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1 Introduction

The most widely known result of Chevalley–Warning type states that if one
has a polynomial over a finite field of characteristic p, and the number of
variables exceeds the degree, then the number of zeros is a multiple of p. In
particular, if the polynomial is homogeneous, there is at least one non-trivial
zero.

There are a number of related results in the literature. Generally, let Fq

be a finite field, and let f = (f1(x), . . . , fr(x)) be an r-tuple of polynomials
fi(x1, . . . , xn) ∈ Fq[x1, . . . , xn]. Let di be the total degree of fi, and write
d = d1 + . . .+ dr. For any subset S ⊆ F

n
q we put

z(f ;S) = z(S) := {x ∈ S : f(x) = 0}

and
N (f ;S) = N (S) := #z(f ;S).

Then the original 1936 result of Chevalley [2] stated that if n > d and z(Fn
q )

is non-empty, then it contains at least 2 points. Immediately afterwards it
was shown by Warning [3] that if n > d then

p | N (Fn
q ), (1)

where p is the characteristic of Fq. In fact this followed from a trivial re-
arrangement of Chevalley’s argument. In the same paper Warning proved
that if n ≥ d, and if H1 and H2 are parallel affine hyperplanes in F

n
q then

N (H1) ≡ N (H2) (mod p). (2)

As a corollary he deduced that if z(Fn
q ) is non-empty then

N (Fn
q ) ≥ qn−d (n > d). (3)
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Later, in 1964, Ax [1] strengthened (1) by showing that indeed one has

q | N (Fn
q ) (n > d). (4)

When n is large compared with d there are further improvements possible,
as was shown by Katz [4] for example. These sharpenings of (4) lead to
improvements of all the results we will establish. However we wish to focus
here on the situation in which n is not much larger than d, and so will be
content with using (4).

Our first result shows that there is a strengthening of (2) corresponding to
Ax’s improvement of (1). To stress that the affine linear spaces we encounter
are not necessarily vector subspaces of Fn

q we will work over A
n(Fq), but of

course the sets z(An(Fq)) and z(Fn
q ) are the same.

Theorem 1 With the notation above, we have

N (L1) ≡ N (L2) (mod q) (5)

for any two parallel linear spaces L1, L2 ⊆ A
n(Fq) of dimension d or more.

Indeed our argument shows how one may deduce (5) from (4).
We next look at improvements to (3). IfK = Fqk has field basis ω1, . . . , ωk

over F = Fq we set

Nk(x1, . . . , xk) := NK/F (x1ω1 + . . .+ xkωk). (6)

This produces a form of degree k in k variables, with the property that
Nk(x1, . . . , xk) = 0 with variables xi ∈ Fq only when the xi are all zero. In
particular, if f consists of a single polynomial f1 = Nd then z(f ;An(Fq)) will
be a linear space of dimension n − d, and we will have equality in (3). In
contrast we have the following results.

Theorem 2 Suppose that n > d and that z(An(Fq)) is non-empty, and is
not a linear subspace of An(Fq). Then

(i) For any q we have N (An(Fq)) > qn−d;

(ii) If q ≥ 4 we have N (An(Fq)) ≥ 2qn−d; and

(iii) For any q we have N (An(Fq)) ≥ qn+1−d/(n+ 2− d) providing that the
polynomials f are homogeneous.
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Our proof of this will use only combinatorial facts about An(Fq), along with
(5) and its consequence (4). Thus the analogues of these results would be
true if one replaced z(An(Fq)) by any set with the property (5) for every pair
of parallel d-dimensional linear spaces Λ1,Λ2 ⊆ A

n(Fq). In particular we see
that part (ii) is best possible in this sense, since (5) would hold if z(An(Fq))
were composed of two parallel linear spaces of dimension n− d.

It may be instructive to examine two simple examples at this point. The
first shows that one cannot hope to improve part (iii) of Theorem 2 to say
that N (An(Fq)) ≥ qn+1−d. Here we take f to consist of the single polynomial
Q(x1, . . . , x4)Nn−4(x5, . . . , xn). Here Nn−4 is a norm form of degree n− 4, as
in (6), and

Q(x1, x2, x3, x4) = x1x2 + x3
3 + x3x4 + cx2

4

is a quadratic form, with the coefficient c ∈ Fq chosen so that x3
3+x3x4+ cx2

4

does not factor over Fq. Then Q = 0 has precisely q3 − q2 + q solutions
(x1, . . . , x4) ∈ F

4
q , and since d = n− 2 in this case we have

N (f ;An(Fq)) = qn+1−d(1− q−1 + q−2) < qn+1−d.

Indeed this also shows that part (ii) of the theorem cannot be extended to
q = 2.

Our second example shows that when f consists of a single polynomial
f1, it is possible for z(An(Fq)) to be a linear space of dimension n − k even
though f1 does not split into linear factors. For this we take n = 4 and choose
a field basis 1, α for Fq2 over Fq. Let N and N ′ denote norm forms for Fq4

over Fq2 and Fq2 over Fq respectively, using the basis 1, α in the latter case.
Let σ be the nontrivial automorphism of Fq2 over Fq. Then we may write
N(x) = Q1(x)+αQ2(x) for certain quadratic forms Q1, Q2 over Fq. It is clear
that we may use a linear change of variables over Fq to write Q1+αQ2 = Y1Y2

and Q1+ασQ2 = Y3Y4 with independent variables Y1, . . . , Y4. It follows that
if we take β ∈ Fq2 \ Fq different from α and ασ then Q1 + βQ2 = will have
rank 4. Such a β certainly exists, except when q = 2. We now see that the
polynomial f(x) = (Q1(x) + βQ2(x))(Q1(x) + βQ2(x))

σ is defined over Fq

and does not split into linear factors. None the less we have f = 0 only for
x = 0.

Finally we will investigate the structure of z(f ;An(Fq)) geometrically.

Theorem 3 Given n and d there is a constant C(n, d) as follows. For any
set of polynomials f whose degrees total d there is a corresponding set of ab-
solutely irreducible varieties V1, . . . , Vm defined over Fq such that z(f ;An(Fq))
is precisely the set of Fq-points in V1 ∪ . . . ∪ Vm. Moreover each variety Vi

has degree at most C(n, d), and m ≤ C(n, d).
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The Lang-Weil bound [5] now gives us the following immediate corollary.

Corollary Suppose that the largest dimension among the varieties Vi is D,
and that this occurs k times. Then, enlarging C(n, d) if necessary, we have

|N (f ;An(Fq))− kqD| ≤ C(n, d)qD−1/2. (7)

Thus if q ≫n,d 1 we have D ≥ n−d, and indeed if z(f ;An(Fq)) is not a linear
space of dimension n− d then D ≥ n+ 1− d. In the latter case we have

N (f ;An(Fq)) ≥ qn+1−d − C(n, d)qn+1/2−d

for q ≫n,d 1.

One would conjecture that D ≥ n − d irrespective of the size of q, and it
would be of interest to have a direct geometrical proof of this. Of course,
the lower bounds on D follow on comparing (7) with (3) and part (iii) of
Theorem 2.

Acknowledgement This research was begun while the author was vis-
iting the Institute for Advanced Study, in Princeton. The hospitality and
financial support of the institute is gratefully acknowledged.

We now present our proof of Theorem 1. Given a polynomial f(x1, . . . , xn)
of total degree e there are two reasonable ways of associating a form to it.
One may take f−(x1, . . . , xn) to be the homogeneous part of degree e, or one
may define

f+(x0, . . . , xn) = xe
0f(x1/x0, . . . , xn/x0).

For a system f we define f− and f+ by the above processes, using degree
e = di for each polynomial fi. Clearly each zero of f produces exactly q − 1
zeros of f+ with x0 6= 0; and the zeros of f+ with x0 = 0 correspond precisely
to the zeros of f−. Thus

N (f+;F
n+1
q ) = (q − 1)N (f ;Fn

q ) +N (f−;F
n
q ).

In particular, if n ≥ d then (4) yields q | N (f+;F
n+1
q ) and hence

N (f ;Fn
q ) ≡ N (f−;F

n
q ) (mod q).

We therefore see that the value of N (f ;Fn
q ) modulo q only depends on the

leading homogeneous parts of the polynomials f1, . . . , fr.
Now suppose we have parallel m-dimensional affine linear spaces L1 and

L2 in F
n
q . We may represent the restriction of the forms f to L1 by a set of

polynomials (g
(1)
1 , . . . , g

(1)
r ) in m variables; and similarly for L2. Since L1 and
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L2 are parallel, the leading homogeneous parts of g
(1)
i and g

(2)
i will be the

same. We are therefore led to Theorem 1.

Our proof of Theorem 2 is based on the following two lemmas.

Lemma 1 Let L0 ⊆ A
n(Fq) be a linear space. Choose a linear space L of

maximal dimension, k say, such that L ⊇ L0 and N (L) = N (L0). Suppose
L′ ⊃ L is a linear space of dimension k + 1 such that N (L′) is minimal.
Then

N (An(Fq)) ≥ N (L) +
qn−k − 1

q − 1
(N (L′)−N (L)). (8)

Lemma 2 Let S ⊆ A
t(Fq) be a set containing t+1 points in general position.

Then

(i) If q = 2, and if there is no 2-plane L ⊆ A
t(Fq) meeting S in exactly 3

points, then S = A
t(Fq).

(ii) If q ≥ 3, and if ℓ ⊆ S for every line ℓ meeting S in at least two points,
then S = A

t(Fq).

(iii) If q ≥ 4, and if #(S ∩ ℓ) ≥ q − 1 for every line ℓ meeting S in at least
two points, then A

t(Fq) \ S is contained in a hyperplane.

(iv) If m ≥ 2 is an integer, and if #(S∩ℓ) ≥ m+1 for every line ℓ meeting
S in at least two points, then

#S ≥
mt+1 − 1

m− 1
.

To deduce Theorem 2 we assume that z(An(Fq)) contains a maximal set
of t ≥ n + 1 − d points in general position. We take A

t(Fq) to be the space
spanned by these points and apply Lemma 2 to the set S consisting of zeros
of f lying in A

t(Fq). We will give the details required for the different parts
of Theorem 2 in due course, but the general strategy is as follows. Lemma 2
will either provide a suitable lower bound for N (An(Fq)), or produce a linear
space L0 to which we will apply Lemma 1. This linear space will have di-
mension two in the case of part (i) of Lemma 2, or dimension one otherwise.
We will have arranged that N (L0) ≤ q − 1, and since N (L) = N (L0) in
Lemma 1 the dimension k of L can be at most d, for otherwise (5) will give
us a contradiction. If k ≤ d− 2 then (8) implies that

N (An(Fq)) ≥
qn−k − 1

q − 1
≥

qn+2−d − 1

q − 1
≥n+1−d,
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which is a satisfactory lower bound. Thus we may assume that either L or
L′ has dimension d. Let L1 = L or L′ as appropriate. If N (L1) takes a
value v ≤ q−1 then we may deduce from (5) that N (L∗) ≥ v for every affine
d-plane L∗ parallel to L1. Covering A

n(Fq) with such linear spaces we deduce
that N (An(Fq)) ≥ vqn−d. Such bounds as these will suffice in all cases for
the theorem.

We begin by establishing part (i) of Theorem 2. From parts (i) and (ii)
of Lemma 2 we may obtain a satisfactory bound N (An(Fq)) ≥ qn+1−d unless
either q = 2 and there is a 2-plane L0 ⊆ A

n(Fq) with N (L0) = 3, or q ≥ 3
and there is a line L0 ⊆ A

n(Fq) with 2 ≤ N (L0) ≤ q − 1. We now apply
Lemma 1. As above we must have k ≤ d. Moreover if k ≤ d − 1 then (8)
yields

N (An(Fq)) ≥
qn+1−d − 1

q − 1
> qn−d,

which is satisfactory. If k = d and q = 2 then (8) produces

N (An(Fq)) ≥ 3 +
2n−d − 1

2− 1
> 2n−d.

Finally, if k = d and q ≥ 3 then 2 ≤ N (L0) = N (L) ≤ q − 1, and the
argument above, with 2 ≤ v ≤ q − 1, shows that N (An(Fq)) ≥ 2qn−d. Thus
N (An(Fq)) > qn−d in all cases.

We turn now to part (ii) of Theorem 2. By part (iii) of Lemma 2 we
have N (An(Fq)) ≥ qn+1−d − qn−d ≥ 2qn−d unless there is a line L0 ⊆ A

n(Fq)
with 2 ≤ N (L0) ≤ q − 2. As above, when we apply Lemma 1 we may
assume that k = d − 1 or d. If k = d then 2 ≤ N (L) ≤ q − 2 and we
may apply (5) as before to conclude that N (An(Fq)) ≥ 2qn−d. Similarly if
k = d − 1 and N (L′)−N (L) = 1 we have 3 ≤ N (L′) ≤ q − 1 and therefore
N (An(Fq)) ≥ 3qn−d. Finally, if k = d− 1 and N (L′)−N (L) ≥ 2 we deduce
from (8) that

N (An(Fq)) ≥ 2
qn+1−d − 1

q − 1
≥ 2qn−d.

This establishes the required bound in all cases.
To prove the third claim of Theorem 2 we apply Lemma 2 part (iv) with

an integer m ≤ q − 1 to be chosen in due course. Thus

N (An(Fq)) ≥
mn+2−d − 1

m− 1
≥ mn+1−d

unless there is a line with 2 ≤ N (L0) ≤ m. In the latter case we deduce from
Lemma 1 that

N (An(Fq)) ≥
qn−k − 1

q − 1
(N (L′)−m),
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and by the previous argument it suffices to consider the values k = d−1 and
k = d. If k = d− 1 we deduce that N (An(Fq)) ≥ qn−d(q −m), unless

m+ 1 ≤ N (L′) ≤ q − 1.

However, in the latter case we conclude by our standard argument using (5)
that N (An(Fq)) ≥ (m + 1)qn−d. In the homogeneous case the value k = d
cannot occur. To show this we consider two cases. If k = d and 0 ∈ L then
q − 1 | N (L) − 1, since if x ∈ z(L) then every scalar multiple of x is also
in z(L). This however is impossible since 2 ≤ N (L0) = N (L) ≤ m. On
the other hand, if 0 6∈ L we consider the (d + 1)-dimensional linear space
L′ := 〈L, 0〉. Here we find that N (L′) = 1 + (q − 1)N (L). According to (4)
we will have q | N (L′), whence N (L) ≡ 1 (mod q). This again is impossible,
since 2 ≤ N (L) ≤ m. It follows that one of the inequalities

N (An(Fq)) ≥ mn+1−d,

or
N (An(Fq)) ≥ qn−d(m+ 1),

or
N (An(Fq)) ≥ (m+ 1)qn−d

must hold. The required estimate now follows on choosing

m =

⌈

q

n+ 2− d

⌉

,

and noting that
(

1−
1

v + 1

)v

≥
1

v + 1

for any positive integer v.

We now prove Lemmas 1 and 2. For the first of these it is enough to
observe that An(Fq) is the disjoint union of L together with the sets L∗ \ L,
with L∗ running over all (k+1)-dimensional linear spaces containing L. There
are (qn−k − 1)/(q− 1) such spaces L∗. Thus the lemma follows from the fact
that N (L∗ \ L) ≥ N (L′)−N (L).

Lemma 2 will require distinctly more work. We prove the four claims
separately, using induction on t in each case. The various statements are all
trivially true for t = 0 and t = 1. To handle the induction step for case (i)
we may assume that S contains a linear space L0 say, of dimension t − 1,
together with a point P0 say, not on L0. Now choose any point P 6∈ L0 with
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P 6= P0, and aim to show that P ∈ S. We will then be able to conclude
that S = A

t(Fq) as required. Let P1 be any point in L0 and consider the
2-plane generated by P, P0 and P1. Since q = 2, this plane consists of the
three generators together with a fourth point P2 say, which must belong to
L0. Our construction has ensured that P, P1 and P2 are all in S, and so by
our hypothesis we also have P1 ∈ S, as required.

For part (ii) we use the same initial setup. We assume that S contains
a linear space L0 of dimension t − 1, along with a point P0 not in L0, and
we choose a point P 6∈ L0 different from P0. Suppose firstly that the line ℓ
generated by P0 and P meets L0, at a point P1 say. Then ℓ meets S in at
least 2 points, namely P0 and P1. Then, by our hypothesis, ℓ is contained in
S, whence P in particular belongs to S. This deals with all points P except
those which lie on the hyperplane, L1 say, which is parallel to L0 and which
passes through P0. To handle such points P we begin by fixing any point P1

on L0. We then consider the line ℓ generated by P and P1. Since q ≥ 3 this
line contains at least one point additional point P2 say, which cannot lie in
L1. Thus P1 ∈ S by what has already been proved. Hence ℓ meets S in at
least two points, namely P1 and P2, and our hypothesis implies that every
point of ℓ belongs to S. In particular P ∈ S, as required.

The proof of part (iii) of Lemma 2 is the most involved. We will write
Sc for the complement A

t(Fq) \ S of S. Our strategy will be to show that
if Sc also contains t + 1 points in general position, then both #S > 1

2
qt

and #Sc > 1
2
qt, which will provide a contradiction. We observe that the

hypothesis of part (iii) is symmetric between S and Sc, since S meets ℓ in at
least two points if and only if #(Sc∩ ℓ) < q−1. Now let R be either S or Sc,
and assume that R contains t + 1 points P0, . . . , Pt in general position. For
our inductive assumption we suppose that, for any linear space L ⊂ A

t(Fq)
of dimension t− 1, either R ∩ L fails to contain t points in general position,
or L \ R is contained in a proper linear subspace of L. Thus either L ∩ R
or L ∩ Rc lies in a proper linear subspace of L. When L = L0 is generated
by P1, . . . , Pt we must be in the second case. For every P ∈ L0, the line ℓ
generated by P and P0 meets R in at least two points (namely P and P0)
and hence contains at least q − 1 points of R. For distinct choices of P the
sets ℓ \ {P0} are disjoint, whence

#R ≥ 1 + (q − 2)#(L0 ∩ R). (9)

Now suppose that every linear space L of dimension t − 1, parallel but not
equal to L0, has the property that L ∩ R lies in a proper linear subspace of
L. Then since A

t(Fq) is a disjoint union of L0 with the various spaces L, we
see that

#R ≤ #(L0 ∩ R) + (q − 1)qt−2.

8



Comparing this with (9) yields (q − 3)#(L0 ∩ R) < (q − 1)qt−2, and since
#(L0 ∩ R) ≥ qt−1 − qt−2 we find that q < 4. Thus, under the assumption
that q ≥ 4, there must be at least one space L1, parallel but not equal to L0,
for which it is L1 ∩ Rc which is contained in a proper linear subspace of L1.
If we pick any point Q ∈ L1 and count points of R on lines from Q to L0

we will obtain at least (q − 2)#(L0 ∩R) points of R not lying on L1, by the
argument that established (9). Allowing for points of L1 ∩ R we find that

#R ≥ (q − 2)#(L0 ∩ R) + #(L1 ∩ R).

However we have arranged that L0 ∩ Rc and L1 ∩ Rc are both contained in
proper linear subspaces, so that #(L0 ∩ R) ≥ qt−1 − qt−2, and similarly for
#(L1 ∩ R). It then follows that #R ≥ (q − 1)2qt−2 > 1

2
qt, since q ≥ 4. As

explained above, this inequality leads to the claim made in part (iii) of the
lemma.

Finally we turn to part (iv) of Lemma 2. For the induction step we
assume that we have a linear space L0 of dimension t− 1, along with a point
P0 not in L0, such that

#(S ∩ L0) ≥
mt − 1

m− 1

and P0 ∈ S. If P is any point in S ∩ L0 the line ℓ generated by P and P0

contains at least 2 points of S, and hence by our hypothesis contains at least
m+1 such points. For different points P the sets ℓ\{P0} are disjoint, whence

#S ≥ 1 +m#(S ∩ L0) ≥ 1 +m
mt − 1

m− 1
=

mt+1 − 1

m− 1
.

This completes the induction.

We now establish Theorem 3. If any of the polynomials f vanishes identi-
cally we may clearly remove it from the collection, and if any of the polyno-
mials is a non-zero constant then z(f ;An(Fq)) is empty, so that the result is
trivial. It follows that we may assume that each of the fi has positive degree,
whence r, which is the number of polynomials fi, is at most d. Thus the
zero-set of the polynomials f , over Fq is an algebraic variety, V say, of degree
at most dd and dimension at most n. This variety is defined over Fq, and
is not necessarily absolutely irreducible. Indeed V may contain irreducible
components which are not defined over Fq. We call such components “bad”,
and our goal is to replace V by a variety V ∗ with no bad components, and
such that V (Fq) = V ∗(Fq). We proceed to describe a general “reduction
process” for our varieties. Suppose that V has at least one bad component.
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Choose such a component, W say, of maximal dimension D say. Let the
Galois conjugates of W be W = W1, . . . ,Wk. Since each of these is an ir-
reducible component of V we see that k ≤ deg(V ). Any Fq-point of W lies
on W ′ := W1 ∩ . . . ∩ Wk. Thus if we replace the components W1, . . . ,Wk

of V by W ′, and call the resulting variety V ′, we see that V (Fq) = V ′(Fq).
Moreover V ′ contains no bad components of dimension greater than D, and
since dim(W ′) < dim(W ) there is one fewer bad component of dimension D.
We also note that

deg(W ′) ≤ deg(W )k ≤ deg(V )deg(V )

whence
deg(V ′) ≤ deg(V ) + deg(V )deg(V ).

We now repeat the reduction process, passing from V ′ to V ′′ and so on. Since
the number of bad components of maximal dimension is reduced at each step,
while the degree remains under control, the process will eventually terminate,
and will produce a variety V ∗ whose degree is bounded in terms of deg(V )
and n. The theorem then follows.
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