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Derived equivalences for Cohen-Macaulay Auslander algebras

Shengyong Pan

Abstract

Let A and B be Gorenstein Artin algebras of Cohen-Macaulay finite type. We prove that, if
A and B are derived equivalent, then their Cohen-Macaulay Auslander algebras are also derived
equivalent.
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1 Introduction

Triangulated categories and derived categories were introduced by Grothendieck and Verdier
[28]. Today, they have widely been used in many branches: algebraic geometry, stable homo-
topy theory, representation theory, etc. In the representation theory of algebras, we will restrict
our attention to the equivalences of derived categories, that is, derived equivalences. Derived
equivalences have been shown to preserve many invariants and provide new connection. For
instance, Hochschild homology and cohomology [27], finiteness of finitistic dimension [24] have
been shown to be invariant under derived equivalences. Moreover, derived equivalences are re-
lated to cluster categories and cluster tilting objects [5]. As is known, Rickard’s Morita theory
for derived categories leaves something to be desired, though, as for some pairs of rings, or alge-
bras, it is currently difficult, sometimes even impossible to verify whether there exists a tilting
complex. It is of interest to construct a new derived equivalence from given one by finding a
suitable tilting complex. Rickard [26, 27] used tensor products and trivial extensions to get
new derived equivalences. In the recent years, Hu and Xi have provided various techniques to
construct new derived equivalences. In [15] they established an amazing connection between de-
rived equivalences and Auslander-Reiten sequences via BB-tilting modules, and obtained derived
equivalences from Auslander-Reiten triangles. In [17] they constructed new derived equivalences
between Φ-Auslander-Yoneda algebras from a given almost ν-stable equivalence.

In [17, Corollary 3.13] Hu and Xi proved that, if two representation finite self-injective Artin
algebras are derived equivalent, then their Auslander algebras are derived equivalent. In this
paper, we generalize their result and prove that, if two Cohen-Macaulay finite Gorenstein Artin
algebras are derived equivalent, then their Cohen-Macaulay Auslander algebras are also derived
equivalent.

This paper is organized as follows. In Section 2, we review some facts on derived categories
and derived equivalences. In Section 3, we state and prove our main result.

2 Preliminaries

In this section, we shall recall some definitions and notations on derived categories and derived
equivalences.

Let A be an abelian category. For two morphisms α : X → Y and β : Y → Z, their
composition is denoted by αβ. An object X ∈ A is called a additive generator for A if add (X) =
A , where add (X) is the additive subcategory of A consisting of all direct summands of finite
direct sums of the copies of X . A complex X• = (X i, diX) over A is a sequence of objects X i and

morphisms diX in A of the form: · · · → X i di

→ X i+1 di+1

→ X i+1 → · · · , such that didi+1 = 0 for all
i ∈ Z. If X• = (X i, diX) and Y • = (Y i, diY ) are two complexes, then a morphism f• : X• → Y •

is a sequence of morphisms f i : X i → Y i of A such that diXf i+1 = f idiY for all i ∈ Z. The map
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f• is called a chain map between X• and Y •. The category of complexes over A with chain
maps is denoted by C(A ). The homotopy category of complexes over A is denoted by K(A )
and the derived category of complexes is denoted by D (A ).

Let R be a commutative Artin ring. And let A be an Artin R-algebra. We denote by A-mod
the category of finitely generated left A-modules. The full subcategory of A-mod consisting of
projective modules is denoted by AP . Recall that a homomorphism f : X → Y of A-modules
is called a radical map provided that for any A-module Z and homomorphisms g : Y → Z and
h : Z → X , the composition hfg is not an isomorphism. A complex of A-modules is called
a radical complex if its differential maps are radical maps. Let Kb(A) denote the homotopy
category of bounded complexes of A-modules. We denote by Db(A) by the bounded derived
category of A-mod.

The fundamental theory on derived equivalences has been established. Rickard [25] gave a
Morita theory for derived categories in the following theorem.

Theorem 2.1 [25, Therem 6.4] Let A and B be rings. The following conditions are equivalent.
(i) Db(A-Mod) and Db(B-Mod) are equivalent as triangulated categories.
(ii) K−(A-Proj) and K−(B-Proj) are equivalent as triangulated categories.
(iii) Kb(A-Proj) and Kb(B-Proj) are equivalent as triangulated categories.
(iv) Kb(AP) and Kb(BP) are equivalent as triangulated categories.
(v) B is isomorphic to EndDb(A)(T

•) for some complex T • in Kb(AP) satisfying
(1) HomDb(A)(T

•, T •[n]) = 0 for all n 6= 0.
(2) add (T •), the category of direct summands of finite direct sums of copies of T •,

generates Kb(AP) as a triangulated category.
Here A-Proj is the subcategory of A-Mod consisting of all projective A-modules.

Remarks. (1) The rings A and B are said to be derived equivalent if A and B satisfy the
conditions of the above theorem. The complex T • in Theorem 2.1 is called a tilting complex for
A.

(2) By [25, Corollary 8.3], two Artin R-algebras A and B are said to be derived equivalent
if their derived categories Db(A) and Db(B) are equivalent as triangulated categories. By The-
orem 2.1, Artin algebras A and B are derived equivalent if and only if B is isomorphic to the
endomorphism algebra of a tilting complex T •. If T • is a tilting complex for A, then there is
an equivalence F : Db(A) → Db(B) that sends T • to B. On the other hand, for each derived
equivalence F : Db(A) → Db(B), there is an associated tilting complex T • for A such that F (T •)
is isomorphic to B in Db(B).

3 Derived equivalences for Cohen-Macaulay Auslander Al-

gebras

In this section, we shall prove the main result of this paper. First, let us recall the definition of
Cohen-Macaulay Auslander algebras.

3.1 Cohen-Macaulay Auslander algebras

Let A be an Artin algebra. Recall that A is of finite representation type provided that there
are only finitely many indecomposable finitely generated A-modules up to isomorphism. If an
A-module X satisfies ExtiA(X,A) = 0 for i > 0, then X is said to be a Cohen-Macaulay A-
module. Denote by AX the category of Cohen-Macaulay A-modules. It is easy to see that if A
is a self-injective algebra, then AX = A-mod. By a HomA(−, X)-exact sequence Y • = (Y i, di),
we mean that the sequence Y • itself is exact, and that HomA(Y

•, X) remains to be exact. An
A-module X is said to be Gorenstein projective if there is a HomA(−, Q)-exact sequence

· · · → P−1 d−1

→ P 0 d0

→ P 1 d1

→ · · ·
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such that X ≃ Imd0, where P i (for each i) and Q are projective A-modules. Denote by A-Gproj
the subcategory of A-mod consisting of Gorenstein projective A-modules. Note that Gorenstein
projective modules are Cohen-Macaulay A-modules. Following [3, Example 8.4(2)] an Artin
algebra A is said to be of Cohen-Macaulay finite type provided that there are only finitely many
indecomposable finitely generated Gorenstein projective A-modules up to isomorphism. It is easy
to see that algebras of finite representation type are of Cohen-Macaulay finite type. Suppose that
A is of Cohen-Macaulay finite type. In other words, A-Gproj has an additive generator M , that
is, add (M) = A-Gproj.

Definition 3.1 [6] Suppose that an Artin algebra A is of Cohen-Macaulay finite type. Let M be

an additive generator in A-Gproj. We call Λ = End (M) a Cohen-Macaulay Auslander algebra

of A.

Remark. For a Cohen-Macaulay finite algebra A, its Cohen-Macaulay Auslander algebra is
unique up to Morita equivalences.
Example. Let A = k[x]/(x2) and consider the Artin algebra

T2(A) =

(

A A
0 A

)

.

Then T2(A) is a 1-Gorenstein Artin algebra of Cohen-Macaulay type [7] or [10]. T2(A) has
indecomposable Gorenstein projective modules [4, p.101]:

M1 =

(

k
0

)

,M2 =

(

A
0

)

,M3 =

(

A
A

)

,M4 =

(

k
k

)

,M5 =

(

A
k

)

.

Set M = ⊕1≤i≤5Mi. Then Cohen-Macaulay Auslander algebra End T2(A)(M) of T2(A) is given
by the following quiver and relations xy = 0 = vα− yu = αz = αβγ [8].
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3.2 The proof of the main result

We shall give the proof of the main result of this paper.
Suppose A and B are Artin algebras. Let F : Db(A) −→ Db(B) be a derived equivalence and

let P • be the tilting complex associated to F . Without loss of generality, we assume that P • is
a radical complex of the following form

0 → P−n → P−n+1 → · · · → P−1 → P 0 → 0.

Then we have the following fact.

Lemma 3.2 [15, lemma 2.1] Let F : Db(A) −→ Db(B) be a derived equivalence between Artin

algebras A and B. Then we have a tilting complex P̄ • for B associated to the quasi-inverse of F
of the form

0 → P̄ 0 → P̄ 1 → · · · → P̄n−1 → P̄n → 0,

with the differential being radical maps.

Suppose that X• is a complex of A-modules. We define the following truncations:
τ≥1(X

•) : · · · → 0 → 0 → X1 → X2 → · · · ,
τ≤0(X

•) : · · · → X−1 → X0 → 0 → 0 · · · .
Using the properties of Cohen-Macaulay A-modules, we can prove the following lemma.
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Lemma 3.3 Let F : Db(A) −→ Db(B) be a derived equivalence between Artin algebras A and B,

and let G be the quasi-inverse of F . Suppose that P • and P̄ • are the tilting complexes associated

to F and G, respectively. Then

(i) For X ∈A X , the complex F (X) is isomorphic in Db(B) to a radical complex P̄ •
X of the

form

0 → P̄ 0
X → P̄ 1

X → · · · → P̄n−1
X → P̄n

X → 0

with P̄ 0
X ∈B X and P̄ i

X projective B-modules for 1 ≤ i ≤ n.
(ii) For Y ∈B X , the complex G(Y ) is isomorphic in Db(A) to a radical complex P •

Y of the

form

0 → P−n
Y → P−n+1

Y → · · · → P−1
Y → P 0

Y → 0

with P 0
Y ∈A X and P i

Y projective A-modules for −n ≤ i ≤ −1.

Proof. We just show the first case. The proof of (ii) is similar to that of (i).
(i) For X ∈A X , by [16, Lemma 3.1], we see that the complex F (X) is isomorphic in Db(B)

to a complex P̄ •
X of the form

0 → P̄ 0
X → P̄ 1

X → · · · → P̄n−1
X → P̄n

X → 0,

with P̄ i
X projective B-modules for i > 0. We only need to show that P̄ 0

X is in BX . It suffices to
prove that End i

B(P̄
0
X , B) = 0 for i ≥ 1. Indeed, there exists a distinguished triangle

P̄+
X → P̄ •

X → P̄ 0
X → P̄+

X [1]

in Kb(B), where P̄+
X denotes the complex τ≥1(P̄

•
X). For each i ∈ Z, applying the functor

HomDb(B)(−, B[i]) to the above distinguished triangle, we get an exact sequence

· · · → HomDb(B)(P̄
+
X [1], B[i]) → HomDb(B)(P̄

0
X , B[i]) → HomDb(B)(P̄

•
X , B[i])

→ HomDb(B)(P̄
+
X , B[i]) → · · · .

On the other hand, HomDb(B)(P̄
+
X , B[i]) ≃ HomKb(B)(P̄

+
X , B[i]) = 0 for i ≥ 0. By [24, lemma

2.1] and End i
A(X,A) = 0 for i ≥ 1, we get HomDb(B)(P̄

•
X , B[i]) ≃ HomDb(A)(X,P •[i]) = 0

for all i ≥ 1. Consequently, we get HomDb(B)(P̄
0
X , B[i]) = 0 for all i ≥ 1 by the above exact

sequence. Therefore,

End i
B(P̄

0
X , B) ≃ HomDb(B)(P̄

0
X , B[i] = 0, for i ≥ 1.

This implies that P̄ 0
X ∈B X . �

Now we give a lemma, which is useful in the following argument.

Lemma 3.4 Let A be an Artin algebra and f : X → Y a homomorphism of A-modules with

X,Y ∈A X . Suppose Q• is a complex in Kb(AP). If f factors through Q• in Db(A), then f
factors through a projective A-module.

Proof. There is a distinguished triangle

τ≤0(Q
•) → τ≥1(Q

•)
a
→ Q• b

→ τ≤0(Q
•)[1] in Db(A).

Suppose that f = gh, where g : X → Q• and h : Q• → Y . Since HomDb(A)(τ≥1(Q
•), Y ) ≃

HomKb(A)(τ≥1(Q
•), Y ) = 0, it follows that ah = 0. Then there is a map x : τ≤0(Q

•)[1] → Y ,
such that h = bx. Thus, we get f = gbx. Now, it is sufficient to show that f factors through
τ≤0(Q

•). Consider the following distinguished triangle

Q0 c
→ τ≤0(Q

•)
d
→ τ≤−1(Q

•) → Q0[1] in Db(A).

4



Note that ExtiA(X,A) = 0 for i ≥ 1. By [24, Lemma 2.1], we have HomDb(A)(X, τ≤−1(Q
•)) = 0.

Thus, we get gbd = 0. Then there is a morphism u : X → Q0 such that gb = uc. Consequently,
f = ucx, which implies that f factors through a projective A-module Q0. �

Choose an A-module X ∈A X , by Lemma 3.3, we know that F (X) is isomorphic to a radical
complex of the form

0 → P̄ 0
X → P̄ 1

X → · · · → P̄n−1
X → P̄n

X → 0

such that P̄ 0
X ∈B X and P̄ i

X are projective B-modules for 1 ≤ i ≤ n. In the following, we try to
define a functor F : AX → BX .

Proposition 3.5 Let F : Db(A) −→ Db(B) be a derived equivalence. Then there is an additive

functor F : AX → BX sending X to P̄ 0
X , such that the following diagram

AX
can

//

F

��

Db(A)/Kb(AP)

F

��

BX
can

// Db(B)/Kb(BP)

is commutative up to natural isomorphism.

Proof. The idea of the proof is similar to that of [15, Proposition 3.4]. For convenience, we
give the details here.

For each f : X → Y in AX , we denote by f the image of f in AX . By Lemma 3.3, we have a
distinguished triangle

P̄+
X

iX
→ F (X)

jX
→ P̄ 0

X

mX
→ P̄+

X [1] in Db(B).

Moreover, for each f : X → Y in AX , there is a commutative diagram

P̄+
X

iX
//

αf

��

F (X)
jX

//

F (f)

��

P̄ 0
X

mX
//

βf

��

P̄+
X [1]

αf[1]

��

P̄+
Y

iY
// F (Y )

jY
// P̄ 0

Y

mY
// P̄+

Y [1].

Since HomDb(B)(P̄
+
X , P̄ 0

Y ) ≃ HomKb(B)(P̄
+
X , P̄ 0

Y ) = 0, it follows that iXF (f)jY = 0. Then there

exists a homomorphism αf : P̄+
X → P̄+

Y . Note that B-mod is fully embedding into Db(B), hence
βf is a morphism of B-modules. If there is another morphism β′

f such that jXβ′
f = F (f)jY , then

jX(βf −β′
f ) = 0. Thus βf −β′

f factors through P̄+
X [1], which implies that βf −β′

f factors through

a projective B-module by Lemma 3.4. Therefore, the morphism β̄f is uniquely determined by f .
Let f : X → Y and g : Y → Z be morphisms in AX . Then we have F (fg)jZ = jXβfg and

F (fg)jZ = jXβfβg. By the uniqueness of βfg, we have βfg = βf βg. Moreover, if f factors
through a projective A-module, then βf also factors through a projective B-module.

For each X ∈A X , we define F (X) := P̄ 0
X . Set F (f) = βf , for each f ∈ HomXA

(X,Y ). Then
F is well-defined and an additive functor.

To complete the proof of the lemma, it remains to show that jX : F (X) → F (X) is a

natural isomorphism in Db(B)/Kb(BP). Since P̄+
X is in Kb(BP), then jX : F (X)

≃
→ F (X) in

Db(B)/Kb(BP). The following commutative diagram

F (X)
jX

//

F (f)

��

F (X) = P̄ 0
X

βf

��

F (Y )
jY

// F (Y ) = P̄ 0
Y

shows that jX : F (X) → F (X) is a natural isomorphism in Db(B)/Kb(BP). �
The following lemma is quoted from [15] which will be used frequently.
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Lemma 3.6 [15,Lemma 2.2] Let R be an arbitrary ring, and let R-Mod be the category of all

left A-modules. Suppose X• is a bounded above complex and Y • is a bounded below complex over

R-Mod. Let m be an integer. If X i is projective for all i > m and Y j = 0 for all j < m, then

HomK(R-Mod)(X
•, Y •) ≃ HomD(R-Mod)(X

•, Y •).

Let A be an Artin algebra and let X be in AX which is not a projective A-module. Set
Λ = EndA(A⊕X), N = B ⊕ F (X) and Γ = EndB(N). Let T̄ • be the complex P̄ • ⊕ P̄ •

X . Then
T̄ • is in Kb(addBN).

The proof of the following lemma is different from [17, Lemma 3.6], and in fact extends Hu
and Xi’s original methods for the self-injective case.

Lemma 3.7 Keep the notations above. We have the following statements.

(1) HomKb(addBN)(T̄
•, T̄ •[i]) = 0 for i 6= 0.

(2) add T̄ • generates Kb(addBN) as a triangulated category.

Proof. (1) Decompose the complex T̄ • as P̄ •⊕P̄ •
X . Then we have the following isomorphisms

HomKb(B)(T̄
•, T̄ •[i]) ≃ HomKb(B)(P̄

• ⊕ P̄ •
X , (P̄ • ⊕ P̄ •

X)[i]) ≃ HomKb(B)(P̄
•, P̄ •[i])⊕

HomKb(B)(P̄
•, P̄ •

X [i])⊕HomKb(B)(P̄
•
X , P̄ •[i])⊕HomKb(B)(P̄

•
X , P̄ •

X [i]).

The proof falls naturally into three parts.
(a) Since P̄ • is a tilting complex over B, we have HomKb(B)(P̄

•, P̄ •[i]) = 0 for all i 6= 0.
Furthermore,

HomKb(B)(P̄
•, P̄ •

X [i]) ≃ HomDb(B)(P̄
•, P̄ •

X [i]) ≃ HomDb(A)(A,X [i]) = 0 for all i 6= 0.

(b) We claim that HomKb(B)(P̄
•
X , P̄ •[i]) = 0 for i 6= 0.

Indeed, applying the functors HomK(B)(−, P̄ •[i]) and HomDb(B)(−, P̄ •[i]) to the distin-

guished triangle P̄+
X → P̄ •

X → P̄ 0
X → P̄+

X [1] in Kb(B), we obtain the following commutative
diagram

HomKb(B)(P̄
+
X [1], P̄ •[i]) //

≃

��

HomKb(B)(P̄
0
X , P̄ •[i]) //

��

HomKb(A)(P̄
•
X , P̄ •[i]) //

��

· · ·

HomDb(B)(P̄
+
X [1], P̄ •[i]) // HomDb(A)(P̄

0
X , P̄ •[i]) // HomDb(A)(P̄

•
X , P̄ •[i]) // · · · .

Note that
HomKb(B)(P̄

0
X , P̄ •) ≃ HomDb(B)(P̄

0
X , P̄ •).

Indeed, since P • is a bounded complex, it suffices to show that for the complex P̄ • of length 2
of the form 0 → P̄ 0 → P̄ 1 → 0, we get

HomKb(B)(P̄
0
X , P̄ •) ≃ HomDb(B)(P̄

0
X , P̄ •).

In this case, we have a distinguished triangle

P̄ 1 → P̄ • → P̄ 0 → P̄ 1[1] in Kb(B).

Applying the functors HomKb(B)(P̄
0
X ,−) and HomDb(B)(P̄

0
X ,−) to the distinguished triangle

P̄ 1 → P̄ • → P̄ 0 → P̄ 1[1], we obtain the following commutative diagram

HomKb(B)(P̄
0
X , P̄ 1) //

≃

��

HomKb(B)(P̄
0
X , P̄ •) //

��

HomKb(B)(P̄
0
X , P 0) //

≃

��

HomKb(B)(P̄
0
X , P̄ 1[1])

��

HomDb(B)(P̄
0
X , P̄ 1) // HomDb(B)(P̄

0
X , P̄ •) // HomDb(B)(P̄

0
X , P 0) // HomDb(B)(P̄

0
X , P̄ 1[1]).
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Since End i
B(P̄

0
X , B) = 0 for i ≥ 1, it follows that HomDb(B)(P̄

0
X , P̄ 1[1]) = 0. Moreover,

HomKb(B)(P̄
0
X , P̄ 1[1]) = 0. Thus for i 6= 0, we have

HomKb(B)(P̄
•
X , P̄ •[i]) ≃ HomDb(B)(P̄

•
X , P̄ •[i]) ≃ HomDb(A)(X,A[i]) = 0.

(c) We claim that HomKb(B)(P̄
•
X , P̄ •

X [i]) = 0 for i 6= 0.
Indeed, it follows that HomKb(B)(P̄

•
X , P̄ •

X [i]) = 0 for i < 0 by Lemma 3.6. It suffices to show
that HomKb(B)(P̄

•
X , P̄ •

X [i]) = 0 for i > 0. Note that there is a distinguished triangle

(⋆) P̄+
X → P̄ •

X → P̄ 0
X → P̄+

X [1] in Kb(B), where P̄+
X denotes the complex τ≥1(P̄

•
X).

Applying the functor HomKb(B)(P̄
•
X ,−) to (⋆), we get a long exact sequence

· · · → HomKb(B)(P̄
•
X , P̄+

X [i]) → HomKb(B)(P̄
•
X , P̄ •

X [i]) → HomKb(B)(P̄
•
X , P̄ 0

X [i]) → · · · (⋆⋆).

From the distinguished triangle P̄+
X → P̄ •

X → P̄ 0
X → P̄+

X [1], we conclude that Hi(G(P̄+
X )) = 0

for i > 1 and G(P̄+
X ) is a radical complex Q•

X of the form

· · · → Q−1
X → Q0

X → Q1
X → 0.

Applying the functors HomKb(B)(−, P̄+
X [i]) and HomKb(B)(−, P̄+

X [i]) to (⋆) again, we have the
following commutative diagram

HomKb(B)(P̄
+
X [1], P̄+

X [i]) //

≃

��

HomKb(B)(P̄
0
X , P̄+

X [i]) //

≃

��

HomKb(B)(P̄
•
X , P̄+

X [i]) //

��

· · ·

HomDb(B)(P̄
+
X [1], P̄+

X [i]) // HomDb(B)(P̄
0
X , P̄+

X [i]) // HomDb(B)(P̄
•
X , P̄+

X [i]) // · · · .

Therefore,

HomKb(B)(P̄
•
X , P̄+

X [i]) ≃ HomDb(B)(P̄
•
X , P̄+

X [i]) ≃ HomDb(A)(G(P̄ •
X ), G(P̄+

X [i]))

≃ HomDb(A)(X,G(P̄+
X )[i]).

By [24, lemma 2.1], it follows that HomDb(A)(X,G(P̄+
X )[i]) = 0 for all i > 1. Consequently,

HomKb(B)(P̄
•
X , P̄+

X [i]) = 0 for i > 1. Since HomKb(B)(P̄
•
X , P̄ 0

X [i]) = 0 for i > 0 by shifting, it
follows that HomKb(B)(P̄

•
X , P̄ •

X [i]) = 0 for i > 1 by the long exact sequence (⋆⋆). It remains to
prove that HomKb(B)(P̄

•
X , P̄ •

X [1]) = 0. To get HomKb(B)(P̄
•
X , P̄ •

X [1]) = 0, it suffices to show that
the map

(z) HomKb(B)(P̄
•
X , P̄ 0

X) → HomKb(B)(P̄
•
X , P̄+

X [1]) is surjective.

From the above argument, we have the following commutative diagram

Q•
X

a
//

≃

��

X //

≃

��

M(a) //

≃

��

Q•
X [1]

≃

��

G(P̄+
X ) // G(P̄ •

X) // G(P̄ 0
X) // G(P̄+

X )[1]

in Db(A), where all the vertical maps are isomorphisms, and the morphism a is chosen in Kb(A)
such that the first square is commutative. Applying the functor HomKb(A)(X,−) to the first
horizontal distinguished triangle, we get an exact sequence

HomKb(A)(X,M(a)) → HomKb(A)(X,Q•
X [1]) → 0, since HomKb(A)(X,X [1]) = 0.

We have the following formulas.

HomKb(B)(P̄
•
X , P̄ 0

X)
(∗)
≃ HomDb(B)(P̄

•
X , P̄ 0

X) ≃ HomDb(A)(G(P̄ •
X), G(P̄ 0

X))

≃ HomDb(A)(X,M(a))
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and

HomKb(B)(P̄
•
X , P̄+

X [1])
(∗∗)
≃ HomDb(B)(P̄

•
X , P̄+

X [1]) ≃ HomDb(A)(G(P̄ •
X), G(P̄+

X )[1])

≃ HomDb(A)(X,Q•
X [1]).

The isomorphisms (∗) and (∗∗) are deduced by Lemma 3.6. Then we have the following commu-
tative diagram

HomKb(B)(P̄
•
X , P̄ 0

X) //

≃

��

HomKb(B)(P̄
•
X , P̄+

X )

≃

��

HomDb(A)(X,M(a)) // HomDb(A)(X,Q+[1]).

From the above diagram, to show the map (z) is surjective, it is sufficient to show the map

HomDb(A)(X,M(a)) → HomDb(A)(X,Q•
X [1]) is surjective.

Applying the functor Hom (X,−) and Hom (X,−) to the distinguished triangle Q• → X →

M(a) → Q•[1], we get the following commutative diagram

HomKb(A)(X,M(a)) //

��

HomKb(A)(X,Q•
X [1]) //

��

0

��

HomDb(A)(X,M(a)) // HomDb(A)(X,Q•
X [1]) // HomDb(A)(X,X [1]).

Thus, to get the map

HomDb(A)(X,M(a)) → HomDb(A)(X,Q•
X [1]) is surjective,

it suffices to show the following isomorphisms

(i) HomDb(A)(X,Q•
X [1]) ≃ HomKb(A)(X,Q•

X [1])

and
(ii) HomDb(A)(X,M(a)) ≃ HomKb(A)(X,M(a)).

Firstly, we show that

(i) HomDb(A)(X,Q•
X [1]) ≃ HomKb(A)(X,Q•

X [1]).

Indeed, it suffices to show that for the complex Q•
X of the form 0 → Q−1

X → Q0
X → 0, we get (i).

There is a distinguished triangle

(♣) Q−1
X → Q0

X → Q•
X → Q−1

X [1] in Kb(A).

Applying the functors HomKb(A)(X,−), HomDb(A)(X,−) to (♣), we obtain the following com-
mutative diagram

HomKb(A)(X,Q−1
X ) //

≃

��

HomKb(A)(X,Q0
X) //

≃

��

HomKb(A)(X,Q•
X) //

��

HomKb(A)(X,P−1[1])

≃

��

HomDb(A)(X,Q−1
X ) // HomDb(A)(X,Q0

X) // HomDb(A)(X,Q•
X) // HomDb(A)(X,P−1[1]).

Since End i
A(X,A) = 0 for i ≥ 1, it follows that HomDb(A)(X,P−1[1]) = 0. Moreover,

HomKb(A)(X,P−1[1]) = 0. We thus get HomDb(A)(X,Q•
X [1]) ≃ HomKb(A)(X,Q•

X [1]). Next, we
prove that

(ii) HomDb(A)(X,M(a)) ≃ HomKb(A)(X,M(a)).
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Indeed, there exists a distinguished triangle

(♠) M(a)0 → M(a) → M(a)− → M(a)0[1] in Kb(A),

where M(a)− denotes the truncated complex τ≤−1(M(a)). Applying the homological functors
HomKb(A)(X,−) and HomDb(A)(X,−) to (♠), we obtain the following commutative diagram

Kb(A)(X,M(a)−[−1]) //

≃

��

Kb(A)(X,M(a)0) //

≃

��

Kb(A)(X,M(a)) //

��

Kb(A)(X,M(a)−)

��

Db(A)(X,M(a)−[−1]) //
Db(A)(X,M(a)0) //

Db(A)(X,M(a)) //
Db(A)(X,M(a)−).

According to (i), we have HomKb(A)(X,M(a)−) ≃ HomDb(A)(X,M(a)−) = 0. Therefore,
HomDb(A)(X,M(a)) ≃ HomKb(A)(X,M(a)).

From the above argument, we have shown that HomKb(B)(P̄
•
X , P̄ •

X [i]) = 0 for i 6= 0. Since

Kb(B) is a full subcategory of Kb(addBN), it follows that HomKb(addBN)(P̄
•
X , P̄ •

X [i]) = 0 for
i 6= 0.

(2) Since P̄ • is a tilting complex for B, we see that add P̄ • generates Kb(addBB) as trian-
gulated category. All the terms of P̄+

X are in addBB. From the distinguished triangle

P̄+
X → P̄ •

X → P̄ 0
X → P̄+

X [1],

it follows that P̄ 0
X is in the triangulated subcategory generated by add (P̄ • ⊕ P̄ •

X). Therefore,
add T̄ • generates Kb(addBN) as a triangulated category. �

Proposition 3.8 The complex Hom(N, T̄ •) is a tiling complex over Γ with the endomorphism

End (Hom (N, T̄ •)) ≃ Λ. In particular, Artin algebras Λ and Γ are derived equivalent associated

with the tilting complex Hom(N, T̄ •).

Proof. We have an equivalence of categories

HomB(N,−) : addBN
≃
−→Γ P .

We thus get an equivalence of triangulated categories induced by HomB(N,−) as follows

Kb(addBN)
≃
−→ Kb(ΓP).

Then Hom (N, T̄ •) ∈ Kb(ΓP). By the Lemma 3.7, we see that addHom (N, T̄ •) generates Kb(ΓP)
as a triangulated category, and End (Hom (N, T̄ •)) ≃ End (T̄ •) ≃ Λ. �

We have the following lemma, its proof is due to Happel [10, Lemma 4.4].

Lemma 3.9 Suppose that inj.dimAA < ∞. Then the following statements are equivalent.

(i) proj.dimA(D (AA)) < ∞.

(ii) For X ∈A X , there exists an exact sequence 0 → X → P → X
′

→ 0, with X
′

∈A X and

P a projective A-module.

(iii) If X ∈A X satisfies inj.dimAX < ∞, then X is a projective A-module.

Recall that an Artin algebra A is called Gorenstein if the regular module A has finite injective
dimension on both sides. If A is a Gorenstein algebra, then it follows from Lemma 7.2.8 that

AX = A-Gproj, and that AX is a Frobenius category and its category AX is a triangulated
category.

Proposition 3.10 Let A and B be Gorenstein Artin algebras. Suppose that F is a derived

equivalence between A and B. Then we have the following statements.

(1) There is an equivalence F : AX → BX .

(2) If A and B are finite dimensional algebras over a field k, then there exist bimodules AMB

and BLA such that the pair of functors

AMB ⊗− : A-mod → B-mod, BLA ⊗− : B-mod → A-mod

induces an equivalence of triangulated categories AX and BX .
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Proof. We refer to [10, Theorem 4.6] and [19, Theorem 5.4] for the proofs of (1) and (2),
respectively. �

Our main result in this chapter is the following theorem.

Theorem 3.11 Let A and B be Gorenstein Artin algebras of Cohen-Macaulay finite type. If A
and B are derived equivalent, then the Cohen-Macaulay Auslander algebras Λ and Γ of A and B
are also derived equivalent.

Proof. In fact, if Artin algebras A and B are derived equivalent, then A is Gorenstein if and
only if B is Gorenstein. By Proposition 3.10 or [3, Theorem 8.11], if Gorenstein Artin algebras
A and B are derived equivalent, then A is of Cohen-Macaulay finite type if and only if B is. Let
F : Db(A) −→ Db(B) be a derived equivalence. Set Λ = End (A ⊕ X) with X = ⊕0≤i≤mXi,
where each Xi is indecomposable non-projective Gorenstein projective A-module. Then Λ is the
Cohen-Macaulay Auslander algebra of A. By Proposition 3.10, it follows that Yi = F (Xi) is
the indecomposable non-projective Gorenstein projective B-module. Set Y = ⊕0≤i≤mYi. Then
Γ = End (B⊕Y ) is the Cohen-Macaulay Auslander algebra of B. LetN be the B-module (B⊕Y )
and let T̄ • be the complex F (A ⊕X). Thus, we construct a tilting complex Hom (N, T̄ •). The
result follows from Proposition 3.8. �
Remark. Let A and B be Gorenstein Artin algebras of Cohen-Macaulay finite type. According
to a result of Liu and Xi [21, Theorem 1.1], we see that, if A and B are stably equivalent of
Morita type, then the Cohen-Macaulay Auslander algebras of A and B are also stably equivalent
of Morita type.

As a corollary of Theorem 3.11, we re-obtain the following result of Hu and Xi [17] since
self-injective Artin algebras of finite representation type are Gorenstein Artin algebras of Cohen-
Macaulay finite type.

Corollary 3.12 [17,Corollary 3.13] Suppose that A and B are self-injective Artin algebras of

finite representation type. If A and B are derived equivalent, then the Auslander algebras of A
and B are also derived equivalent.
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