear operator whose action on the

above basis is

⋆ (1) = µ,

⋆ (θa1 ∧ . . . ∧ θak) = 1

(N − k)!

∑
bj
ǫa1...akb1...bN−k

θb1 ∧ . . . ∧ bN−k,(3.2)

with ǫa1...akb1...bN−k
:=
∑

sk
ηa1s1 . . . ηakskǫs1...skb1...bN−k

from the Levi-Civita tensor and the

usual expression for the inverse metric tensor g−1 =
∑N

a,b=1 η
abLa⊗Lb with

∑
b η

abηbc = δac
on the dual vector field basis such that θb(La) = δba. The Hodge operator (3.2) satisfies

the identity:

(3.3) ⋆2 (ξ) = sgn(g)(−1)k(N−k)ξ

on any ξ ∈ Ωk(G). Here sgn(g) = det(ηab) is the signature of the metric.

Hodge operators can indeed be equivalently introduced in terms of contraction maps.

By this we mean an A(G)-sesquilinear map Γ : Ω1(G) × Ω1(G) → A(G) such that

Γ(f φ, η) = f ∗Γ(φ, η) while Γ(φ, η f) = Γ(φ, η)f for f ∈ A(G). Such a map can be

uniquely extended to a consistent map Γ : Ωk(G) × Ωk+k
′

(G) → Ωk
′

(G). We postpone
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showing this to the later §3.2 where we prove a similar statement for the bicovariant cal-

culus on SUq(2). Having a contraction map, define the tensor g̃ : Ω1(G)×Ω1(G) → A(G):

(3.4) g̃(φ, η) := Γ(φ∗, η).

Next, with a volume form µ, such that µ∗ = µ, define the operator L : Ωk(G) → ΩN−k(G)

as

(3.5) L(ξ) :=
1

k!
Γ∗(ξ, µ)

on ξ ∈ Ωk(G), having used the notation Γ∗(·, ·) = (Γ(·, ·))∗. A second A(G)-sesquilinear

map { , } : Ωk(G)× Ωk(G) → A(G) can be implicitly introduced by the relation

(3.6) {ξ, ξ′}µ := ξ∗ ∧ L(ξ′).

For any pair of k-forms ξ, ξ′ it is straightforward to recover that

(3.7) {ξ, ξ′} =
1

k!
Γ∗(ξ′, ξ).

The operator (3.5) is not in general an Hodge operator: one has for example L(1) = µ

as well as L(µ) = det(Γ∗(µ, µ)) which is not necessarily ±1. To recover the standard

formulation for a Hodge operator, one has to impose two constraints:

(a) An hermitianity condition. The sesquilinear map Γ is said hermitian provided it

satisfies:

(3.8) {φ, η} = Γ(φ, η),

for any couple of 1-forms φ and η.

From (3.7) and (3.6) it holds that {φ, η} = Γ∗(η, φ).Then

(3.9) {φ, η} = Γ(φ, η) ⇔ Γ(φ, η) = Γ∗(η, φ).

If the sesquilinear form Γ is hermitian, one can prove that the expression (3.7) becomes

(3.10) {ξ, ξ′} =
1

k!
Γ(ξ, ξ′).

(b) A reality condition, namely a compatibility of the operator L with the ∗-conjugation:

(3.11) L(φ∗) = (L(φ))∗

on 1-forms.

If these two constraints are fullfilled, the tensor g̃ in (3.4) is symmetric and real: it is

(the inverse of) a metric tensor on the group manifold G. The operator L turns out to

be the standard Hodge operator corresponding to the metric given by g̃, and satisfies the

identities:

L2(ξ) = (−1)k(N−k)sgn(Γ)ξ, {ξ, ξ′} = sgn(Γ){L(ξ), L(ξ′)}(3.12)

with

sgn(Γ) := (det(Γ(φa, φb))| det(Γ(φa, φb)|−1 = sgn(g̃).
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Moreover, the operator L turns out to be real, that is it commute with the hermitian

conjugation ∗, on the whole exterior algebra Ω(G).

The above procedure could be inverted somehow. That is, given an hermitian con-

traction map Γ as in (3.8), define the operator L by (3.5). The corresponding tensor g̃

turns out to be real, but non necessarily symmetric. Imposing L to satisfy one of the two

conditions in (3.12) – they are proven to be equivalent – makes the tensor g̃ symmetric,

that is the inverse of a metric tensor, whose Hodge operator is L.

3.2. Hodge operators on Ω(SUq(2)). In this section we shall describe how the classical

geometry analysis of the previous section can be used to introduce an Hodge operator on

both the exterior algebras Ω(SUq(2)) and Ω(S2
q) built out of the 4D-bicovariant calculus à

la Woronowicz on A(SUq(2)). A somewhat different formulation of contraction maps was

also used in [16, 17] for a family of Hodge operators on the exterior algebras of bicovariant

differential calculi over quantum groups.

We shall then start with a contraction map Γ : Ω1
inv(SUq(2)) × Ω1

inv(SUq(2)) → C

required to satisfy Γ(λω, η) = λ∗Γ(ω, η) and Γ(ω, η λ) = Γ(ω, η)λ, for λ ∈ C. The natural

extension to Γ : Ω⊗k(G)× Ω⊗k+k′(G) → Ω⊗k′(G) given by

(3.13) Γ(φa1 ⊗ . . .⊗ φak , φb1 ⊗ . . .⊗ φbk+k′ ) :=
(
Πk
j=1 Γ(φ

aj , φbj)
)
φbk+1 ⊗ · · · ⊗ φbk+k′ ,

with the assumption that Γ(1, φ) = φ for any φ ∈ Ω(SUq(2)), can be consistently extended

to give a contraction map Γ : Ωk(G)× Ωk+k
′

(G) → Ωk
′

(G), via

(3.14)

Γ(φa1 ∧ . . . ∧ φak , φb1 ∧ . . . ∧ φbk+k′ ) := Γ(A(k)(φa1 ⊗ . . .⊗ φak),A(k+k′)(φb1 ⊗ . . .⊗ φbk+k′ )).

This comes from the k-th order anti-symmetriser A(k), constructed from the braiding of

the calculus, and used to define the exterior product of forms,

(3.15) φa1 ∧ . . . ∧ φak := A(k)(φa1 ⊗ · · · ⊗ φak);

the key identity for the consistency of (3.14) is

(3.16) A(k+k′)(φa1 ⊗ · · · ⊗ φak+k′ ) = (A(k) ⊗ A(k′))(
∑

σj∈S(k,k′)
σj(φ

a1 ⊗ · · · ⊗ φak+k′ )),

where S (k, k′) is the collection of the (k, k′)-shuffles, permutations σj of {1, . . . , k + k′}
such that σj(1) < · · · < σj(k) and σj(k + 1) < . . . < σj(k + k′). The identity (3.16) is

valid for any bicovariant calculus à la Woronowicz on a quantum group. It allows to show

that any (k + k)′-form can be written as the tensor product of a k-form times a k′-form.

To proceed further, we use a slightly more general volume form by taking µ = µ∗ =

imω− ∧ ω+ ∧ ω0 ∧ ωz, with m ∈ R. Then we define an operator

⋆ : Ωkinv(SUq(2)) → Ω4−k
inv (SUq(2)),

in degree zero and one by

(3.17) ⋆ (1) := Γ∗(1, µ) = µ and ⋆ (ωa) := Γ∗(ωa, µ).
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For Ωkinv(SUq(2)) with k ≥ 2 we use the diagonal bases of the antisymmetriser, that is

(3.18) A(k)(ξ) = λξξ,

with coefficients in (2.29), (2.33) and (2.34) respectively. On these basis we define

(3.19) ⋆ (ξ) :=
1

λξ
Γ∗(ξ, µ).

Here and in the following we denote (Γ( , ))∗ = Γ∗( , ). The definition (3.19) is a

natural generalisation of the classical (3.5): the classical factor k! – the spectrum of the

antisymmetriser operator on k-forms in the classical case, where the braiding is the flip

operator – is replaced by the spectrum of the quantum antisymmetriser. Also, the presence

of the *-conjugate comes from consistency and in order to have non trivial solutions.

Before we proceed it is useful to re-express the volume forms in terms of the diagonal

bases of the ant-symmetrietrizer operators. Some little algebra shows that

µ = im{−ω− ⊗ χ∗
+ + ω+ ⊗ χ∗

− + ω0 ⊗ χ∗
0 − ωz ⊗ χ∗

z}
µ = im{−χz ⊗ ω∗

z + χ− ⊗ ω∗
+ − χ+ ⊗ ω∗

− + χ0 ⊗ ω∗
0},(3.20)

and

(3.21) µ =
im

q2 − 1

{ 1

1 + q2
(q4ψ− ⊗ ψ∗

+ − ψ+ ⊗ ψ∗
−)

+ (q4ϕz ⊗ ϕ∗
0 − ϕ0 ⊗ ϕ∗

z + q2ψ0 ⊗ ψ∗
z − q−2ψz ⊗ ψ∗

0)
}
.

A little more algebra shows in turn that on 1-forms

(3.22) ⋆ (ωa) = im
{
Γ∗(ωa, ω−)χ+ − Γ∗(ωa, ω+)χ− − Γ∗(ωa, ω0)χ0 + Γ∗(ωa, ωz)χz

}
;

and that using the bases (2.30), on 2-forms

⋆ (ξ(+)) =
im

1− q4

{ 1

1 + q2
(
q4Γ∗(ξ(+), ψ−)ψ+ − Γ∗(ξ(+), ψ+)ψ−

)
+ (q4Γ∗(ξ(+), ϕz)ϕ0

− Γ∗(ξ(+), ϕ0)ϕz + q2Γ∗(ξ(+), ψ0)ψz − q−2Γ∗(ξ(+), ψz)ψ0)
}

(3.23)

⋆ (ξ(−)) =
im

q2 − q−2

{ 1

1 + q2
(
q4Γ∗(ξ(−), ψ−)ψ+ − Γ∗(ξ(−), ψ+)ψ−

)
+ (q4Γ∗(ξ(−), ϕz)ϕ0

− Γ∗(ξ(−), ϕ0)ϕz + q2Γ∗(ξ(−), ψ0)ψz − q−2Γ∗(ξ(−), ψz)ψ0)
}
.

As for 3-forms one finds

(3.24) ⋆ (χa) = − im

2(1 + q2 + q−2)

{
− Γ∗(χa, χ+)ω−

+ Γ∗(χa, χ−)ω+ + Γ∗(χa, χ0)ω0 − Γ∗(χa, χz)ωz

}
,

and finally for the top form

(3.25) ⋆ (µ) =
1

2(q4 + 2q2 + 6 + 2q−2 + q−4)
Γ∗(µ, µ).
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As in (3.6) we define the sesquilinear map { , } : Ωkinv(SUq(2))× Ωkinv(SUq(2)) → C by

(3.26) {ξ, ξ′}µ := ξ∗ ∧ ⋆(ξ′).

Then, mimicking the analogous construction of §3.1 we impose both an hermitianity and

a reality condition on the contraction map.

(a) A contraction map is hermitian provided it satisfies:

(3.27) {ωa, ωb} = Γ(ωa, ωb), for a, b = −,+, z, 0.

Given contraction maps fullfilling such an hermitianity constraint, from the first line in

(3.22) one has that Γ(ωa, ωb) = Γ∗(ωb, ωa). i.e. Γab = Γ∗
ba. With such a condition it is

moreover possible to prove, that for with k = 2, 3, 4,

(3.28) {ξ, ξ′} =
λξ∗

λξλξ′
Γ(ξ, ξ′).

on any ξ, ξ′ ∈ Ωkinv(SUq(2)) of a diagonal basis of the antisymmetrizer as in (3.18). The

above expression is the counterpart of (3.10) for a braiding which is not just the flip

operator.

(b) An hermitian contraction map is real provided one has

(3.29) λξ∗(⋆ξ
∗) = (λξ(⋆ξ))

∗.

again on a diagonal basis of A(k)(ξ). This expression generalises the classical one (3.11).

Notice that it is set on any Ωkinv(SUq(2)), and not only on 1-forms as in the classical case.

The requirement that the contraction be hermitian and real results in a series of con-

straints. Firstly, the action on Ω1
inv(SUq(2)) of the corresponding operator ⋆ as defined in

(3.17) is worked out to be given by

(3.30) ⋆




ω−

ω+

ω0

ωz


 = im




0 α 0 0

−q2α 0 0 0

0 0 −ν ǫ

0 0 −ǫ γ







χ−

χ+

χ0

χz


 .

The only non zero terms of the contraction Γ are given by

Γ−− = q−2Γ++ = α, Γ0z = Γz0 = ǫ, Γ00 = ν, Γzz = γ,(3.31)

with parameters that are real and satisfy in addition the conditions:

2ν + (q2 − q−2)ǫ = 0,

2(ǫ2 − γν) + (q − q−1)2(2q2α2 + ǫ2) = 0.(3.32)
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On Ω2
inv(SUq(2)) the action of such operator is block off-diagonal,

⋆




ϕ0

ψz

ψ+


 =

im

q4 − 1




Γ(ϕ0, ϕ0) 0 0

0 q4Γ(ϕz, ϕz) 0

0 0 Γ(ψ+,ψ+)
1+q2







ϕz
ψ0

ψ−


 ,

⋆




ϕz

ψ0

ψ−


 =

im

1− q4




q6Γ(ϕz, ϕz) 0 0

0 q2Γ(ϕ0, ϕ0) 0

0 0 q4Γ(ψ+,ψ+)
1+q2







ϕ0

ψz
ψ+


 ,(3.33)

while on Ω3
inv(SUq(2)) is

(3.34) ⋆




χ−

χ+

χ0

χz


 =

=
im

2(1 + q2 + q−2)




0 −Γ(χ−, χ−) 0 0

q2Γ(χ−, χ−) 0 0 0

0 0 −Γ(χ0, χ0) Γ(χz, χ0)

0 0 −Γ(χ0, χz) Γ(χz, χz)







ω−

ω+

ω0

ωz


 .

It turns out that the square of the operator ⋆ is not necessarily diagonal. An explicit

computation shows moreover that when q 6= 1, given the constraints (3.32) there is no

choice for the contraction Γ, nor for the value of the scale parameter m ∈ R in the

volume form such that the spectrum of the operator ⋆2 is constant on any vector space

Ωkinv(SUq(2)). This means that the operator ⋆ does not satisfy the classical expressions in

(3.12). We choose a particular value for the parameter m defining

det Γ :=
1

λµ
Γ(ω− ∧ ω+ ∧ ω0 ∧ ωz, ω− ∧ ω+ ∧ ω0 ∧ ωz), sgn(Γ) :=

det Γ

| det Γ|(3.35)

and imposing

(3.36) ⋆2 (1) = sgn(Γ),

which is clearly equivalent to the constraint

(3.37) m2 = | det Γ|−1.

From now on we fix the orientation, and set sgn(Γ) = 1.

We finally extend the operator ⋆ to the whole exterior algebra. This can be defined in

two ways, i.e. we define Hodge operators ⋆L, ⋆R : Ωk(SUq(2)) → Ω4−k(SUq(2)) by:

⋆L(xω) := x ⋆ (ω), ⋆R(ω x) := (⋆ ω)x,(3.38)

with x ∈ A(SUq(2)) and ω ∈ Ωinv(SUq(2)). Both operators will find their use later on.



CALCULI, HODGES AND LAPLACIANS 17

3.3. Hodge operators on Ω(SUq(2)) – a complementary approach. The procedure

used in the previous section can not be ipso facto extended to introduce an Hodge operator

on Ω(S2
q): it is well-known that Ωk(S2

q) are not free A(S2
q)-bimodules (as also evident from

the description in §2.3) and the tensor product Ω⊗2(S2
q) has no braiding.

In order to construct a suitable Hodge operator on the quantum sphere, we shall export

to this quantum homogeneous space the construction of [19], originally conceived on the

exterior algebra over a quantum group. The strategy largely coincides with the one

described in [34] and presents similarities to that used in [8] where a Hodge operator has

been introduced on a quantum projective plane.

We start by briefly recalling the formulation from [19]. Consider a ∗-Hopf algebra H
and the exterior algebra Ω(H) over an N -dimensional left covariant first order calculus

(Ω1(H), d), with dimΩN−k(H) = dimΩk(H) and dimΩN (H) = 1. Suppose in addition

that H has an Haar state h : H → C, i.e. a unital functional, which is invariant, i.e.

(id⊗h)∆x = (h ⊗ id)∆x = h(x)1 for any x ∈ H, and positive, i.e. h(x∗x) ≥ 0 for all

x ∈ H. An Haar state so defined is unique and automatically faithful: h(x∗x) = 0 implies

x = 0. Upon fixing an inner product on a left invariant basis of forms, the state h is

then used to endow the whole exterior algebra with a left and a right inner product, when

requiring left or right invariance,

〈xω, x′ ω′〉L := h(x∗x′) 〈ω, ω′〉 ,
〈ω x, ω′ x′〉R := h(x∗x′) 〈ω, ω′〉(3.39)

for any x, x′ ∈ H and ω, ω′ in Ωinv(H). The spaces Ωk(H) are taken to be pairwise

orthogonal (this is stated by saying that the inner product is graded).

The differential calculus is said to be non-degenerate if, whenever η ∈ Ωk(H) and

η′∧η = 0 for any η′ ∈ ΩN−k(H), then necessarily η = 0. Choose in ΩN(H) a left invariant

hermitian basis element µ = µ∗, referred to as the volume form of the calculus. For the

sake of the present paper, we assume that the differential calculus has a volume form such

that µ x = xµ for any x ∈ H (this condition is satisfied by the 4D+ bicovariant calculus

on SUq(2) that we are considering). Then one defines an ‘integral’
∫

µ

: Ω(H) → C,

∫

µ

xµ = h(x), for x ∈ H,

and
∫
µ
η = 0 for any k-form η with k < N . For a non-degenerate calculus the functional∫

µ
is left-faithful: if η ∈ Ωk(H) is such that

∫
µ
η′∧η = 0 for all η′ ∈ ΩN−k(H), then η = 0.

The central result is [19]:

Proposition 3.1. Consider a left covariant, non-degenerate differential calculus on ∗-
Hopf algebra, whose corresponding exterior algebra is such that dim ΩN−k(H) = dim Ωk(H)

and dim ΩN (H) = 1, with a left-invariant volume form µ = µ∗ satisfying xµ = µ x for

any x ∈ H. If Ω(H) is endowed with inner products and integrals as before, there exists

a unique left H-linear bijective operator L : Ωk(H) → ΩN−k(H) for k = 0, . . . , N (resp. a
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unique right H-linear bijective operator R) such that

(3.40)

∫

µ

η∗ ∧ L(η′) = 〈η, η′〉L ,
∫

µ

η∗ ∧ R(η′) = 〈η, η′〉R

for any η, η′ ∈ Ωk(H).

We mention that there is no R operator in [19]. It is just to prove its right H-linearity

that one needs the condition xµ = µx for the volume form µ with x ∈ H.

We are now ready to make contact with the previous §3.2. The 4D+ differential calculus

on SUq(2) is easily seen to be non degenerate. On the other hand, the Haar state functional

h is given by (cf. [18]):

(3.41) h(1) = 1; h((cc∗)k) = (
∑k

j=0
q2j)−1 =

1

1 + q2 + . . .+ q2k
,

with k ∈ N, all other generators mapping to zero.

Now, use the sesquilinear map (3.26) for an inner product 〈ω, ω′〉 := {ω, ω′} on gener-

ators of Ωinv(SUq(2)) and extend it to a left invariant and a right invariant ones to the

whole of Ωinv(SUq(2)) as in (3.39) using the state h. The uniqueness of the operators L

and R from Proposition 3.1 then implies that the extended left and right inner products

are related to the left and right Hodge operators (3.38) by

(3.42)

∫

µ

η∗ ∧ (⋆L η′) = 〈η, η′〉L ,
∫

µ

η∗ ∧ (⋆R η′) = 〈η, η′〉R

for any η, η′ ∈ Ωk(H).

4. Hodge structures on Ω(S2
q)

From the previous section, the procedure to introduce Hodge operators on the quantum

sphere appears outlined. Inner products on Ω(SUq(2)) naturally induce inner products

on Ω(S2
q), and we shall explore the use of relations like the (3.42) above to define a class

of Hodge operators.

The exterior algebra Ω(S2
q) over the quantum sphere S2

q is described in §2.3. In partic-

ular, we recall its description in terms of the A(S2
q)-bimodules Ln given in (2.10):

Ω0(S2
q) ≃ A(S2

q) ≃ L0

Ω1(S2
q) ≃ L−2 ω− ⊕L2 ω+ ⊕ L0 ω0 ≃ ω−L−2 ⊕ ω+ L2 ⊕ ω0 L0

Ω2(S2
q) ≃ L−2 (ω− ∧ ω0)⊕ L0 (ω− ∧ ω+)⊕ L2 (ω0 ∧ ω+)

≃ (ω− ∧ ω0)L−2 ⊕ (ω− ∧ ω+)L0 ⊕ (ω0 ∧ ω+)L2

Ω3(S2
q) ≃ L0 ω− ∧ ω+ ∧ ω0 ≃ ω− ∧ ω+ ∧ ω0 L0 .(4.1)

In the rest of this section, to be consistent with the notation introduced in §2.3, we shall

consider elements φ, ψ ∈ L−2, elements φ′, ψ′ ∈ L2 and elements φ′′, ψ′′ ∈ L0.

Lemma 4.1. The above left covariant 3D calculus on S2
q is non-degenerate.
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Proof. Given θ ∈ Ωk(S2
q) the condition of non degeneracy, namely θ′ ∧ θ = 0 for any

θ′ ∈ Ω3−k(S2
q) only if θ = 0, is trivially satisfied for k = 0, 3.

From (4.1) take the 1-form θ = φω− and a 2-form θ′ = ψ ω−∧ω0+ψ
′ω+∧ω0+ψ

′′ω−∧ω+.

Using the commutation properties (2.36) between 1-forms and elements in A(SUq(2)), one

has θ′ ∧ θ = {ψ′(K2⊲φ)−ψ′′(q−
1
2KE⊲φ)}ω− ∧ω+ ∧ω0, so that the equation θ′ ∧ θ = 0 for

any θ′ ∈ Ω2(S2
q) is equivalent to the condition {ψ′(K2⊲φ) − ψ′′(q−

1
2KE⊲φ)} = 0 for any

θ′ ∈ Ω2(S2
q); taking θ

′ = ψ′ω+∧ω0, one shows that this condition is satisfied only if φ = 0.

A similar conclusion is reached with a 1-form θ = φ′ω+, and with a 1-form θ = φ′′ω0.

Consider then a 2-form θ = φω− ∧ ω0, and a 1-form θ′ = ψω− + ψ′ω+ + ψ′′ω0. Their

product is θ′∧θ = (ψ′φ)ω+∧ω−∧ω0, so that the condition θ′∧θ = 0, for all θ′ ∈ Ω1(S2
q) is

equivalent to the condition ψ′φ = 0 for any ψ′; this condition is obviously satisfied only by

φ = 0. It is clear that a similar analysis can be performed for any 2-form θ ∈ Ω2(S2
q). �

The Haar state h of A(SUq(2)) given in (3.41) yields a faithful and invariant state when

restricted to A(S2
q). As a volume form we take µ̌ = m̌ ω− ∧ ω+ ∧ ω0 = µ̌∗ with m̌ ∈ R. It

commute with algebra element, f µ̌ = µ̌ f for f ∈ A(S2
q), so the integral on the exterior

algebra Ω(S2
q) can be defined by

∫

µ̌

θ = 0, on θ ∈ Ωk(S2
q), for k = 0, 1, 2 ,

∫

µ̌

f µ̌ = h(f), on f µ̌ ∈ Ω3(S2
q) .(4.2)

Lemma 4.2. The integral
∫
µ̌
: Ω(S2

q) → C defined by (4.2) is left-faithful.

Proof. The proof of the left-faithfulness of the integral can be easily established from a

direct analysis, using the faithfulness of the Haar state h. �

The restriction to Ω(S2
q) of the left and right A(SUq(2))-linear graded inner products

on Ω(SUq(2)) in (3.42) gives left and right A(S2
q)-linear graded inner products on Ω(S2

q):

(4.3) 〈θ, θ′〉LS2q := 〈θ, θ′〉L ; 〈θ, θ′〉RS2q := 〈θ, θ′〉R

with θ, θ′ ∈ Ω(S2
q). The analogue result to relation (3.42) is given in the following

Proposition 4.3. On the exterior algebra on the sphere S2
q endowed with the above graded

left (resp. right) inner product, there exists a unique invertible left A(S2
q)-linear Hodge

operator Ľ : Ωk(S2
q) → Ω3−k(S2

q), (resp. a unique invertible right A(S2
q)-linear Hodge

operator Ř) for k = 0, 1, 2, 3, satisfying

(4.4)

∫

µ̌

θ∗ ∧ Ľ(θ′) = 〈θ, θ′〉LS2q ,
∫

µ̌

θ∗ ∧ Ř(θ′) = 〈θ, θ′〉RS2q
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for any θ, θ′ ∈ Ωk(S2
q). They can be written in terms of the sesquilinear map (3.26) as:

(4.5)

Ľ(1) = µ̌ , Ľ(µ̌) = {µ̌, µ̌}
Ľ(φω−) = m̌α φω− ∧ ω0 , Ľ(φω− ∧ ω0) = m̌ {ω− ∧ ω0, ω− ∧ ω0}φω− ,

Ľ(φ′ω+) = m̌ q2αφ′ω0 ∧ ω+ , Ľ(φ′ω0 ∧ ω+) = m̌ {ω+ ∧ ω0, ω+ ∧ ω0}φ′ω+ ,

Ľ(ω0) = −m̌ν ω− ∧ ω+ , Ľ(ω− ∧ ω+) = −m̌ {ω− ∧ ω+, ω− ∧ ω+}ω0

and

(4.6)

Ř(1) = µ̌ , Ř(µ̌) = {µ̌, µ̌}
Ř(ω− φ) = m̌q2αω− ∧ ω0 φ , Ř(ω− ∧ ω0 φ) = m̌ q2{ω− ∧ ω0, ω− ∧ ω0}ω− φ,

Ř(ω+ φ
′) = m̌ α ω0 ∧ ω+ φ

′, Ř(ω0 ∧ ω+ φ
′) = m̌ q−2{ω+ ∧ ω0, ω+ ∧ ω0}ω+ φ

′,

Ř(ω0) = −m̌ν ω− ∧ ω+ , Ř(ω− ∧ ω+) = −m̌ {ω− ∧ ω+, ω− ∧ ω+}ω0 .

Proof. For the rather technical proof we refer to [34], where the same strategy has been

adopted for the analysis of a Hodge operator on a two dimensional exterior algebra on S2
q.

Here we only observe that the uniqueness follows from the result in Lemma 4.2. Given

two operators Ľ, Ľ′ : Ωk(S2
q) → Ω3−k(S2

q) satisfying (4.4) (or equivalently Ř, Ř′), their

difference must satisfy the relation
∫
µ̌
θ′∗ ∧ (Ľ(θ)− Ľ′(θ)) = 0 for any θ, θ′ ∈ Ωk(S2

q). The

left-faithfulness of the integral allows one then eventually to get Ľ(θ) = Ľ′(θ). �

From (2.31) and (2.33) it is µ̌ = m̌ χz, so we define

det Γ̌ :=
Γ(χz, χz)

2(1 + q2 + q−2)
, sgn(Γ̌) :=

det(Γ̌)

| det Γ̌|(4.7)

and set

m̌2 det Γ̌ := sgn(Γ̌)

as a definition for the scale factor m̌ ∈ R. This choice clearly gives Ľ2(1) = Ř2(1) =

sgn(Γ̌). Again we fix the ‘orientation’ so that sgn(Γ̌) = 1.

We conclude by noticing that the Hodge operators (4.5) and (4.6) are diagonal, but still

there is no choice for the parameters (3.31) and (3.32) of a real and hermitian contraction

map such that a relation like (3.12) is satisfied.

5. Laplacian operators

Given the Hodge structures constructed in the previous sections, the corresponding

Laplacian operators on the quantum group SUq(2),

2
L
SUq(2) : A(SUq(2)) → A(SUq(2)), 2SUq(2)(x) := − ⋆L d ⋆L dx,

2
R
SUq(2) : A(SUq(2)) → A(SUq(2)), 2SUq(2)(x) := − ⋆R d ⋆R dx

can be readily written in terms of the basic derivations (2.14) and (2.18) for the first order

differential calculus as

2
L
SUq(2)x =

{
α
(
L+L− + q2L−L+

)
+ ν L0L0 + γ LzLz + 2ǫL0Lz

}
⊲x,(5.1)
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and

2
R
SUq(2)x =

{
α
(
q2R+R− +R−R+

)
+ ν R0R0 + γ RzRz + 2ǫR0Rz

}
⊲x,(5.2)

with parameters given in (3.31).

From the decomposition (2.9) and the action (2.11) it is immediate to see that such

Laplacians restrict to operators : Ln → Ln. In order to diagonalise them, we recall the

decomposition (2.12). The action of each term of the Laplacians on the basis elements

{φn,J,l} in (2.13) can be explicitly computed by (2.5), giving:

L−L+⊲ φn,J,l = q−1−n [J − 1
2
n][J + 1− 1

2
n]φn,J,l ,

L+L−⊲ φn,J,l = q1−n [J + 1
2
n][J + 1− 1

2
n]φn,J,l ,

Lz⊲ φn,J,l = −q− 1
2
n [1

2
n]φn,J,l ,

L0⊲ φn,J,l = ([J + 1
2
]2 − [1

2
]2)φn,J,l = [J ][J + 1]φn,J,l .(5.3)

Here for the labels one has n ∈ N with J = |n|
2
+ Z and l = 0, . . . , 2J .

The Laplacians on the quantum sphere are, with f ∈ A(S2
q):

2
L
S2q
f := −ĽdĽdf =

{
αL+L− + q2αL−L+ + ν L0L0

}
⊲f,(5.4)

and

2
R
S2q
f := −ŘdŘdf =

{
q2αR+R− + αR−R+ + ν R0R0

}
⊲f.(5.5)

They are both the restriction to S2
q of the Laplacian on SUq(2), the left and right one

respectively. Their actions can be written in terms of the action of the Casimir element

Cq of Uq(su(2)), immediately giving their spectra. In fact they coincide on S2
q .

2
L,R
S2q

= 2qα(Cq +
1
4
− [1

2
]2) + ν(Cq +

1
4
− [1

2
]2)2,

= 2qαL0 + ν L2
0 on A(S2

q).(5.6)

Using (5.3), their spectra are readily found:

(5.7) 2
L,R
S2q

(φ0,J,l) =
(
2qα[J ][J + 1] + ν[J ]2[J + 1]2

)
φ0,J,l,

with J ∈ N, l = 0, . . . , 2J . We end this section by comparing these spectra to the spec-

trum of D2, the square of the Dirac operator on S2
q studied in [3]. Some straightforward

computation leads to:

spec(2L,R
S2q

) = spec(D2 − [1
2
]2) ⇔ 2qα = 1, ν = q−2(q − q−1)4.(5.8)

6. A digression: connections the Hopf fibration over the quantum sphere

A monopole connection for the quantum fibration A(S2
q) →֒ A(SUq(2)) on the standard

Podleś sphere – with a left-covariant 3d calculus on SUq(2) and the (corresponding re-

striction to a) 2d left-covariant calculus on S2
q – was explicitly described in [4]. A slightly

different, but to large extent equivalent [10] formulation of this and of a fibration con-

structed on the same topological data A(S2
q) →֒ A(SUq(2)), but with SUq(2) equipped
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with a bicovariant 4D calculus inducing on S2
q a left-covariant 3d calculus, are presented

in [9]. The general problem of finding the conditions between the differential calculi on a

base space algebra and on a ‘structure’ group, in a way giving a principal bundle structure

with compatible calculi and a consistent definition of connections on it has been deeply

studied [5, 25, 11, 14]. The slightly different perspective of this digression is to follow the

path reviewed in appendix B, namely to recall from [3] the formulation of a Hopf bundle

on the standard Podleś sphere starting from the 4D bicovariant calculus à la Woronowicz

on the total space SUq(2), in order to fully describe the set of its connections. The first

step in this analysis consists in describing how the differential calculus on SUq(2) naturally

induces a 1 dimensional bicovariant calculus on the structure group U(1), and in which

sense these two calculi are compatible.

6.1. A 1D bicovariant calculus on U(1). The Hopf projection (2.7) allows one to

define an ideal QU(1) ⊂ ker εU(1) as the projection QU(1) = π(QSUq(2)). Then QU(1) is

generated by the three elements

ξ1 = (z2 − 1) + q2(z−2 − 1),

ξ2 = (q2z + z−1 − (q3 + q−1))(q2z + z−1 − (1 + q2)),

ξ3 = (q2z + z−1 − (q−1 + q3))(z−1 − z),

and, since Ad(QU(1)) ⊂ QU(1) ⊗ A(U(1)), it corresponds to a bicovariant differential

calculus on U(1). The identity

−q(1+q4)−1(1+q2+q3+q5)−1{(q6−1)ξ3+(1+q4)ξ2−q2(1+q2)ξ1} = (z−1)+q(z−1−1)

shows that ξ = (z − 1) + q(z−1 − 1) is in QU(1). By induction one also sees that

j > 0 : zj(z − 1) = ξ(
∑j−1

n=0
qnzj−n) + qj(z − 1),

j < 0 : z−|j|(z − 1) = −ξ(
∑|j|−1

n=1
q−nzn−|j|) + q−|j|(z − 1).(6.1)

From these relations it is immediate to prove (as in [3]) that there is a complex vector

space isomorphism ker εU(1)/QU(1) ≃ C. The differential calculus induced by QU(1) is

1-dimensional, and the projection πQU(1)
: ker εU(1) → ker εU(1)/QU(1) can be written as

(6.2) πQU(1)
: zj(z − 1) → qj [z − 1],

on the vector space basis ϕ(j) = zj(z−1) in ker εU(1), with notation [z−1] ∈ ker εU(1)/QU(1).

The projection (6.2) will be used later on to define connection 1-forms on the fibration.

As a basis element for the quantum tangent space XQU(1)
we take

(6.3) X = Lz =
K−2 − 1

q − q−1
.

The ∗-Hopf algebras A(U(1)) and U(1) ≃ {K,K−1} are dually paired via the pairing,

induced by the one in (2.4) between A(SUq(2)) and Uq(su(2)), with

(6.4)
〈
K±, z

〉
= q∓

1
2 ,

〈
K±, z−1

〉
= q±

1
2 ,
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on the generators. Thus, the exterior derivative d : A(U(1)) → Ω1(U(1)) can be written,

for any u ∈ A(U(1)), as du = (X⊲u) θ on the left invariant basis 1-form θ ∼ [z − 1]. On

the generators of the coordinate algebra one has

(6.5) dz =
q − 1

q − q−1
z θ, dz−1 =

q−1 − 1

q − q−1
z−1 θ,

so to have θ = (q − 1)(q − q−1)−1z−1dz. From the coproduct ∆X = 1 ⊗ X +X ⊗K−2

the A(U(1))-bimodule structure in Ω1(U(1)) is

θ z± = q±z± θ.

6.2. Connections on the principal bundle. The compatibility – as described in App. B

and expressed by the exactness of the sequence (B.4) – of the differential calculus U(1)

presented above with the 4D differential calculus on SUq(2) presented in §2.2, has been

proved in [3]. As a consequence, collecting the various terms, the data
(
A(SUq(2)),A(S2

q),A(U(1));NSUq(2) = r−1(SUq(2)⊗QSUq(2)),QU(1)

)

is a quantum principal bundle with the described calculi.

In order to obtain connections on this bundle, that is maps (B.7) splitting the sequence

(B.4), we need to compute the action of the map

∼NSUq(2)
: Ω1(SUq(2)) → A(SUq(2))⊗ (ker εU(1)/QU(1))

defined via the diagram (B.3). Since it is left A(SUq(2))-linear, we take as representative

universal 1-forms corresponding to the left invariant 1-forms (2.20) in Ω1(SUq(2)):

π−1
NSUq(2)

(ω+) = (aδc− qcδa)

π−1
NSUq(2)

(ω−) = (c∗δa∗ − qa∗δc∗)

π−1
NSUq(2)

(ω0) = {a∗δa+ c∗δc+ q(aδa∗ + q2cδc∗)}/(q + 1)λ1

π−1
NSUq(2)

(ωz) = a∗δa+ c∗δc− (aδa∗ + q2cδc∗).

On them the action of the canonical map (B.2) is found to be:

χ(aδc− qcδa) = (ac− qca)⊗ (z − 1) = 0

χ(c∗δa∗ − qa∗δc∗) = (c∗a∗ − qa∗c∗)⊗ (z∗ − 1) = 0

χ
(
(1 + q)−1λ−1

1 {a∗δa+ c∗δc+ q(aδa∗ + q2cδc∗)}
)
= 1⊗ {(z − 1) + q(z−1 − 1)} = 1⊗ ξ

χ(a∗δa+ c∗δc− (aδa∗ + q2cδc∗)) = 1⊗ (z − z−1)

with ξ ∈ QSUq(2) introduced in §6.1. From the isomorphism (6.2) one finally has:

∼NSUq(2)
(ω±) =∼NSUq(2)

(ω0) = 0

∼NSUq(2)
(ωz) = 1⊗ (1 + q−1)[z − 1].(6.6)

From these one recovers Ω1
hor(SUq(2)) = ker ∼NSUq(2)

with, using (2.36),

(6.7) ker ∼NSUq(2)
≃ A(SUq(2)){ω±, ω0} ≃ {ω±, ω0}A(SUq(2)).
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Remark 6.1. From (6.6), for the generator X = Lz in (6.3) one gets that

X̃(ωz) = 〈X,∼NSUq(2)
(ωz)〉 = 1,

which identifies Lz ∈ XQ as a vertical vector for the fibration. In turn it is used to

extend the notion of horizontality to higher order forms in Ω(SUq(2)). One defines [18]

a contraction operator iLz
: Ωk(SUq(2)) → Ωk−1(SUq(2)), giving iLz

(ω±) = iLz
(ω0) = 0,

and iLz
(ωz) = 1 on 1-forms, so that ker iLz

≃ Ω1
hor(SUq(2)). Then one define

(6.8) Ωkhor(SUq(2)) := ker|Ωk(SUq(2))
iLz
,

that is the kernel of the contraction map when restricted to the bimodule of k-forms. It

is then easy to show that Ωkhor(SUq(2)) ≃ A(SUq(2))Ω
k(S2

q)A(SUq(2)).

Given the explicit expression (6.6) for the canonical map compatible with the differential

calculi we are using, and the A(U(1))-coaction

(6.9) δ
(1)
R ωz = ωz ⊗ 1, δ

(1)
R ω0 = ω0 ⊗ 1, δ

(1)
R ω± = ω± ⊗ z±2,

using the vector space basis ϕ(j) in ker εU(1) of §6.1, a connection (B.7) is given by

(6.10) σ̃(φ⊗ [ϕ(j)]) = q−2j(1 + q−1)−1φ(ωz + a)

for any φ ∈ A(SUq(2)) and any element a ∈ Ω1(S2
q). The projection Π on vertical forms,

associated to this connection turns out to be

Π(ω±) = 0 = Π(ω0),

Π(ωz) = σ̃(∼NSUq(2)
(ωz)) = σ̃(1⊗ [ϕ(0)]) = ωz + a,(6.11)

while the corresponding connection 1-form ω : A(U(1)) → Ω1(SUq(2)) is given by

(6.12) ω(zn) = σ̃(1⊗ [zn − 1]) = qn/2[n
2
](ωz + a).

Connections corresponding to a = sω0 with s ∈ R were already considered in [9].

The vertical projector (6.11) allows one to define a covariant derivative

D : A(SUq(2)) → Ω1
hor(SUq(2)),

given (as usual) as the horizontal projection of the exterior derivative:

(6.13) Dφ := (1−Π)dφ.

Covariance here clearly refers to the right coaction of the structure group U(1) of the

bundle, since it is that δRφ = φ⊗ z−n ⇔ δ
(1)
R (Dφ) = (Dφ)⊗ z−n. From (B.9) the action

of this operator can be written as

(6.14) Dφ = dφ− φ ∧ ω(z−n)

for any φ ∈ Ln. From the bimodule structure (2.36) it is easy to check that all the above

connections are strong connections in the sense of [13].
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7. Gauged Laplacians on line bundles

Each A(S2
q)-bimodule Ln defined in (2.10) is a bimodule of co-equivariant elements in

A(SUq(2)) for the right U(1)-coaction (2.8), and as such can be thought of as a module

of ‘sections of a line bundle’ over the quantum sphere S2
q. Without requiring any com-

patibility with additional structures, any Ln can be realized both as a projective right or

left A(S2
q)-module (of rank 1 and winding number −n). One of such structures is that

of a connection on the quantum principal bundle A(S2
q) →֒ A(SUq(2)). By transporting

the covariant derivative (6.13) on the principal bundle to a derivative on sections forces

to break the symmetry between the left or the right A(S2
q)-module realization of Ln.

With the choice in §2 for the principal bundle, we need an isomorphism Ln ≃ Fn

with Fn a projective left A(S2
q)-module [15]. Given this identification, in §7.1 we shall

describe the complete equivalence between covariant derivatives on Fn (associated to the

3d left covariant differential calculus over S2
q) and connections (as described in §6) on

the principal bundle A(S2
q) →֒ A(SUq(2)), corresponding to compatible 4D+ bicovariant

calculus over SUq(2) and 3d left covariant calculus over S2
q. We shall then move to a

family of gauged Laplacian operators on Fn, obtained by coupling the Laplacian operator

over the quantum sphere with a set of suitable gauge potentials. We finally show that

among them there is one whose action extends to Ln the action of the Laplacian (5.5)

on L0 ≃ S2
q. As we noticed in §5, the action of the (right) Laplacian (5.5) on S2

q is given

by the restriction of the action (5.2) of the (right) Laplacian 2
R
SUq(2)

. Here we obtain

that the action of such gauged Laplacian can be written in terms of the ungauged (right)

Laplacian on SUq(2), in parallel to what happens on a classical principal bundle (see e.g.

[2, Prop. 5.6]) and on the Hopf fibration of the sphere S2
q with calculi coming from the

left covariant one on SUq(2) as shown in [20, 34].

7.1. Line bundles as projective left A(S2
q)-modules. With n ∈ Z, we consider the

projective left A(S2
q)-module Fn = (A(S2

q))
|n|+1p(n), with projections [6, 15] (cf. also [20])

(7.1) p(n) =
∣∣Ψ(n)

〉 〈
Ψ(n)

∣∣ ,

written in terms of elements
∣∣Ψ(n)

〉
∈ A(SUq(2))

|n|+1 and their duals
〈
Ψ(n)

∣∣ as follows.

One has:

n ≤ 0 :
∣∣Ψ(n)

〉
µ
=

√
αn,µ c

|n|−µaµ ∈ Ln,

where αn,|n| = 1; αn,µ =
∏|n|−µ−1

j=0

(
1− q2(|n|−j)

1− q2(j+1)

)
, µ = 0, . . . , |n| − 1(7.2)

n ≥ 0 :
∣∣Ψ(n)

〉
µ
=
√
βn,µ c

∗µa∗n−µ ∈ Ln,

where βn,0 = 1; βn,µ = q2µ
∏µ−1

j=0

(
1− q−2(n−j)

1− q−2(j+1)

)
, µ = 1, . . . , n.(7.3)

The coefficients are chosen so that
〈
Ψ(n),Ψ(n)

〉
= 1, as a consequence (p(n))2 = p(n). Also

by construction it holds that (p(n))† = p(n).
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The isomorphism Ln ≃ Fn = (A(S2
q))

|n|+1p(n) is realized as follows. Given any element

in the free module (A(S2
q))

|n|+1 as 〈f | = (f0, f1, . . . , f|n|) with fµ ∈ A(S2
q), the definition

φf :=
〈
f,Ψ(n)

〉
=
∑n

µ=0

√
αn,µ c

|n|−µaµfµ for n ≤ 0,

=
∑|n|

µ=0

√
βn,µ c

∗µa∗n−µfµ for n ≥ 0,

gives the left A(S2
q)-modules isomorphism:

(7.4) Ln ≃−−→ Fn, φf 7→ 〈σf | = φf
〈
Ψ(n)

∣∣ = 〈f | p(n),

with inverse

Fn
≃−−→ Ln, 〈σf | = 〈f | p(n) 7→ φf =

〈
f,Ψ(n)

〉
.

Given the exterior algebra (Ω(S2
q), d) on the quantum sphere we are considering, a

covariant derivative on the left A(S2
q)-modules Fn is a C-linear map

(7.5) ∇ : Ωk(S2
q)⊗A(S2q)

Fn → Ωk+1(S2
q)⊗A(S2q )

Fn

that satisfies the left Leibniz rule

∇(ξ ⊗A(S2q) 〈σ|) = (dξ)⊗A(S2q) 〈σ|+ (−1)mξ ⊗A(S2q) ∇〈σ|

for any ξ ∈ Ωm(S2
q) and 〈σ| ∈ Ωk(S2

q)⊗A(S2q )Fn. The curvature associated to a covariant

derivative is ∇2 : Fn → Ω2(S2
q)⊗A(S2q ) Fn, that is ∇2(ξ 〈σ|) = ξ∇2(〈σ|) = ξ F∇(〈σ|) with

the last equality defining the curvature 2-form F∇ ∈ EndA(S2q)Ω
2(S2

q)⊗A(S2q ) Fn.

Any covariant derivative – an element in C(Fn) – and its curvature can be written as

∇〈σ| = (d 〈σ|)p(n) + (−1)k 〈σ|A(n),(7.6)

∇2 〈σ| = 〈σ| {−dp(n) ∧ dp(n) + dA(n) − A(n) ∧ A(n)}p(n).(7.7)

with 〈σ| ∈ Ωk(S2
q)⊗A(S2q)

Fn. For the ‘gauge potential’ A(n) one has

(7.8) A(n) = p(n)A(n) = A(n)p(n) =
∣∣Ψ(n)

〉
a(n)

〈
Ψ(n)

∣∣ ∈ HomA(S2q)(Fn,Ω
1(S2

q)⊗A(S2q) Fn),

with a(n) ∈ Ω1(S2
q). The monopole (Grassmann) connection corresponds to a(n) = 0.

In analogy with the identification (7.4), the covariant derivative ∇ naturally induces

an operator D : Ln → Ln ⊗A(S2q) Ω
1(S2

q) that can be written as

(7.9) Dφ := (∇〈σφ|)
∣∣∣Ψ̃(n)

〉
= dφ− φ ∧ {

〈
Ψ(n), dΨ(n)

〉
− a(n)}.

We refer to the 1-form

(7.10) Ω1(SUq(2)) ∋ ̟(n) =
(〈
Ψ(n), dΨ(n)

〉
− a(n)

)

as the connection 1-form of the gauge potential. It allows one to express the curvature as

(7.11) F∇ = −
∣∣Ψ(n)

〉 (
d̟(n) +̟(n) ∧̟(n)

) 〈
Ψ(n)

∣∣

where (d̟(n) +̟(n) ∧̟(n)) ∈ Ω2(S2
q).
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The covariant derivatives defined above on the left modules Fn fit in the general theory

of connections on the quantum Hopf bundle as described in the §6.2: any covariant

vertical projector, as in (6.11), induces a gauge potential A(n) as in (7.8). The notion

(7.10) of connection 1-form of a given gauge potential in C(Fn) matches the notion (6.12)

of connection 1-form ω : A(U(1)) → Ω1(SUq(2)) on the Hopf bundle. From the A(S2
q)-

bimodule isomorphism Ln ⊗A(S2q) Ω
1(S2

q) ≃ Ω1
hor(SUq(2)) (see Remark 6.1), the matching

amounts to equate the actions of the covariant derivative operators (7.9) and (6.13),

(7.12) ∀φ ∈ Ln : Dφ = Dφ ⇔ ̟(n) = ω(z−n).

From formula (6.12), this correspondence can be written as

(7.13) a(n) = λnω0 − ξ−na,

where the coefficients refer to the eigenvalue equations:

Lz⊲
∣∣Ψ(n)

〉
:= ξn

∣∣Ψ(n)
〉

⇒ ξn = −q−
n
2 [
n

2
]

L0⊲
∣∣Ψ(n)

〉
:= λn

∣∣Ψ(n)
〉

⇒ λn = [
|n|
2
][
|n|
2

+ 1].(7.14)

Finally, the equivalence (7.12) allows one to introduce a covariant derivative

D : Ωkhor(SUq(2)) → Ωk+1
hor (SUq(2)),

thus extending to horizontal forms on the total space of the quantum Hopf bundle the

covariant derivative operator onA(SUq(2)) as given in (6.13). This follows the formulation

described in [13], since any connection on the principal bundle is strong. Upon defining

L(k)
n := {φ ∈ Ωkhor(SUq(2)) : δ

(k)
R φ = φ⊗ z−n},

where δ
(k)
R is the natural right U(1)-coaction on Ωk(SUq(2)), one obtains:

(7.15) Dφ = dφ− (−1)kφ ∧ ω(z−n).

A further extension to the whole exterior algebra Ω(SUq(2)) is proposed in [9]: a gener-

alisation of the analysis in [34, §9] shows how this extension is far from being unique.

We restrict our analysis again to covariant derivatives ∇s |σ〉 in (7.6) whose gauge

potential and corresponding connection 1-form are of the form:

A(n)
s = s

∣∣Ψ(n)
〉
ω0

〈
Ψ(n)

∣∣ , ̟(n)
s = ξnωz + (λn − s)ω0,(7.16)

for s ∈ R and coefficients as in (7.14), since they reduce in the classical limit to the

monopole connection on line bundles associated to the classical Hopf bundle π : S3 → S2.

Relations (2.26) and (2.27) allow to compute the curvature 2-form (7.11) as

d̟(n)
s =

(
(q + q−1)ξn + (s− λn)ρ

)
ω+ ∧ ω−

̟(n)
s ∧̟(n)

s = (q − q−1)ξn
(
(q + q−1)ξn + (q − q−1)(s− λn)

)
ω+ ∧ ω−.
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7.2. Gauged Laplacians. In order to introduce an Hodge operator

(7.17) ⋆R : Ωk(S2
q)⊗A(S2q) Fn → Ω3−k(S2

q)⊗A(S2q) Fn,

we use the right A(S2
q)-linear Hodge operator (4.6) on Ω(S2

q):

(7.18) ⋆R (ξ 〈σ|) := (Řξ) 〈σ|

so that a gauged Laplacian operator is defined as

2
R
∇ : Fn → Fn, 2

R
∇ 〈σ| := − ⋆R ∇(⋆R∇〈σ|).

Equivalently we have an operator on Ln ≃ Fn via the left A(S2
q)-modules isomorphism

(7.4). With φ =
〈
σ,Ψ(n)

〉
, it holds that

(7.19) 2
R
∇ : Ln → Ln, 2

R
∇φ = (2R

∇ 〈σ|)
∣∣Ψ(n)

〉
.

With the family of connections (7.16) and using the identities

(R±⊲ 〈σ|)
∣∣Ψ(n)

〉
= q−nR±⊲φ,

(R0⊲ 〈σ|)
∣∣Ψ(n)

〉
= q−n

(
R0 − [

|n|
2
][1− |n|

2
]

)
⊲φ(7.20)

one readily computes:

(7.21) 2
R
∇s
φ = q−2n

{
α (q2R+R− +R−R+) + ν (R0 + sq−n − [

|n|
2
][1 − |n|

2
])2
}
⊲φ.

Finally, fixing the parameter to be

(7.22) s̃′(n) = qn[
|n|
2
][1− |n|

2
],

the action of the gauged Laplacians extends, apart from a multiplicative factor depending

on the label n, to elements in the line bundles Ln the action of the Laplacian operator

(5.5) on the quantum sphere, that is,

(7.23) q2n
(
2

R
∇s̃′
φ
)
=
{
α(q2R+R− + R−R+) + νR2

0

}
⊲φ.

As an operator on Ln we get

2
R
∇s′

= (2qαL0K
2 + ν L2

0)K
−4 − qα

(q + q−1)(K −K−1)2

(q − q−1)2
K−2

(7.24)

= 2qα (Cq − [1
2
]2 + 1

4
)K−2 + ν (Cq − [1

2
]2 + 1

4
)2)K−4 − qα

(q + q−1)(K −K−1)2

(q − q−1)2
K−2,

having used the relation (2.15). This relation is the counterpart of what happens on a

classical principal bundle (see e.g. [2, Prop. 5.6]) and on the Hopf fibration of the sphere

S2
q with calculi coming from the left covariant one on SUq(2) as shown in [20, 34].
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Appendix A. Exterior differential calculi on Hopf algebras

In this appendix we briefly recall general definitions and results from the theory of

differential calculi on quantum spaces and quantum groups. We confine to notions that

we need in this paper in order to construct the exterior algebras over the quantum group

SUq(2) and its subalgebra S2
q. For a more complete analysis we refer to [33, 18].

Let A be a unital ∗-algebra over C and Ω1(A) an A-bimodule. Given the linear map

d : A → Ω1(A), the pair (Ω1(A), d) is a (first order) differential calculus over A if d

satisfies the Leibniz rule, d(xy) = (dx)y + xdy for x, y ∈ A, and if Ω1(A) is generated by

d(A) as a A-bimodule. Furthermore, it is a ∗-calculus if there is an anti-linear involution

∗ : Ω1(A) → Ω1(A) such that (a1(da)a2)
∗ = a∗2(d(a

∗))a∗1 for any a, a1, a2 ∈ A.

The universal calculus (Ω1(A)un, δ) has universal 1-forms given by the submodule

Ω1(A)un = ker(m : A⊗A → A) ⊂ A⊗A withm(a⊗b) = ab the multiplication map, while

the universal differential δ : A → Ω1(A)un is δa = 1⊗a−a⊗1. It is universal since given

any sub-bimodule N of Ω1(A)un with projection πN : Ω1(A)un → Ω1(A) = Ω1(A)un/N ,

then (Ω1(A), d), with d := πN ◦ δ, is a first order differential calculus over A and any

such a calculus can be obtained in this way. The projection πN : Ω1(A)un → Ω1(A) is

πN (
∑

i ai ⊗ bi) =
∑

i aidbi with associated subbimodule N = ker π.

Next, suppose A is a left H-comodule algebra for the quantum group H = (H,∆, ε, S),
with left coaction δL : A → H ⊗ A, an algebra map. The coaction is extended as a

coalgebra map to the leftH-coaction δ
(1)
L : Ω1(A) → H⊗Ω1(A) via δ

(1)
L (df) = (1⊗d)δL(f).

The calculus is said to be left covariant if

(∆⊗ 1)δ
(1)
L = (1⊗ δ

(1)
L )δ

(1)
L , (ε⊗ 1)δ

(1)
L = 1.

A calculus is left covariant if and only if the corresponding bimodule N verifies that

δ
(1)
L (N ) ⊂ H ⊗ N . The coaction δ

(1)
L on N is the usual coaction of a Hopf algebra on a

tensor product of its comodule algebras, i.e. δ
(1)
L = (· ⊗ id⊗ id) ◦ (id⊗τ ⊗ id) ◦ (δL ⊗ δL)

with τ the standard flip. The property of right covariance of a first order differential

calculus is stated in complete analogy with respect to a right H-comodule structure of A.

Clearly these notions make sense for A to be the algebra H with the coaction ∆ of H
on itself extended then to maps

∆
(1)
R (dh) = (d⊗ 1)∆(h) and ∆

(1)
L (dh) = (1⊗ d)∆(h).

On H there is in addition the notion of a bicovariant calculus, namely a calculus which is

both left and right covariant and satisfying the compatibility condition:

(id⊗∆
(1)
R ) ◦∆(1)

L = (∆
(1)
L ⊗ id) ◦∆(1)

R .

On a quantum group H the covariance of calculi are studied in terms of the bijection

r : H⊗H → H⊗H,

(A.1) r(h⊗ h′) = (h⊗ 1)∆(h′), r−1(h⊗ h′) = (h⊗ 1)(S ⊗ id)∆(h′)
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which is such that r(Ω1(H)un) = H ⊗ ker ε. The map r transforms any left covariant

subbimodule N ⊂ Ω1(H)un into a right ideal Q ⊂ ε, while any right ideal Q ⊂ ε is

conversely mapped by r−1 into a left covariant subbimodule N ⊂ Ω1(H)un.

Left covariant calculi onH are in one to one correspondence with right ideals Q ⊂ ker ε,

with NQ = r−1(H ⊗ Q) and Ω1(H) := Ω1(H)un/NQ. The left H-modules isomorphism

given by Ω1(H) ≃ H⊗ (ker ε/Q) allows one to recover the complex vector space ker ε/Q
as the set of left invariant 1-forms, namely the elements ωa ∈ Ω1(H) such that

∆
(1)
L (ωa) = 1⊗ ωa.

The dimension of ker ε/Q is referred to as the dimension of the calculus. A left covariant

first order differential calculus is a ∗-calculus if and only if (S(Q))∗ ∈ Q for any Q ∈ Q.

If this is the case, the left coaction of H on Ω1(H) is compatible with the ∗-structure:
∆

(1)
L (dh∗) = (∆(1)(dh))∗. Bicovariant calculi corresponds to right ideals Q ⊂ ker ε which

are in addition stable under the right adjoint coaction Ad of H onto itself, that is to say

Ad(Q) ⊂ Q ⊗H. Explicitly, Ad = (id⊗m) (τ ⊗ id) (S ⊗∆)∆, with τ the flip operator,

or Ad(h) = h(2) ⊗
(
S(h(1))h(3)

)
in Sweedler notation.

The tangent space of the calculus is the complex vector space of elements out of H′ –

the dual space H′ of functionals on H – defined by

XQ := {X ∈ H′ : X(1) = 0, X(Q) = 0, ∀Q ∈ Q}.

There exists a unique bilinear form

(A.2) { , } : XQ × Ω1(H), {X, xdy} := ε(x)X(y),

giving a non-degenerate dual pairing between the vector spaces XQ and ker ε/Q. We have

then also a vector space isomorphusm XQ ≃ (ker ε/Q).

The dual space H′ has natural left and right (mutually commuting) actions on H:

(A.3) X ⊲ h := h(1)X(h(2)), h ⊳ X := X(h(1))h(2).

If the vector space XQ is finite dimensional its elements belong to the dual Hopf algebra

H′ ⊃ Ho = (Ho,∆Ho , εHo, SHo), defined as the largest Hopf ∗-subalgebra contained in H′.

In such a case the ∗-structures are compatible with both actions:

X⊲h∗ = ((S(X))∗⊲h)∗, h∗⊳X = (h⊳(S(X))∗)∗,

for any X ∈ Ho, h ∈ H. Then the exterior derivative can be written as:

(A.4) dh :=
∑

a
(Xa ⊲ h) ωa =

∑
a
ωa(−S−1(Xa))⊲h,

where {Xa, ωb} = δab, and one has the identity S−1(Xa) = −S−1(fba)Xb. The twisted

Leibniz rule of derivations of the basis elements Xa is dictated by their coproduct:

(A.5) ∆Ho(Xa) = 1⊗Xa +
∑

b
Xb ⊗ fba,
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where the fab ∈ Ho consitute an algebra representation of H:

∆Ho(fab) =
∑

c
fac ⊗ fcb,

εHo(fab) = δab,
∑

b
SHo(fab)fbc =

∑
b
fabSHo(fbc) = δac.

The elements fab also control the H-bimodule structure of Ω1(H):

ωah =
∑

b
(fab ⊲ h)ωb, hωa =

∑
b
ωb
(
(S−1(fab)) ⊲ h

)
, for h ∈ H.(A.6)

The right coaction of H on Ω1(H) defines matrix elements

(A.7) ∆
(1)
R (ωa) =

∑
b
ωb ⊗ Jba.

where Jab ∈ H. This matrix is invertible, since
∑

b S(Jab)Jbc = δac and
∑

b JabS(Jbc) = δac.

In addition one finds that ∆(Jab) =
∑

c Jac⊗Jcb and ε(Jab) = δab. It gives a basis of right

invariant 1-forms, ηa = ωbS(Jba) and, as we shall see in a moment, allows one for an

explicit evaluation of the braiding of the calculus.

In order to construct an exterior algebra Ω(H) over the bicovariant first order differential

calculus (Ω1(H), d) one uses a braiding map replacing the flip automorphism. Define the

tensor product Ω1(H)⊗k = Ω1(H)⊗H . . .⊗H Ω1(H) with k factors. There exists a unique

H-bimodule homomorphism σ : Ω1(H)⊗2 → Ω1(H)⊗2 such that σ(ω ⊗ η) = η⊗ ω for any

left invariant 1-form ω and any right invariant 1-form η. The map σ is invertible and

commutes with the left coaction of H:

(id⊗σ) ◦∆(2)
L = ∆

(2)
L ◦ σ,

with ∆
(2)
L the extension of the coaction to the tensor product. There is an analogous

invariance for the right coaction. Moreover, σ satisfies a braid equation. On Ω1(H)⊗3:

(id⊗σ) ◦ (σ ⊗ id) ◦ (id⊗σ) = (σ ⊗ id) ◦ (id⊗σ) ◦ (σ ⊗ id).

All of this was proved in [33], where, using the dual pairing between Ho and H, an explicit

form of the braiding σ was given on a basis of left invariant 1-forms:

(A.8) σ(ωa ⊗ ωb) :=
∑

nk
σ nk
ab ωn ⊗ ωk =

∑
nk

〈fak, Jnb〉ωn ⊗ ωk.

The braiding map provides a representation of the braid group and an antisymmetrizer

operator A(k) : Ω1(H)⊗k → Ω1(H)⊗k. The Hopf ideals S(k)
Q = ker A(k) give the quotients

(A.9) Ωk(H) = Ω1(H)⊗k/S(k)
Q

the structure of a H-bicovariant bimodule which can be written as Ωk(H) = RangeA(k).

The exterior algebra is (Ω(H) = ⊕kΩ
k(H),∧) with the identification Ω0(H) = H. The

exterior derivative is extended to Ω(H) as the only degree one derivation such that d2 = 0.

The algebra Ω(H) has natural left and right H-comodule structure, given by recursively

setting

∆
(k+1)
L (dθ) = (1⊗ d)∆

(k)
L (θ), ∆

(k+1)
R (dθ) = (d⊗ 1)∆

(k)
R (θ).
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Finally, the ∗-structure on Ω1(H) is extended to an antilinear ∗ : Ω(H) → Ω(H) by

(θ ∧ θ′)∗ = (−1)kk
′

θ′∗ ∧ θ∗ with θ ∈ Ωk(H) and θ′ ∈ Ωk
′

(H); the exterior derivative

operator satisfies the identity (dθ)∗ = d(θ∗).

The quantum tangent space XQ can be endowed with a bilinear product, given as the

functional [ , ]q : XQ ⊗ XQ → XQ:

(A.10) [X, Y ]q(h) := {X ⊗ Y,Ad(h)},

with a natural extension of the bilinear form (A.2). The bicovariance of the calculus

ensures that the product is well defined and that, beside being braided antisymmetric it

satisfies a braded Jacobi identity, both properties with respect to the (transpose of) the

braiding σ. On a basis it is given by

(A.11) [Xa, Xb]q = XaXb −
∑

cd
σ ab
cd XcXd,

and computed in terms of the pairing and the matrix Jab in (A.7) as

(A.12) XaXb −
∑

cd
σ ab
cd XcXd =

∑
c
〈Xb, Jac〉Xc.

Appendix B. Quantum principal bundles and connections on them

Following [4], we consider as a total space an algebra P (with multiplication m : P ⊗
P → P) and as structure group a Hopf algebra H, thus P is a right H-comodule algebra

with coaction δR : P → P⊗H. The subalgebra of right coinvariant elements, B = PH =

{p ∈ P : δRp = p ⊗ 1}, is the base space of the bundle. The algebras (P,B,H) define a

topological principal bundle provided the sequence:

(B.1) 0 → P
(
Ω1(B)un

)
P → Ω1(P)un

χ→ P ⊗ ker εH → 0

is exact, with Ω1(P)un and Ω1(B)un the universal calculi and the map χ defined by

(B.2) χ : P ⊗ P → P ⊗H, χ := (m⊗ id) (id⊗δR) .

In fancier parlance, the exactness of this sequence is also referred to as stating that that

the inclusion B →֒ P is a Hopf-Galois extension [29].

Assume now that (Ω1(P), d) is a right H-covariant differential calculus on P given

via the subbimodule NP ⊂ Ω1(P)un, and (Ω1(H), d) a bicovariant differential calculus

on H given via the Ad-invariant right ideal QH ∈ ker εH. A first order left invariant

differential calculus is induced on the algebra basis B via Ω1(B) = Ω1(B)un/NB with

NB := NP ∩ Ω1(B)un. This definition is aimed to ensure that Ω1(B) = BdB.
To extend the coaction δR to a coaction of H on Ω1(P), one requires δR(NP) ⊂ NP⊗H.

The compatibility of the calculi are then the requirements that χ(NP) ⊆ P ⊗ QH and

that the map ∼NP
: Ω1(P) → P ⊗ (ker εH/QH), defined by the diagram

(B.3)

Ω1(P)un
πN−→ Ω1(P)

↓ χ ↓∼NP

P ⊗ ker εH
id⊗πQH−→ P ⊗ (ker εH/QH)
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(with πN and πQH
the natural projections), is surjective and has kernel ker(∼NP

) =

PΩ1(B)P =: Ω1
hor(P). These conditions ensure the exactness of the sequence:

(B.4) 0 → PΩ1(B)P → Ω1(P)
∼NP−→ P ⊗ (ker εH/QH) → 0.

The condition χ(NP) ⊆ P ⊗QH is needed to have a well defined map ∼NP
. If (P,B,H)

is a quantum principal bundle with the universal calculi, the equality χ(NP) = P ⊗ QH

ensures that (P,B,H;NP ,QH) is a quantum principal bundle with the corresponding

nonuniversal calculi.

Elements in the quantum tangent space XQH
(H) act on ker εH/QH via the pairing

between Ho and H. Given V ∈ XQH
(H) one defines a map

(B.5) Ṽ : Ω1(P) → P, Ṽ := (id⊗ξ) ◦ (∼NP
)

and declares a 1-form ω ∈ Ω1(P) to be horizontal iff Ṽ (ω) = 0, for any V ∈ XQH
(H).

The collection of horizontal 1-forms coincides with Ω1
hor(P).

The compatibility conditions above allow one to consistently define a right coaction

δ
(1)
R : Ω1(P) → Ω1(P) ⊗ H, as a coalgebra map, via δ

(1)
R ◦ d = (d ⊗ 1) ◦ δR. By direct

computation Ad(ker εH) ⊂ (ker εH)⊗H. Being the right ideal QH Ad-invariant (i.e. the

differential calculus on H is bicovariant), it is possible to define a right-adjoint coaction

Ad(R) : ker εH/QH → (ker εH/QH)⊗H by the commutative diagram

ker εH
πQH−→ ker εH/QH

↓ Ad ↓ Ad(R)

ker εH ⊗H πQH
⊗id−→ (ker εH/QH)⊗H

Such a right-adjoint coaction Ad(R) allows one further to define a right coaction δ
(Ad)
R

of H on P ⊗ (ker εH/QH) as a coaction of a Hopf algebra on the tensor product of its

comodules. This coaction is explicitly given by the relation:

(B.6) δ
(Ad)
R (p⊗ πQH

(h)) = p(0) ⊗ πQH
(h(2))⊗ p(1)(Sh(1))h(3).

A connection on the quantum principal bundle is a right invariant splitting of the

sequence (B.4). Given a left P-linear map σ̃ : P ⊗ (ker εH/QH) → Ω1(P) such that

δ
(1)
R ◦ σ̃ = (σ̃ ⊗ id)δ

(Ad)
R , and ∼NP

◦σ̃ = id,(B.7)

the map Π : Ω1(P) → Ω1(P) defined by Π = σ̃ ◦ ∼NP
is a right invariant left P-linear

projection, whose kernel coincides with the horizontal forms PΩ1(B)P:

Π2 = Π,

Π(PΩ1(B)P) = 0,

δ
(1)
R ◦ Π = (Π⊗ id) ◦ δ(1)R .(B.8)

The image of the projection Π is the set of vertical 1-forms of the principal bundle. A

connection on a principal bundle can also be given via a connection one form, which

is a map ω : H → Ω1(P). Given a right invariant splitting σ̃ of the exact sequence
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(B.4), define the connection 1-form as ω(h) = σ̃(1 ⊗ πQH
(h− εH(h))) on h ∈ H. Such a

connection 1-form has the following properties:

ω(QH) = 0,

∼NP
(ω(h)) = 1⊗ πQH

(h− εH(h)) ∀h ∈ H,
δ
(1)
R ◦ ω = (ω ⊗ id) ◦ Ad,
Π(dp) = (id⊗ω)δR(p) ∀ p ∈ P.(B.9)

Conversely with a linear map ω : ker εH → Ω1(P) that satisfies the first three conditions

in (B.9), there exists a unique connection on the principal bundle, such that ω is its

connection 1-form. The splitting of the sequence (B.4) will be

(B.10) σ̃(p⊗ [h]) = pω([h])

with [h] in ker(εH/QH), while the projection Π will be

(B.11) Π = m ◦ (id⊗ω)◦ ∼NP

The general proof of these results is in [4].
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