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Abstract. We present and analyze a micro/macro acceleration technique for the Monte Carlo
simulation of stochastic differential equations (SDEs) in which there is a separation between the (fast)
time-scale on which individual trajectories of the SDE need to be simulated and the (slow) time-
scale on which we want to observe the (macroscopic) function of interest. The method performs short
bursts of microscopic simulation using an ensemble of SDE realizations, after which the ensemble
is restricted to a number of macroscopic state variables. The resulting macroscopic state is then
extrapolated forward in time and the ensemble is projected onto the extrapolated macroscopic state.
We relate the algorithm to existing analytical and numerical closure approximations and provide
a first analysis of its convergence in terms of extrapolation time step and number of macroscopic
state variables. The effects of the different approximations on the resulting error are illustrated via
numerical experiments.
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1. Introduction. In many applications, one considers a process that is modeled
as a stochastic differential equation (SDE), while one is only interested in the time
evolution of the expectation of a certain function of the state, i.e., in weak approx-
imation. Consider, for instance, the micro/macro simulation of dilute solutions of
polymers [36]. Here, an SDE models the evolution of the configuration of an individ-
ual polymer driven by the flow field, and the function of interest is a non-Newtonian
stress tensor (the expectation of a function of the polymer configuration). For this
type of problem, one often resorts to Monte Carlo simulation [6], i.e., the simulation
of a large ensemble of realizations of the SDE, combined with ensemble averaging to
obtain an approximation of the quantity of interest at the desired moments in time.
For concreteness, we introduce the SDE

dX(t) = a(t,X(t)) dt+ b(t,X(t)) ? dW (t), t ∈ I := [t0, T ], X(t0) = X0, (1.1)

in which a : I × Rd → Rd is the drift, b : I × Rd → Rd×m is the diffusion, and W (t)
is an m-dimensional Wiener process. The initial value X0 is independent of W and
follows some known distribution ϕ0(X). As usual, (1.1) is an abbreviation of the
integral form

X(t) = X0 +

∫ t

t0
a(s,X(s)) ds+

∫ t

t0
b(s,X(s)) ? dW (s), t ∈ I.

The integral with respect to W can be interpreted, e.g., as an Itô integral with
? dW (s) = dW (s) or as a Stratonovich integral with ? dW (s) = ◦ dW (s). The
function of interest for the Monte Carlo simulation is defined as the expectation E of
a function f(X(t)),
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f̄(t) = Ef(X(t)).

The numerical properties of Monte Carlo simulations have been analyzed exten-
sively in the literature. We mention studies on the order of weak convergence of
explicit [7, 12, 33, 34, 44, 52] and implicit [8, 9, 11, 33, 35] time discretizations of SDE
(1.1), the investigation of stability [22, 23, 25, 53, 60], and techniques for variance re-
duction [19, 20, 48]. For more references, we refer to [33]. Also for strong approxi-
mation, there has been a growing interest in the study of numerical methods for stiff
SDEs [1–5,33,45,46,58,59].

In this paper, we present and analyze a micro/macro acceleration technique for
the Monte Carlo simulation of SDEs of the type (1.1) in which there exists a time-scale
separation between the (fast) time-scale on which individual trajectories of the SDE
need to be simulated and the (slow) time-scale on which the function f̄(t) evolves.
We use the simulation of a dilute polymer solution as an illustrative example. The
microscopic level is defined via an ensemble X ≡ (Xj)

J
j=1 of J realizations evolving

according to equation (1.1); the macroscopic level will be defined by a set of L macro-
scopic state variables U ≡ (Ul)

L
l=1, with Ul(t) = Eul(X(t)), for some appropriately

chosen functions ul. The method exploits the separation in time scales by combining
short bursts of microscopic simulation with the SDE (1.1) with a macroscopic extrap-
olation step, in which only the macroscopic state U is extrapolated forward in time.
One time step of the algorithm can be written as follows: (1) microscopic simulation
of the ensemble using the SDE (1.1); (2) restriction, i.e., extraction of (an estimate
of) the macroscopic state (or macroscopic time derivative); (3) forward in time ex-
trapolation of the macroscopic state; and (4) projection of the ensemble that was
available at the end of the microscopic simulation onto the extrapolated macroscopic
state. Remark that the resulting method is fully explicit as soon as the microscopic
simulation is explicit, and that the method can readily be implemented as a higher
order method by an appropriate choice of the extrapolation.

The proposed method is motivated by the development of recent generic multiscale
techniques, such as equation-free [31,32] and heterogeneous multiscale methods [14,15].
In these methods, one makes the modeling assumption that a model describing the
evolution of the chosen macroscopic state variables exists, but cannot be obtained
in closed form. For instance, in coarse projective integration [18, 31, 32], a coarse
time-stepper is constructed to emulate the evolution of this unavailable macroscopic
model. One coarse time step involves: (1) lifting, i.e., the creation of an ensemble of
appropriate initial conditions for the microscopic model, conditioned upon the current
macroscopic state; (2) microscopic simulation using the SDE (1.1); and (3) restriction
to a macroscopic state or time derivative. The macroscopic state is then extrapolated
forward in time, after which the procedure is repeated. In the heterogeneous multiscale
method (HMM), the equivalent of the lifting, resp. restriction, operator is called
reconstruction, resp. compression.

In the equation-free/HMM setting, the definition of the lifting/reconstruction
operator is strongly problem-dependent; see, e.g., [62,64,67] for singularly perturbed
systems of ordinary differential equations (ODEs), or [43,61] for a lattice Boltzmann
method. To regard the coarse time-stepper as a time discretization of an (unavailable)
closed macroscopic model, the result of the lifting operator should only depend on
the desired macroscopic state, not on the previous microscopic state. In the context
of Monte Carlo simulation of SDEs, using the ensemble X of J realizations evolving
according to (1.1), the lifting operator maps a macroscopic state U to a corresponding
state for each of the realizations. In [54], a constrained simulation was introduced that
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evolves an ensemble of SDE realizations under the constraint that the macroscopic
state variables remain constant. This constrained simulation was then performed until
the ensemble reached an equilibrium distribution; the corresponding microscopic state
was taken as the result of the lifting.

Due to the constrained simulation, part (if not all) of the computational gain
that is obtained in coarse projective integration by extrapolating forward in time is
lost during each lifting step. The micro/macro acceleration technique of this paper
reduces the computational cost by replacing the lifting operator by a projection op-
erator; i.e., the constrained simulation is eliminated. As a consequence, however, the
interpretation of the method as a discretization of an unavailable closed macroscopic
equation is lost. The purpose of the present paper is to identify all sources of numer-
ical error of the resulting method for the Monte Carlo simulation of SDEs of the type
(1.1), and to analyze convergence. The main contributions are the following:

• From a numerical analysis viewpoint, we study convergence of the proposed
micro/macro acceleration method in the absence of statistical error. Specif-
ically, we discuss how the error that is introduced during the projection de-
pends on the number of macroscopic state variables, and how the determin-
istic error depends on the extrapolation time step. Additionally, we also
comment on the effects of the extrapolation on the statistical error.
• From a practical viewpoint, we provide numerical results for a nontrivial test

case, showing the interplay between the different sources of numerical error.
We illustrate the effects of the choice of macroscopic state variables, as well as
the dependence of the numerical error on the chosen extrapolation strategy.

A stability analysis of the proposed method will be given in a separate publication.
For singularly perturbed systems of ODEs, it has already been proposed to only

project the last available microscopic state onto the extrapolated macroscopic state,
see, e.g., [16]. In that work, however, one still assumes that a closed macroscopic
equation exists, and uses a strong time-scale separation to show quick relaxation
(healing) of the projected microscopic state towards its conditional equilibrium. In
this paper, we do not require such a strong time-scale separation, nor do we make use
of the existence of an approximate macroscopic model.

The remainder of the paper is organized as follows. In Section 2, we first intro-
duce the mathematical setting of the paper. We discuss the necessary assumptions
on the SDE (1.1) for our Monte Carlo setting, and introduce the illustrative example
that will be used for the numerical experiments. As an alternative to Monte Carlo
simulation, one might try to approximate the evolution of the function of interest
via a low-dimensional set of closed ODEs for a few macroscopic state variables. Sec-
tion 3 overviews the recent closure approximations (both analytical and numerical).
Subsequently, in Section 4, we propose a modified algorithm that will be the focus of
this paper. Section 5 provides some results on the projection operator, whereas the
extrapolation operator is discussed in Section 6. We provide a general convergence
result in Section 7. Section 8 provides numerical illustrations, which are chosen to
illuminate the properties of the proposed method. We conclude in Section 9, where
we also outline some directions for future research.

2. Mathematical setting. Let us first introduce in detail the notations that
we will use (Subsection 2.1), as well as the illustrative example that will be considered
throughout the paper (Subsection 2.2).

2.1. Notations. We first define the appropriate function spaces. Let CrP (Rd,R)
denote the space of all g ∈ Cr(Rd,R) fulfilling that there are constants C̃ > 0 and
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κ > 0 such that |∂ixg(x)| ≤ C̃(1 + ‖x‖κ) for any partial derivative of order i ≤ r and
all x ∈ Rd. Further, let g ∈ Cq,rP (I × Rd,R) if g(·,x) ∈ Cq(I,R), g(t, ·) ∈ Cr(Rd,R)

for all t ∈ I and x ∈ Rd, and |∂ixg(s,x)| ≤ C̃(1 + ‖x‖κ) holds for 0 ≤ i ≤ r uniformly
with respect to s ∈ [t0, t] and for all x ∈ Rd [33, 44].

We consider the SDE (1.1). Besides the exact solutionX(t) of SDE (1.1) starting
from X(t0) = X0, we also introduce the exact solution of an auxiliary initial value
problem for the SDE: the solution of the SDE starting from an initial value x̃ at time
t̃ will be denoted as X t̃,x̃. With this notation, we state the following definition:

Definition 2.1 (Uniform weak continuity of the SDE). Consider a class of ran-
dom variables. The SDE (1.1) is called uniformly weakly continuous for this class if,
for all g ∈ C0,2

P (I × Rd,R), there exist constants ∆t0 > 0 and C such that

|E g
(
s,Xt−,Z(t− + ∆t)

)
− E g(s,Z)| ≤ C∆t (2.1)

holds for all initial values Z in the considered class, ∆t ∈ [0,∆t0], and all t− ∈
[t0, T −∆t], s ∈ I.

Next, we discretize equation (1.1) in time with step size δt and denote the nu-
merical approximation Y k = Y (tk) ≈X(tk) with tk = t0 +kδt. Leaving the concrete
choice of discretization undecided for now, we introduce a short-hand notation for an
abstract one step discretization scheme,

Y k+1 = φ(tk,Y k; δt), Y 0 = X0, k ≥ 0. (2.2)

In the Monte Carlo setting, we are interested in weak approximation of the SDE
(1.1). We define the weak order of consistency of the discretization φ as follows
(compare [44]):

Definition 2.2 (Weak consistency of SDE discretization). Assume that for all
g ∈ C0,2(pφ+1)

P (I × Rd,R) there exists a Cg ∈ C0
P (Rd,R) such that

|E g
(
s, φ(t,x; δt)

)
− E g

(
s,Xt,x(t+ δt)

)
| ≤ Cg(x) δtpφ+1

is valid for x ∈ Rd, s ∈ I, and t, t+ δt ∈ [t0, T ]. Then the one step method φ is called
weakly consistent of order pφ.

Since we can only simulate a finite number of realizations of approximations of
(1.1) (via its discretization (2.2)), we also need to approximate the expectation E by
an empirical mean Ê. Using the ensemble Y ≡ (Yj)

J
j=1 of realizations of (2.2), the

empirical mean Ê is defined as

Êf(Y) =
1

J

J∑

j=1

f(Yj).

The numerical integration scheme for the ensemble Y will be denoted as

Yk+1 = φY(tk,Yk; δt) =
(
φ(tk,Yk

j ; δt)
)J
j=1

. (2.3)

The total error of a Monte Carlo simulation of (1.1) consists of a deterministic
error due to the time discretization, and a statistical error due to the finite number of
realizations. In general, for a given tolerance, a Monte Carlo simulation will be most
efficient if the statistical and deterministic error are balanced. However, as for stiff
systems of ODEs, one might encounter situations in which the time step δt cannot be
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increased because of stability problems. The acceleration method that we will propose
in Section 4 will prove to be particularly useful to accelerate Monte Carlo simulations
in such situations.

Remark 2.3 (Probability density functions). One can equivalently describe the
process (1.1) via an advection-diffusion equation, also known as Fokker–Planck equa-
tion (see, e.g., [51]), which in the Itô case takes the form

∂tϕ = −∇X (a ϕ) +
1

2
∇X ·

[
∇X ·

(
bT b ϕ

)]
, (2.4)

and which describes the evolution of the probability density function ϕ(t,x) of X(t),
starting from the initial density ϕ(t0,x) = ϕ0(x). The functional of interest then
becomes

f̄(t) =

∫
f(x)ϕ(t,x)dx. (2.5)

For simulation purposes, however, the Monte Carlo algorithm is generally preferred,
due to the possibly high number of dimensions of the Fokker–Planck equation.

Remark 2.4 (Spatial dimension). While the model (1.1) can have arbitrary
dimension, we will consider a one-dimensional version in the numerical illustrations
for ease of visualization. In that case the state vector reduces to a scalar, X(t).
Whenever we consider the one-dimensional case, all bold typesetting in equation (1.1)
will be removed.

2.2. A motivating model problem: FENE dumbbells. To illustrate the
behavior of the proposed numerical methods, we will consider the micro/macro sim-
ulation of the evolution of immersed polymers in a solvent. Here, one models the
evolution of the configuration of a polymer ensemble via an SDE of the type (1.1),
driven by the flow field, for each of the individual polymers. This results in a polymer
configuration distribution at each spatial point. This microscopic model is coupled to
a Navier–Stokes equation for the solvent, in which the effect of the immersed polymers
is taken into account via a non-Newtonian stress tensor. We refer to [26,36,38] for an
introduction to the literature on this subject.

In this paper, we consider only the Monte Carlo simulation of the microscopic
model, leaving the coupling with the Navier–Stokes equations for future work. We
eliminate the spatial dependence by considering the microscopic equations along char-
acteristics, i.e., in a Lagrangian frame. In general, a microscopic model describes an
individual polymer as a series of beads, connected by nonlinear springs, resulting in
a coupled system of SDEs for the position of each of the beads. In the simplest
case, that we will also use as an illustrative example here, one represents the poly-
mers as non-interacting dumbbells, connecting two beads by a spring that models
intramolecular interaction. The state of the polymer chain is described by the end-
to-end vector X(t) that connects both beads, and whose evolution is modelled using
the non-dimensionalised SDE

dX(t) =

[
κ(t)X(t)− 1

2We
F
(
X(t)

)]
dt+

1√
We

dW (t), (2.6)

where κ(t) is the velocity gradient of the solvent, We is the Weisenberg number, and F
is a spring force, here considered to be finitely extensible nonlinearly elastic (FENE),

F (X) =
X

1− ‖X‖2/γ , (2.7)
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with γ a non-dimensional parameter that is related to the maximal polymer length.
The resulting non-Newtonian stress tensor is given by the Kramers’ expression,

τp(t) =
ε

We

(
E
(
X(t)⊗ F

(
X(t)

))
− Id

)
, (2.8)

in which ε represents the ratio of polymer and total viscosity; see [38] for details and
further references. This model, which is of the type (1.1), takes into account Stokes
drag (due to the solvent velocity field), intramolecular elastic forces, and Brownian
motion (due to collisions with solvent molecules). The functional of interest in the
Monte Carlo simulation is f̄(t) = τp(t).

Equations (2.6) and (2.7) ensure that the length of the end-to-end vector, ‖X‖,
cannot exceed the maximal value √γ [29]. However, a naive explicit discretization
scheme might yield spring lengths beyond this maximal value. This can be avoided via
an accept-reject strategy, see, e.g., [49, Section 4.3.2]. Here, for each polymer, the state

after each time step is rejected if the calculated polymer length exceeds
√

(1−
√
δt)γ,

and a new random number is tried until acceptance. To prevent the distribution of the
approximation process to be heavily influenced by this, the microscopic time-step has
to be chosen small enough. Alternatively, one can use an implicit method [49], which
alleviates the time-step restriction. However, even for implicit SDE discretizations,
the maximal time step is limited when coupling the Monte Carlo simulation with
a discretization of the Navier–Stokes equations for the solvent. This is due to the
fact that the coupling between the Monte Carlo and Navier–Stokes parts is, in most
existing work, done explicitly in time, creating an additional stability constraint due
to the coupling. (Some notable exceptions are given in [37, 56].) For this coupled
simulation, one would extrapolate both the Monte Carlo and the Navier–Stokes part
simultaneously. This will be done in future work. Here, we simply conclude that, for
this model problem, the required time step for a stable SDE (or coupled) simulation
is indeed small compared to the time scale of the evolution of the stress.

As in, e.g., [30], we will consider a one-dimensional version in the numerical
illustrations; the stress tensor then reduces to a scalar τp(t). As time discretization,
we will use the explicit Euler–Maruyama scheme, combined with an accept-reject
strategy.

3. Macroscopic closure approximations.

3.1. Analytical closure approximations. Due to the possibly high computa-
tional cost of Monte Carlo simulation, another route has been followed in the litera-
ture, in which one derives an approximate macroscopic model to describe the system;
see, e.g., [24,27,30,41,42,55] for derivations of macroscopic closures for FENE dumb-
bell models. In these approaches, one considers a number L of macroscopic state
variables, U = (Ul)

L
l=1, which are defined as expectations of scalar functions ul of the

state X and time t,

Ul(t) = Eul
(
t,X(t)

)
. (3.1)

Remark 3.1 (Choice of macroscopic state variables). The choice of the functions
ul is problem-dependent and will be specified with the numerical illustrations for the
examples considered in this text. For the exposition in this section, it may be helpful
to think about the standard moments of the distribution in a one-dimensional setting,
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i.e., ul(t, x) = xl. Note that by allowing ul to depend directly on time t, centralized
moments u1(t, x) = x, ul(t, x) = (x − U1(t))l for l ≥ 2, for instance, can also be
considered.

The goal is to obtain a closed system of L evolution equations,

dU(t)

dt
= H

(
U(t)

)
, (3.2)

for the state variables U , complemented with a constitutive equation,

f̄(t) = T
(
U(t)

)
, (3.3)

for the observable f̄ of interest as a function of these macroscopic state variables.
We briefly illustrate this approach in a one-dimensional setting; the exposition closely
follows [42]. Using Itô calculus, one can easily obtain an equation of state for the
macroscopic state variables. For Itô SDEs (1.1) it is of the form

dUl(t)

dt
= E

(
dul(t,X)

dt

)

= E

(
∂ul(t,X)

∂t

)

︸ ︷︷ ︸
Ual

+ E

(
a(t,X)

∂ul(t,X)

∂x

)

︸ ︷︷ ︸
Ubl

+
1

2
E

(
∂2ul(X)

∂x2
b(t,X)2

)

︸ ︷︷ ︸
Ucl

,

in which three new macroscopic state variables Ual , U
b
l , and U

c
l appear that, in general,

are not functions of the initially chosen macroscopic state variables (Ul)
L
l=1. One can

write evolution equations for these new state variables, which in turn will create
additional state variables; this procedure typically goes on endlessly. At some point,
one has to stop, and try to approximate the state variables for which no evolution
equation is available by writing them as a function of other (already available) state
variables. By adding such closure relations, one obtains an explicit, but approximate,
closed system of macroscopic evolution equations.

The predominant way of deriving closure relations is to approximate the proba-
bility density function ϕ of X by a canonical density ϕU (in polymer dynamics often
called canonical [configuration] distribution function), which is determined using only
the macroscopic state variables U (typically low-order moments of the distribution),
and to compute the remaining macroscopic variables appearing in the evolution equa-
tions for U via averaging with respect to ϕU . For the FENE dumbbell problem,
several closures have been proposed. In [41,42], approximate closures are obtained by
restricting the space of admissible probability density functions to linear combinations
of L canonical basis functions and considering the set of macroscopic state variables
to be determined by the first L even moments of the distribution. (The odd mo-
ments vanish due to symmetry, as long as the initial distribution is symmetric.) We
refer to [41] for more details on the one-dimensional setting and [42] for the general
three-dimensional case. A related approach is described in [13,27,66].

In [28], a quasi-equilibrium approach is proposed, based on thermodynamical
considerations; although the method has been formulated for the FENE dumbbell
case, it is applicable to general SDEs of the type (1.1). The method first defines
an entropy, and then requires the canonical (configuration) distribution to maximize
this entropy, imposing the constraint that the macroscopic state is given. While this
method results in a uniquely defined closed macroscopic model, it is often impossible to
obtain this model analytically in closed form; several algorithms have been presented
to simulate the evolution of the quasi-equilibrium model numerically [54,65].
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3.2. The coarse time-stepper: a numerical closure approach. One par-
ticular numerical method to simulate the quasi-equilibrium model is given in [54], also
considering the FENE dumbbell problem. Consider the SDE (1.1), and define a set
of L macroscopic state variables U(t) = (Ul(t))

L
l=1, see equation (3.1). The procedure

performs a numerical integration of a closed model (3.2) for the macroscopic state
variables, without deriving this model in analytic form. To this end, a three-step nu-
merical procedure is proposed that approximates a time-stepper of this approximate
macroscopic model.

Two operators are introduced to make the transition between macroscopic and
microscopic variables: a lifting operator,

L : U 7→ Y = L(U), (3.4)

which maps a macroscopic state onto a microscopic ensemble of J microscopic real-
izations, and the converse restriction operator,

R : Y 7→ U = R(Y). (3.5)

Together, these operators have the effect of introducing the closure approximation.
As a restriction operator, we can readily replace the expectation E by the empirical

mean Ê,

Ul(t) = Rl
(
Y(t)

)
= Êul

(
t,Y(t)

)
. (3.6)

In the lifting step, we need to create an ensemble of realizations corresponding to a
given macroscopic state; the distribution that is sampled by this ensemble corresponds
to the canonical density ϕU defined in Subsection 3.1. The numerical lifting procedure
that was proposed in [54] for the FENE dumbbell model generates an ensemble taken
from the conditional equilibrium distribution of (1.1) under the constraint that the
macroscopic state is kept fixed. The method is based on a constrained simulation of
the SDE (1.1). The easiest way to perform this constrained simulation is to take an
unconstrained time-step for the polymer ensemble, followed by a projection onto the
constraint [40]. When performing this constrained simulation at time t∗, we have:





Ykc+1 = φY(t∗,Ykc ; δt) +

L∑

l=1

λl∇YRl(Ykc),

with Λ = {λl}Ll=1 such that Rl(Ykc+1) = Ul(t
∗) for l = 1, . . . , L,

(3.7)

where the subscript on the counter kc = 0, . . . ,Kc− 1 has been introduced to empha-
size that the simulation is constrained, and physical time is frozen. The result of the
lifting operator is then defined as the ensemble YKc for a sufficiently large time index
Kc, for which the ensemble has approximately reached an equilibrium distribution,

L(U) = YKc . (3.8)

This lifting is closely related to the quasi-equilibrium approximation [54].
During the constrained simulation, an accept-reject strategy is applied on the

combined evolution and projection operation, i.e., if the state of a polymer would
become unphysical during projection, we reject the trial move in the evolution step
and repeat the time step for this polymer, after which the projection of the ensemble
is tried again.
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The numerical closure algorithm can be written as follows [54]:
Algorithm 3.2 (Coarse time-stepper). Given an initial condition for the macro-

scopic state variables U(t∗) at time t∗, one time step of the coarse time-stepper con-
sists of a three-step procedure:

(i) Lifting, i.e., the creation of an initial ensemble Y(t∗) = L(U(t∗)) for the
microscopic model, consistently with the macroscopic state U(t∗) at t∗.

(ii) Simulation using the numerical integration scheme (2.3) over a time interval
[t∗, t∗ + Kδt], where δt is the microscopic step size and K is the number of
(microscopic) time steps, to get Y(t∗ +Kδt): for k = 0, . . . ,K − 1,

Y
(
t∗ + (k + 1)δt

)
= φY

(
t∗ + kδt,Y(t∗ + kδt); δt

)
.

(iii) Restriction, i.e., observation (estimation) of the macroscopic state at t∗+Kδt,

U(t∗ +Kδt) = R
(
Y(t∗ +Kδt)

)
,

as well as of an approximation of the function of interest, f̂(t∗ + Kδt) =

Êf
(
Y(t∗ +Kδt)

)
.

The numerical closure introduces an error in the evolution of the function of
interest f̄(t) due to the restriction onto a finite number of macroscopic state variables.
Indeed, in the absence of statistical error, the coarse time-stepper approximates f̄(t)
in the limit Kc →∞ as

f̂(t∗ +Kδt) =

∫
f(x)ϕU(t∗+Kδt)(x)dx, i = 0, . . . , n, k = 0, . . . ,K. (3.9)

Clearly, the difference between ϕU(t∗+Kδt)(x) and ϕ(t∗ + Kδt,x) (with ϕ defined in
Remark 2.3) depends on the choice of macroscopic state variables U in a way that is
(in the limit Kc →∞) independent of the coarse time step. However, the assumption
is that this error can be made arbitrarily small by considering sufficient macroscopic
state variables (see also Subsection 5.1).

Remark 3.3. With a slight abuse of notation, we have also denoted the micro-
scopic ensemble by the symbol Y that was introduced to denote the time-discretized
approximation of X . Note, however, that, for the coarse time-stepper, the approxima-
tion errors that are present in Y are a consequence of both the time integration and
statistical errors of the Monte Carlo simulation, as well as modeling errors through
the numerically imposed closure.

We also introduce the idealized operators L and R obtained in the limit J →∞,
eliminating statistical error. Rather than acting on ensembles of configurations, these
operators are defined directly on the random variables. More precisely, the restriction
operator R reduces a random variable Z to macroscopic state variables,

R(Z) =
(
Rl(Z)

)L
l=1

with Rl(Z) = Ul = Eul(Z) for l = 1, . . . , L. (3.10)

Likewise, the lifting operator L maps a macroscopic state U∗ onto a random variable
Z∗, which is distributed according to the probability density function ϕU∗ ,

Z∗ = L(U∗) with R(Z∗) = U∗. (3.11)

The procedure above can be useful to study the extent at which a closure based on
a given set of macroscopic state variables is able to capture the macroscopic behavior
of the system. It should, however, be emphasized that the method is by no means a
computationally viable alternative to a fully microscopic simulation. (On the contrary,
the associated computational cost is even much higher, due to the required constrained
simulation in each lifting step.)
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3.3. Coarse projective integration. In coarse projective integration, simu-
lation using the coarse time-stepper is accelerated by extrapolating a (restricted)
macroscopic state forward in time. The extrapolated macroscopic state is then lifted
back to a corresponding microscopic state, and the simulation is continued.

We first introduce some notation. Let I∆t = {t0, t1, . . . , tN} be a (macroscopic)
time discretization with t0 < t1 < . . . < tN = T of the time interval I with step
sizes ∆tn = tn+1 − tn for n = 0, 1, . . . , N − 1. We also introduce the discrete time
instances tn,k = tn+kδt that are defined on a microscopic grid, and, correspondingly,
the discrete approximation Un,k ≈ U(tn,k) and Un ≈ U(tn), and similarly for Y and
Y . Clearly, (·)n = (·)n,0.

One step of the complete algorithm reads:
Algorithm 3.4 (Coarse projective integration).
(i) Lift the macroscopic state to an ensemble of microscopic realizations using

the lifting procedure described in Subsection 3.2, Yn = L(Un);
(ii) Simulate the microscopic system via (2.3) over K time steps of size δt,

Yn,k = φY(tn,k−1,Yn,k−1; δt), 1 ≤ k ≤ K,

and record the restrictions Un,k = R(Yn,k), as well as (an approximation of)
the function of interest, f̂n,k = Êf(Yn,k);

(iii) Extrapolate the macroscopic state U from (some of) the time points ti,k,i =
0, . . . , n, k = 1, . . . ,K, to a new macroscopic state Un+1 at time tn+1.

While discussion of the extrapolation step is postponed to Section 6, some re-
marks on the lifting step are in order. The constrained simulation that is performed
during each lifting step requires an initial condition that satisfies the constraints.
In general, during coarse projective integration, an ensemble is available that corre-
sponds to a nearby macroscopic state; this ensemble can be projected onto the desired
macroscopic state exactly as is done in each step of the constrained simulation, see
equation (3.7). If no nearby ensemble is available, one can start from an ensemble
that is obtained through an analytical closure approximation, see Section 3. It is
important to emphasize that in the limit Kc → ∞, the result of the lifting operator
is a sample from the conditional equilibrium density ϕU∗ , so in this limit the initial
condition for the constrained simulation does not affect the result.

4. Micro/macro acceleration method.

4.1. Algorithm formulation. Performing coarse projective integration as out-
lined above is clearly more efficient than just evolving the coarse time-stepper of
Algorithm 3.2. However, when comparing to a fully microscopic Monte Carlo simula-
tion, part (if not all) of the computational gain that is obtained by extrapolating in
time is lost during the constrained simulation in the lifting step. In this section, we
propose a method that aims at drastically reducing the computational cost of a fully
microscopic Monte Carlo simulation by limiting the number of constrained time-steps
that is performed during the lifting.

In particular, we propose to eliminate the constrained simulations completely and
to replace the lifting step by a mere projection onto the extrapolated macroscopic
state. As a consequence, the microscopic state after extrapolation depends on both
the extrapolated macroscopic state and the microscopic state before extrapolation.
Therefore, the clear relation with a numerical closure is lost, and the method can only
be interpreted as a micro/macro acceleration technique for Monte Carlo simulation.
One step of the micro/macro acceleration method then reads:
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Algorithm 4.1 (Micro/macro acceleration).
(i) Simulate the microscopic system over K time steps of size δt,

Yn,k = φY(tn,k−1,Yn,k−1; δt), 1 ≤ k ≤ K,

and record the restrictions Un,k = R(Yn,k), as well as an approximation of
the function of interest f̂n,k = Êf(Yn,k);

(ii) Extrapolate the macroscopic state U from (some of) the time points ti,k,i =
0, . . . , n, k = 1, . . . ,K, to a new macroscopic state Un+1 at time tn+1,

Un+1 = E
((
U i,k

)n,K
i,k=0,0

; (∆ti)
n
i=0, δt

)
. (4.1)

(iii) Project the microscopic state Yn,K onto the extrapolated macroscopic state
Yn+1 = P(Yn,K ,Un+1).

(Again, if the state of a polymer would become unphysical during projection, we
reject the trial move in the evolution step and repeat the time step for this polymer,
after which the projection of the ensemble is tried again.)

Compared to Algorithm 3.4, the lifting operator L has been replaced by a projec-
tion operator P. Also, the ordering of the steps has changed: Instead of evolving the
macroscopic state over a time step of size ∆t, making use of the microscopic SDE, as
in Algorithm 3.4, the micro/macro acceleration method evolves the microscopic state
over a time step of size ∆t using an extrapolation on the macroscopic level.

Clearly, Algorithm 4.1 is computationally much faster than both Algorithm 3.4
and a fully microscopic simulation. However, it introduces, besides the already present
microscopic deterministic error (due to time-stepping with δt) and statistical error
(due to the finite number of samples), two additional sources of deterministic error
due to (1) extrapolation of the macroscopic state forward in time; and (2) projection
onto the selected macroscopic state variables. Moreover, in the extrapolation step,
also the statistical error will be affected. The goal of the following sections is to
investigate these additional errors, both analytically and numerically.

4.2. Projection failure and adaptive time-stepping. In the numerical ex-
periments, one might encounter situations in which the distributions evolve on time-
scales that are not significantly slower than those of the macroscopic functions of
interest. In that case, when taking a large extrapolation time step, the extrapolated
macroscopic state differs significantly from the state corresponding to the last avail-
able polymer ensemble, and it is possible that projection onto the desired macroscopic
state fails. Consequently, a failure in the projection can be used as an indication that
we should decrease the extrapolation time step. Based on this observation, we pro-
pose the following criterion to adaptively determine the macroscopic step size ∆t: If
the projection fails, we reject the step and try again with a time-step

∆tnew = min(α∆t,Kδt), α < 1, (4.2)

whereas, when the projection succeeds, we accept the step and propose

∆tnew = max(α∆t,∆tmax) (4.3)

for the next step. If the macroscopic step size ∆tnew = Kδt, projection becomes
trivial (the identity operator), since there is no extrapolation. Note that, when this
happens, the criterion will ensure that the larger time steps are tried after the next
burst of microscopic simulation.
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5. Projection operator. In this section, we discuss in detail the properties of
the projection operator. We first give some necessary definitions (Subsection 5.1). We
then prove a consistency result in a very special case (Subsection 5.2) and give and
illustrate then a conjecture for the general case (Subsection 5.3).

5.1. Notations and definitions. The projection operator P can be defined in
several ways. One option is to perform the same projection as during each time step
of the constrained simulation (3.7), i.e.,





Yn+1 = Yn,K +

L∑

l=1

λl∇YRl(Yn),

with Λ = {λl}Ll=1 such that Rl(Yn+1) = Un+1
l for l = 1, . . . , L.

(5.1)

Then, Yn+1 = P(Yn,K ,Un+1) results after obtaining Λ from a Newton procedure
that solves the L-dimensional nonlinear system that defines the constraints. If, in-
stead, we write an implicitly defined gradient ∇YRl(Yn+1) in the first line of (5.1),
one can show that the resulting ensemble satisfies

Yn+1 = argmin
Z: R(Z)=Un+1

1

2
‖Z −Yn,K‖2. (5.2)

For some choices of the macroscopic state variables U one could also consider classical
moment matching, as described in [6].

Due to the constraint R(Yn+1) = Un+1, the elements of Yn+1 generated by
(5.1) or (5.2) are in general not independent, and Monte Carlo error estimates are not
straightforward to obtain. For example, the Central Limit Theorem is not directly
applicable [6]. Therefore, as before, we introduce the operator P obtained in the limit
J →∞; the corresponding restriction operator R was defined in equation (3.10). The
projection operator P maps a random variable Z onto a new random variable Z∗
that corresponds to a macroscopic state U∗,

Z∗ = P(Z,U∗) with R(Z∗) = U∗. (5.3)

When analyzing the projection, we will consider the idealized operators P and R.
We are now ready to define a few properties that we require to be satisfied for

any reasonable projection. First, we require the following property:
Definition 5.1 (Self-consistency property). A pair P̄, R̄ of projection and re-

striction operators is called self-consistent if

Z = P̄
(
Z, R̄(Z)

)

for any suitable random variable Z.
The self-consistency states that a random variable remains unaffected by projec-

tion if its macroscopic state is equal to the macroscopic state on which one wants
to project. Note that this property typically is not satisfied for the lifting operators
discussed in Subsection 3.2, whereas it can easily be checked that it is fulfilled for
the operators defined in (5.1) and (5.2). We remark also that Definition 5.1 implies
P̄2 = P̄, which justifies the use of the term projection.

Next, we consider the number of macroscopic state variables L to vary, and de-
fine a sequence of vectors of macroscopic state variables

(
U[L]

)
L=1,2,...

, such that
U[L] = (Ul)

L
l=1, i.e., for increasing L, additional macroscopic state variables are added.
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The corresponding sequences of projection and restriction operators are denoted as(
P [L]

)∞
L=1

and
(
R[L]

)∞
L=1

, respectively.
Using this notation, we are ready to formulate the definitions of continuity and

consistency of the projection step:
Definition 5.2 (Continuity of projection). Consider a set of random variables

and a set of sequences of macroscopic states. A sequence of projection operators(
P [L]

)
L=1,2,...

is called continuous for these sets if, for all g ∈ C0,2
P (I × Rd,R), there

exists a constant C, depending only on g, such that

|E g
(
s,P [L](Z,U

∗
[L])
)
− E g

(
s,P [L](Z,U

+
[L])
)
| ≤ C‖U∗[L] −U+

[L]‖ (5.4)

holds for all L ≥ 1, all sequences
(
U∗[L]

)
L=1,2,...

,
(
U+

[L]

)
L=1,2,...

of macroscopic states

and all Z in the considered sets, and all s ∈ I.
Definition 5.3 (Consistency of projection). Consider a sequence of projection

operators
(
P [L]

)
L=1,2,...

. This sequence is called consistent for a class of sequences

of triples
(
Z∗[L],Z

+
[L],U[L]

)
L=1,2,...

of random variables Z∗[L], Z
+
[L], and macroscopic

states (U[L]), if for all g ∈ C0,2
P (I ×Rd,R) there exist constants CL, with CL → 0 for

L→∞, and L0 such that it holds

|E g
(
s,P [L](Z

∗
[L],U[L])

)
− E g

(
s,P [L](Z

+
[L],U[L])

)
| ≤ CL|E g(s,Z∗[L])− E g(s,Z+

[L])|
(5.5)

for all L ≥ L0 and all sequences of triples
(
Z∗[L],Z

+
[L],U[L]

)
L=1,2,...

in the considered

class. The possible dependence of the random variables on L is required since the
random variables will be considered to have been generated using the micro/macro
acceleration algorithm, and therefore depend on L.

Whereas continuity measures (in a weak sense) the difference between the pro-
jection of a random variable onto two different macroscopic states, the consistency
measures the difference between the projection of two different random variables onto
the same macroscopic state.

Definitions 5.1, 5.3, and 2.1 immediately imply the following corollary:
Corollary 5.4. Consider a sequence of (self-consistent) projection operators(

P [L]

)
L=1,2,...

, and assume that this sequence is consistent for a set of sequences of

triples
(
Z[L],X

t−,Z[L](t∗),R[L]

(
Xt−,Z[L](t∗)

))
L=1,2,...

, where Z[L] are random vari-

ables, t− = t∗ − ∆t, ∆t ∈ [0, t∗ − t0], t∗ ∈ I. Suppose further that SDE (1.1) is
uniformly weakly continuous for the set of all Z[L]. Then for all g ∈ C0,2

P (I × Rd,R)
there exist constants ∆t0 > 0 and CL, with CL → 0 for L→∞, and L0, such that it
holds

|E g
(
s,Xt−,Z[L](t∗)

)
− E g

(
s,P [L](Z[L],U

∗
[L])
)
| ≤ CL∆t (5.6)

for all L ≥ L0, all
(
Z[L],X

t−,Z[L](t∗),U∗[L] = R[L]

(
Xt−,Z[L](t∗)

))
L=1,2,...

in the con-

sidered set, ∆t ∈ [0,∆t0], and all t∗ ∈ [t0 + ∆t, T ], s ∈ I.
This corollary states that the difference, measured in a weak sense, between the

exact distribution at some time instance t∗ and a projection from a previous time
t− = t∗ − ∆t onto the exact macroscopic state at t∗ vanishes when projecting onto
more macroscopic state variables or letting ∆t→ 0.
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In the remainder of the text, we will only use the properties stated above. There-
fore, one may use any projection operator that would come to mind for a particular
problem, as long as these properties are satisfied.

5.2. Particular results for normal distributions. For simplicity of the ar-
gument, and without loss of generality, we restrict ourselves to a one-dimensional
notation for the rest of this section. In the case of scalar normally distributed random
variables, the following result can be proved.

Lemma 5.5. Consider a scalar random variable Z and suppose that the macro-
scopic state variables are given by u1(z) = z and u2(z) = (z − U1)2. Suppose further
that in analogy to (5.2), P is given by

P(Z,U∗) = argmin
R(Z∗)=U∗

1

2
E
(
(Z∗ − Z)2

)
. (5.7)

Then, the random variable P(Z,U∗) is also normally distributed with mean and vari-
ance given by U∗.

Proof. Denote by
(
µ
σ2

)
= R(Z),

(
µ∗

(σ∗)2

)
= U∗, σ, σ∗ > 0.

Then, (5.7) yields

P(Z,U∗) = ±
√

(σ∗)2

σ2

(
Z − µ± µ∗

√
σ2

(σ∗)2

)
. (5.8)

Thus, if Z is normally distributed, so is P(Z,U∗).
With the help of this lemma, we can easily show the following two corollaries.
Corollary 5.6. Suppose that the hierarchy of macroscopic state variables is

defined using u1(z) = z and ul(z) = (z − U1)l for l ≥ 2. Suppose further that P is
given by (5.7). Then, the sequence of projection operators is consistent with CL = 0

for L ≥ 2 = L0 for all sequences of triples
(
Z+

[L], Z
−
[L],U

∗
[L]

)
L=1,2,...

, where Z+
[L] and

Z−[L] are normally distributed and
(
U∗[L]

)
L=1,2,...

are sequences of centralized moment

values consistent with normal distributions.
Proof. We first consider the case L = 2. As the normal distribution is uniquely

determined by its first two (centralized) moments, Lemma 5.5 implies that for two
normally distributed random variables Z1 and Z2, P [2](Z1,U

∗
[2]) and P [2](Z2,U

∗
[2]) are

identically distributed, and thus C2 = 0. For the same reason, (5.8) holds also for
L > 2, and also in this case CL = 0, and the projection is consistent.

Corollary 5.7. Suppose that the hierarchy of macroscopic state variables is
defined using u1(z) = z and ul(z) = (z − U1)l for l ≥ 2. Suppose further that P
is given by (5.7). Then, the sequence of projection operators is continuous for all
normally distributed random variables, and sequences of centralized moment values
consistent with normal distributions.

Proof. For L ≥ 2, Lemma 5.5 implies again that Z∗ = P [L](Z,U
∗
[L]) and

Z+ = P [L](Z,U
+
[L]) are normally distributed if Z is normally distributed and U∗[L],

U+
[L] are sequences of centralized moment values consistent with normal distributions.
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Denoting the corresponding expectations by µ∗, resp. µ+, and variances by (σ∗)2,
resp. (σ+)2, it holds for all f ∈ C1

P (R,R)

|E f(s, Z∗)− E f(s, Z+)| =
∣∣∣∣
∫

R

(
f(s, σ∗z + µ∗)− f(s, σ+z + µ+)

) 1√
2π
e−z

2/2 dz

∣∣∣∣

=

∣∣∣∣
∫

R
f ′(s, ξz)[(σ

∗ − σ+)z + µ∗ − µ+]
1√
2π
e−z

2/2 dz

∣∣∣∣ ,

where ξz ∈ [σ∗z + µ∗, σ+z + µ+]. As there exist constants C̃ and r ∈ N such that
|f ′(s, ξz)| ≤ C̃(1 + |max{σ∗, σ+}z + max{µ∗, µ+}|2r), this implies also that the se-
quence of projection operators is continuous (the corresponding equation (5.4) can be
verified similarly in the case L = 1).

Several observations can be made. First, one can obtain a similar result whenever
the distributions are defined by a finite number of moments (for instance, a lognor-
mal distribution) by taking this knowledge into account when defining the projection
operator. Second, we remark that, if the random variables are normally distributed
at all moments in time, this implies that they represent solutions of a linear SDE in
the narrow sense,

dX(t) =
(
a1(t)X(t) + a2(t)

)
dt+ b(t) ? dW (t), t ∈ I, (5.9)

with normally distributed initial values. For this equation, it is clear that the complete
time evolution of the distributions can be completely described by a system of two
ODEs for U1 = µ = EX and U2 = σ2 = E

(
(X − µ)

2
)
, see equation (3.2), namely

{
dU1/dt = a1(t) U1 + a2(t),

dU2/dt = 2a1(t) U2 + b(t)2.
(5.10)

As a consequence, the projection operator (5.7) corresponds to the reconstruction of
the normal distribution corresponding to a given macroscopic state, i.e., the projec-
tion operator reduces to a lifting operator as defined in Subsection 3.2. Consequently,
in this setting, the coarse projective integration algorithm (Algorithm 3.4), the mi-
cro/macro acceleration algorithm (Algorithm 4.1), and a direct discretization of the
closed system (5.10) yield equivalent numerical results, albeit at different computa-
tional costs.

5.3. Conjecture for general distributions. We now turn to more general
distributions. We assume that the distribution of the random variable is uniquely
determined by its moments; this is the case if, for instance, the moment generating
function

∑∞
i=0

E(Zi)ti

i! is bounded in an interval around 0.
In this setting, we propose the following conjecture:
Conjecture 5.8. Consider a sequence of restriction operators

(
R[L]

)
L=1,2,...

in
which the macroscopic state variables corresponding to R[L] are defined as the first L
centralized moments of the distribution, i.e., u1(z) = z, ul(z) = (z − U1)l, for l =
2, . . . , L, and define the corresponding sequence of projection operators

(
P [L]

)
L=1,2,...

via (5.7). Consider further a set S of random variables for which all (centralized)
moments of its members exist and uniquely determine the corresponding distribution
function, and each moment can be uniformly bounded. Then, the sequence of projec-
tion operators is continuous for S and all sequences of macroscopic states U[L], and

consistent for all sequences of triples
(
Z∗[L], Z

+
[L],U[L]

)
L=1,2,...

where Z∗[L], Z
+
[L] ∈ S.
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Fig. 5.1. Results after projecting a prior ensemble of FENE dumbbells onto the first L even
centralized moments of a reference ensemble for several values of L. Simulation details are given in
the text.

We illustrate the main properties of the projection operator for general distri-
butions by means of numerical experiments. Below, we consider equation (2.6) in
one space dimension, with κ(t) ≡ 2, F (X) the FENE force (2.7) with γ = 49,
We = 1. We discretize in time with the classical Euler-Maruyama scheme with time
step δt = 2 · 10−4. As the macroscopic state U[L], we consider the first L even cen-
tralized moments, since for the exact solution, the odd (centralized) moments vanish
due to symmetry.

5.3.1. Error dependence on the number of moments. We first simulate
J = 1 · 105 realizations, whose initial states are standard normally distributed, up to
time t∗ = 1.15 and record the microscopic state Y∗ and corresponding macroscopic
states U∗[L] for L = 1, . . . , 10, at time t∗, as well as the microscopic state Y− at
time t− = 1. We then project the ensemble Y− onto the macroscopic state U∗[L] and
compare the density of P[L](Y−,U∗[L]) with that of Y∗. Since the absolute value of
the moments increases quickly with the order of the moment, the residuals in the
Newton procedure for the projection are scaled relative to the requested value of the
corresponding moment; the Newton iterations are stopped if the norm of the residual
is smaller than 1 · 10−9.

We perform three tests to examine the convergence (in empirical density) of
P[L](Y−,U∗[L]) to Y∗ for L→∞. First, we visually inspect the corresponding empir-
ical probability density functions, see Fig. 5.1(a). Shown are histogram approxima-
tions of the empirical density ϕ̂− of |Y−| (the initial condition for the projection), the
reference empirical density ϕ̂∗ of |Y∗|, and approximations ϕ̂[L] of P[L](Y−,U[L]) for
several values of L. The figure visually suggests that, when increasing the number of
macroscopic state variables, the reference empirical density gets approximated more
accurately. We now take a closer look to the projected ensembles by computing the
relative difference between the l-th even empirical moment of the projected ensem-
ble, Ul, and the corresponding empirical moment of the reference ensemble U∗l as
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L 2 3 4 5 6 7 8 9 10
p 0.000 0.000 1.197 · 10−3 0.840 0.862 0.999 0.999 0.999 0.999

Table 5.1
The p-values of a two-sample Kolmogorov–Smirnov test that compares the reference and pro-

jected empirical distributions. Simulation details are in the text.

(Ul − U∗l )/U∗l . Figure 5.1(b) shows this error as a function of l for different values of
the number of macroscopic state variables L.

We make two key observations. First, for l < L, the relative difference in the
corresponding moment is of the order of the tolerance of the Newton procedure. This
is expected, since these are the macroscopic state variables onto which the distribution
is projected. We see that this very small error increases nevertheless with l; this can
be explained by pointing out that the value of the moments increases very quickly with
l, and that the equations in the Newton procedure have been rescaled accordingly.
Second, the error in the higher moments (l > L) also decreases with increasing L.
This indicates that the convergence of ϕ̂[L] to ϕ̂∗ for L → ∞ is not only due to the
fact that we project onto more moments, but also because the approximation of the
higher order moments improves. So far, we have no complete theoretical justification
for this observation.

Finally, we compare the reference and projected empirical distributions using a
two-sample Kolmogorov–Smirnov test [39]; this classical hypothesis test results in a
high p-value (≤ 1) if the two samples are likely to have been drawn from the same
probability distribution. The results are shown in Table 5.1. We clearly see a p-value
that approaches 1 for increasing L.

5.3.2. Error dependence on the time step. In a next experiment, we again
simulate J = 1·105 realizations, whose initial states are standard normally distributed,
up to time t∗ = 1.7, and record the microscopic state Y− at time t− = 1.5, as
well as the macroscopic states U[L](t

− + ∆t) for L = 3, 4, 5, and the function of
interest τ̃p(t− + ∆t) for ∆t ∈ [0, t∗ − t−]. We then project the ensemble Y− onto
the macroscopic state U[L](t

− + ∆t), obtaining P[L]

(
Y−,U[L](t

− + ∆t)
)
, and denote

the corresponding value of the stress as τ̂p(t− + ∆t). We record the relative error
|τ̂p(t) − τ̃p(t)|/τ̃p(t) as a function of ∆t. To reduce the statistical error, we report
the averaged results of 100 realizations of this experiment. The results are shown
in Fig. 5.2. We indeed see the linear increase of the projection error as a function
of ∆t; notice also, as was shown in the previous experiment, that the projection
error decreases with increasing L. From the figure, we conclude that the remaining
statistical error is at least lower than 10−5.

6. Extrapolation operator. Next, we need to specify how the extrapolation is
performed. Let the order of consistency be defined as follows:

Definition 6.1 (Consistency of extrapolation). Consider a certain class of suf-
ficiently smooth functions. An extrapolation operator E is called consistent of order
pe > 0 for this class if there exist ∆t0 > 0 and C such that for all ∆t ∈ [0,∆t0], all
n ≤ N and all functions U in the considered class it holds

∥∥∥Ũn+1 − U(tn+1)
∥∥∥ ≤ C∆tpe+1, (6.1)

with

Ũn+1 = E
((
U(ti,k)

)n,K
i,k=0,0

; (∆ti)
n
i=0, δt

)
.
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Fig. 5.2. Error of the stress after projecting a prior ensemble of FENE dumbbells onto the
first L even centralized moments of a reference ensemble, as a function of ∆t for several values of
L. Simulation details are given in the text.

Further, we will also use the following definition of continuity.
Definition 6.2 (Continuity of extrapolation). Consider a certain class of suffi-

ciently smooth functions. An extrapolation operator E consistent of order pe > 0 for
this class is called continuous for this class, if there exist ∆t0 > 0 and C such that for
all ∆t ∈ [0,∆t0], all n ≤ N , and all functions U1, U2 in the considered class it holds

‖E
((
U1(ti,k)

)n,K
i,k=0,0

; (∆ti)
n
i=0, δt

)
− E

((
U2(ti,k)

)n,K
i,k=0,0

; (∆ti)
n
i=0, δt

)
‖

≤ C
(

∆t

δt

)pe n,K∑

i,k=0,0

‖U1(ti,k)− U2(ti,k)‖.
(6.2)

In the remainder of this section, we consider two extrapolation strategies: projective
extrapolation and multistep state extrapolation.

6.1. Projective extrapolation. The first approach that we consider, proposed
in [17], is to extrapolate U to time tn+1 using only (some of) the time points tn,k,
k = 0, . . . ,K, i.e., by using the sequence of points obtained in the last burst of micro-
scopic simulation. If this coarse projective extrapolation is based on the interpolating
polynomial of degree pe (with pe ≤ K) through the parameter values at times tn,k,
k = K − pe, . . . ,K, we obtain

Un+1 =

pe∑

s=0

ls(αn)Un,K−s, (6.3)

with

αn =
∆tn
δt
−K, (6.4)

and the Lagrange polynomials

ls(α) =
α(α+ 1) · · · (α+ pe)

s!(pe − s)!(−1)s(α+ s)
. (6.5)

Example 6.3 (Coarse projective forward Euler). The simplest, first order ver-
sion of the above method is called coarse projective forward Euler. In this case, the
procedure can be rewritten as
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Un+1 = Un,K + (∆tn −Kδt)H
n
, Hn

=
Un,K −Un,K−1

δt
. (6.6)

The procedure described above is reminiscent of a Taylor method [17]. Conse-
quently, time integration based on this extrapolation will resemble a Taylor method
when repeatedly extrapolating forward in time, and the global deterministic error
will be dominated by a term of the form C∆tpe (assuming δt� ∆t), as results from
an accuracy analysis of coarse projective integration for deterministic microscopic
models [63].

To assess qualitatively the influence of coarse projective extrapolation on the
statistical error, we apply it to the linear test equation

dX(t) = aX(t) dt+ bdW (t). (6.7)

Application of the one step method φ to (6.7) yields

Y n,k =R̃φ(a, δt, ηn,k−1)Y n,k−1 + S̃φ(a, b, δt, ηn,k−1),

where R̃φ and S̃φ are functions depending on φ and ηn+1,k−1 are (vectors of) the
i. i. d. random variables used by φ. In the following, we assume that R̃φ(a, δt, ηn,i) is
independent of ηn,i and can be written as R̃φ(a, δt, ηn,i) = Rφ(aδt); this holds, e.g.,
for typical Runge-Kutta methods. The above assumptions imply

Y n,k =Rφ(aδt)kY n,0 +

k−1∑

i=0

S̃φ(a, b, δt, ηn,i)Rφ(aδt)k−i−1,

EY n,k =Rφ(aδt)k EY n,0 + E S̃φ(a, b, δt, ηn,0)

k−1∑

i=0

Rφ(aδt)i.

If we now apply the extrapolation step (6.3), we obtain

EY n+1,0 =

pe∑

s=0

ls(α) EY n,K−s

=

(
pe∑

s=0

ls(α)Rφ(aδt)K−s
)

︸ ︷︷ ︸
=:RE(aδt)

EY n,0 + E S̃φ(a, b, δt, ηn,0)

pe∑

s=0

ls(α)

K−s−1∑

i=0

Rφ(aδt)i,

(6.8)

with α and ls(α) given by (6.4) and (6.5). In analogy to (6.8) we obtain also

ÊY n+1,0 = RE(aδt)ÊY n,0 +

pe∑

s=0

ls(α)

K−s−1∑

i=0

Rφ(aδt)iÊS̃φ(a, b, δt, ηn,i).

Thus E ÊY n+1,0 = EY n+1,0, but

Var ÊY n+1,0 =
1

J
RE(aδt)2 VarY n,0

+
1

J
Var S̃φ(a, b, δt, ηn,0)

K−1∑

i=0

Rφ(aδt)2i




min{pe,K−1−i}∑

s=0

ls(α)




2

.

(6.9)
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The second summand in (6.9) behaves as δtα2pe/J for large α = ∆t/δt−K. Assuming
∆t� δt, this results in an amplification of the statistical error with a factor ∆tpe/δtpe

during extrapolation. A natural question is then: how many realizations J̃ are needed
to obtain the same variance using a fully microscopic simulation? In that case, we
have

Var ÊY n,α+K =
1

J̃
Rφ(aδt)2(α+K) VarY n,0

+
1

J̃
Var S̃φ(a, b, δt, ηn,0)

α+K−1∑

i=0

Rφ(aδt)2i. (6.10)

Thus, for large α, the required number of realizations for a full microscopic simulation
is smaller by a factor 1/α2pe−1, i.e, J̃ ∼ J

α2pe−1 , whereas the computational costs per
realization increases by a factor α. This means that for large α and pe = 1, the
computational cost of the micro/macro acceleration technique with coarse projective
extrapolation is similarly to that of a full microscopic simulation for a given variance.
For large α and pe > 1, coarse projective extrapolation is even more expensive than
a full microscopic simulation.

To reduce statistical error, it has been proposed to use a chord based approxima-
tion, for instance, using Un,K−K1 for the time derivative estimate instead of Un,K−1

in equation (6.6) [50]. Instead of taking Lagrange polynomials in equation (6.3), we
then have

Un+1 =

K∑

s=0

ls(αn)Un,K−s, (6.11)

in which lK(α) = 1 + α
K−K1

, lK1
(α) = − α

K−K1
, and ls(α) = 0 otherwise (see Exam-

ple 6.3) reduces the variance by a factor 1/(K −K1). However, the conclusion on the
computational cost remains the same.

6.2. Multistep state extrapolation. Because of the amplification of statisti-
cal error, we look into alternative extrapolation strategies. One approach, proposed
in [57,64], is to extrapolate U to time tn+1 using only (some of) the time points ti,K ,
i = 1, . . . , n, i.e., by using the last point of each sequence of microscopic simulations,
instead of a sequence of points from the last microscopic simulation. If this multi-
step state extrapolation method is based on the interpolating polynomial of degree
pe through the parameter values at times ti,K , i = n − pe, . . . , n, and we assume
equidistant coarse time steps ∆t, we obtain

Un+1 =

pe∑

s=0

ls(β)Un−s,K , (6.12)

where

β =
α

α+K
(6.13)

is the fraction of the interval ∆t over which we extrapolate, and α and ls are defined
as in (6.4) and (6.5). Note that such an extrapolation strategy requires a separate
starting procedure.

For a detailed comparison of the accuracy and stability properties of acceleration
of the numerical integration of ODEs using projective extrapolation and multistep
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state extrapolation, we refer to [63, 64]. Here, we only remark that, while the local
error using multistep state extrapolation only differs by a factor two with respect to the
local error of projective extrapolation, the global error is affected quite significantly.
This is due to the fact that, when increasing ∆t, also the time derivative estimate
itself is taken over a larger time interval. It has been shown in [57, 63] that this
results in an error constant (see, e.g., [21, Section III.2]) of the form Cα∆tpe . This
amplification effect will be illustrated in Subsection 6.3.

Let us now look into the statistical error, again using the linear test equation
(6.7). One extrapolation step of coarse multistep state extrapolation yields

ÊY n+1,0 =

pe∑

s=0

ls(β)ÊY n−s,K .

Thus again E ÊY n+1,0 = EY n+1,0, but now

Var ÊY n+1,0 ≤ 1

J

pe
max
s=0

VarY n−s,K
(

pe∑

s=0

|ls(β)|
)2

.

As β < 1, the last factor can be bounded (independently of α). Consequently, the am-
plification of statistical error during the extrapolation does not depend on α, whereas
the corresponding computational costs per simulation path are reduced by a factor α
compared to a full microscopic simulation.

6.3. Numerical illustration. We now provide a numerical result to illustrate
the effects of extrapolation on the deterministic and statistical error. To avoid effects
of the projection step, we consider the linear equation (5.9) with a2(t) = −a1(t) =
b(t) ≡ 1, for which we know that macroscopic evolution closes in terms of the first
two moments of the distribution. This microscopic SDE is discretized using an Euler-
Maruyama scheme with δt = 2 ·10−4. We consider 500 realizations of a computational
experiment with J = 1000 SDE realizations. As an initial condition, we sample from
a standard normal distribution. We compare the sample mean behavior and sample
standard deviation of a full microscopic simulation (which we will call the reference
simulation) with the micro/macro acceleration algorithm using ∆t = 1 ·10−3, 2 ·10−3,
4 ·10−3, and 8 ·10−3. We denote by τ̃p(t) the approximation to the function of interest
calculated from one realization of the reference simulation using J SDE realizations,
and by τ̂p(t) the function of interest obtained via one realization of the micro/macro
acceleration technique. As extrapolation techniques, we use first order projective
extrapolation and first and second order multistep state extrapolation.

Figure 6.1 shows the results for first order projective extrapolation. The left
figure clearly shows, as expected, that the deterministic error grows with increasing
∆t. However, from the right figure follows that, for an individual realization of the
experiment, the error is dominated by the statistical error. The zoom shows that, for
small t, the sample standard deviation grows linearly as a function of time, with a
slope that is larger for larger ∆t. This is in agreement with the theoretical result on
the local propagation of statistical error.

Next, we look at first order multistep state extrapolation, for which the results
are shown in Fig. 6.2. The left figure indicates that, when comparing with projective
extrapolation, the deterministic error grows much more rapidly with increasing ∆t.
On the right, we see that, while the sample standard deviation is larger than for the
reference simulation, the sample standard deviation does not depend crucially on ∆t,
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Ê
τ̂ p
(t
)
−
Ê
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Fig. 6.1. Results of micro/macro acceleration of the linear equation (5.9) using L = 2 moments
and projective extrapolation for different values of the time step ∆t, as well as a full microscopic
(reference) simulation. Top left: evolution of the sample means of the stresses τ̃p and τ̂p. Bottom
left: deterministic error on τ̂p. Right: evolution of the sample standard deviation of τ̂p. Simulation
details are given in the text.
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Fig. 6.2. Results of micro/macro acceleration of the linear equation (5.9) using L = 2 moments
and multistep state extrapolation for different values of the time step ∆t, as well as a full microscopic
(reference) simulation. Top left: evolution of the sample means of the stresses τ̃p and τ̂p. Bottom
left: deterministic error on τ̂p. Right: evolution of the sample standard deviation of τ̂p. Simulation
details are given in the text.

as is also expected from the analysis of the local propagation of statistical error. Note
that the lower sample standard deviation for ∆t = 8 · 10−3 is related to the fact that
τ̂p(t) itself is much lower as a consequence of the large deterministic error (see left
figure). The zoom shows that, for small t, the statistical error grows linearly as a
function of time, with a slope that is independent of ∆t, and is identical to the slope
for the reference simulation. These results are in agreement with the theoretical result
on the local propagation of statistical error.

Finally, we consider second order multistep state extrapolation. The results are
shown in Fig. 6.3. The left figure shows that the deterministic error is much better
than for the first order version. However, the behavior of the statistical error is
more intriguing. When zooming in to the behavior for small t, we observe that, over a
short time interval, the sample standard deviation using the micro/macro acceleration
technique increases at the same rate as the sample standard deviation in the reference
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Fig. 6.3. Results of micro/macro acceleration of the linear equation (5.9) using L = 2 moments
and multistep state extrapolation for different values of the time step ∆t, as well as a reference fully
microscopic simulation. Top left: evolution of the sample means of the stresses τ̃p and τ̂p. Bottom
left: deterministic error on τ̂p. Right: evolution of the sample standard deviation of τ̂p. Simulation
details are given in the text.

simulation. This corresponds to the theoretical result on the local propagation of
statistical error. However, on longer time scales, the sample standard deviation for
large t grows rapidly, and seems to be larger for larger ∆t. As such, second order
multistep state extrapolation behaves similarly to first order projective integration
on long time scales. We suspect that the loss of this favorable error propagation is
due to accumulation effects. This is indicated by the fact that the length of the time
interval on which the local theoretical results is observed is longer for larger values
of ∆t. Indeed, the figure indicates that the effects of accumulated statistical errors
start to appear after a given number of extrapolations, independently of the size of
the extrapolation step. This behavior requires additional analysis.

7. Convergence results. Using the above, we are now ready to give a definition
of convergence for the proposed algorithm:

Definition 7.1. Consider a sequence of restriction operators
(
R[L]

)
L=1,2,...

and
a sequence of projection operators

(
P [L]

)
L=1,2,...

, and denote the corresponding nu-
merical approximation process obtained by using R[L] and P [L] in Algorithm 4.1 by
Y[L], and the maximum step size by ∆t, ∆t = maxNn=1 ∆tn. The accelerated mi-
cro/macro Monte Carlo simulation is then called weakly convergent to the solution X
of SDE (1.1) as ∆t→ 0 and L→∞ at any time t ∈ I∆t with time order p if for each
f ∈ C2(p+1)

P (Rd,R) there exist constants ∆t0 > 0, L0, CL, and C̃L, with CL → 0 for
L→∞, such that

|E f
(
Y[L](t)

)
− E f

(
X(t)

)
| ≤ CL + C̃L(∆t)p (7.1)

holds for all t ∈ I∆t, all L ≥ L0, and all ∆t ∈ [0,∆t0].
We first discuss convergence when extrapolation is performed as in coarse projec-

tive integration (Subsection 7.1). Due to the multistep nature of the extrapolation,
proving convergence for the multistep state extrapolation method is more involved;
Subsection 7.2 contains a result for a linear SDE.

7.1. Convergence using projective extrapolation. The following theorem
generalizes the theorem for the convergence of one step methods due to Milstein
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(see [44,47] or also [10]).
Theorem 7.2. Suppose the following conditions hold:

(i) The coefficient functions a(x) and bi(x) (where bi denotes the i-th column of
b) are continuous, satisfy a Lipschitz condition with respect to x, and belong to
C
p+1,2(p+1)
P (I × Rd,R), i = 1, . . . ,m. For non Itô SDEs, we require in addition

that bi is differentiable and that also bi
′
bi satisfies a Lipschitz condition and

belongs to Cp,2(p+1)
P (I × Rd,R), i = 1, . . . ,m.

(ii) For sufficiently large r the moments E(‖Y n,k
[L] ‖2r) exist for k = 0, . . . ,K and

n = 0, 1, . . . , N and are uniformly bounded with respect to L, N .
(iii) SDE (1.1) is uniformly weakly continuous for the set of all Y n,K

[L] .
(iv) The one step method φ is weakly consistent of order pφ.
(v) The sequence of (self-consistent) projection operators is contin-

uous for the numerical approximation process and all sequences
of macroscopic states, and consistent for all sequences of triples(
Y n,K

[L] ,X
tn,K ,Y n,K

[L] (tn+1,0),R[L](Y
n+1,0

[L] )
)
L=1,2,...

.

(vi) The extrapolation is consistent of order pe ≥ 1 and continuous for the class of
all functions U(t) = R[L]

(
X
ti,k,Y i,k

[L] (t)
)
.

Then, the micro/macro acceleration algorithm with projective extrapolation is weakly
convergent with time order p = min{pe, pφ}.

Proof. Let g(s,x) := E
(
f
(
X(tn+1)

)
|X(s) = x

)
for s ∈ I, x ∈ Rd, and tn+1 ∈

I∆t with s ≤ tn+1. Due to condition (i) g ∈ C0,2(p+1)
P [44]. Therefore, the consistency

of φ implies that g satisfies

|E g
(
s,Xt,x(t+ δt)

)
− E g

(
s, φ(t,x; δt)

)
| ≤ Cg(x) δtpφ+1 (7.2)

uniformly w. r. t. s ∈ [t0, tn+1] for some Cg ∈ C0
P (Rd,R). Analogously, Corollary 5.4

and the continuity of the projection imply that g satisfies

|E g
(
s,X

ti,K ,Y i,K
[L] (ti+1,0)

)
− E g

(
s,Y i+1,0

[L]

)
|

≤ |E g
(
s,X

ti,K ,Y i,K
[L] (ti+1,0)

)
− E g

(
s,P [L]

(
Y i,K

[L] ,R[L]

(
X
ti,K ,Y i,K

[L] (ti+1,0)
)))
|

+ |E g
(
s,P [L]

(
Y i,K

[L] ,R[L]

(
X
ti,K ,Y i,K

[L] (ti+1,0)
)))

− E g
(
s,P [L]

(
Y i,K

[L] ,R[L](Y
i+1,0

[L] )
))
|

≤ CL∆t+ C1‖R[L]

(
X
ti,K ,Y i,K

[L] (ti+1,0)
)
−R[L](Y

i+1,0
[L] )‖.

The last summand can be expanded as follows:

‖R[L]

(
X
ti,K ,Y i,K

[L] (ti+1,0)
)
−R[L](Y

i+1,0
[L] )‖

≤‖R[L]

(
X
ti,K ,Y i,K

[L] (ti+1,0)
)
−R[L]

(
X
ti,0,Y i,0

[L] (ti+1,0)
)
‖

+ ‖R[L]

(
X
ti,0,Y i,0

[L] (ti+1,0)
)
− E

((
R[L]

(
X
ti,0,Y i,0

[L] (ti,k)
))K
k=0

; ∆ti, δt

)
‖

+ ‖E
((
R[L]

(
X
ti,0,Y i,0

[L] (ti,k)
))K
k=0

; ∆ti, δt

)
− E

((
R[L]

(
Y i,k

[L]

))K
k=0

; ∆ti, δt

)
‖.

Let g̃[L](s,x; t) :=

(
E
(
gl
(
X(t)

)
|X(s) = x

))L

l=1

for s ∈ I, x ∈ Rd, and t ∈ I∆t with

s ≤ t. With this definition, the continuity and consistency of the extrapolation imply
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‖R[L]

(
X
ti,K ,Y i,K

[L] (ti+1,0)
)
−R[L](Y

i+1,0
[L] )‖

≤‖R[L]

(
X
ti,K ,Y i,K

[L] (ti+1,0)
)
−R[L]

(
X
ti,0,Y i,0

[L] (ti+1,0)
)
‖+ C2(∆t)pe+1

+ C3

(
∆t

δt

)pe K∑

k=1

‖R[L]

(
X
ti,0,Y i,0

[L] (ti,k)
)
−R[L]

(
Y i,k

[L]

)
‖

=‖E g̃[L]

(
ti,K ,Y i,K

[L] ; ti+1,0
)
− E g̃[L]

(
ti,K ,X

ti,0,Y i,0
[L] (ti,K); ti+1,0

)
‖+ C2(∆t)pe+1

+ C3

(
∆t

δt

)pe K∑

k=1

‖
(

E gl
(
X
ti,0,Y i,0

[L] (ti,k)
)
− E gl

(
Y i,k

[L]

))L
l=1
‖,

where we made also use of Xti,0,Y i,0
[L] (ti+1,0) = Xti,K ,X

ti,0,Y
i,0
[L] (ti,K)(ti+1,0). Due to

the consistency of φ, altogether we obtain

|E g
(
s,X

ti,K ,Y i,K
[L] (ti+1,0)

)
− E g

(
s,Y i+1,0

[L]

)
| ≤ CL∆t+ C̃L(∆t)peδtpφ + C̃Lδt

pφ+1

(7.3)

uniformly w. r. t. s ∈ [t0, tn+1] for some constants CL and C̃L with CL → 0 for L→∞.
For ease of notation, in the following we will neglect the L-dependency of Y . Then

E f
(
Xt0,X0(tn+1)

)
− E f

(
Y n+1,0

)

=

n∑

i=0

K−1∑

k=0

(
E f
(
Xti,k,Y i,k

(tn+1)
)
− E f

(
Xti,k+1,Y i,k+1

(tn+1)
))

+

n−1∑

i=0

(
E f
(
Xti,K ,Y i,K

(tn+1)
)
− E f

(
Xti+1,0,Y i+1,0

(tn+1)
))

+ E f
(
Xtn,K ,Y n,K

(tn+1)
)
− E f

(
Y n+1,0

)
.

Making use of Xti,k,Y i,k

(tn+1) = Xti,k+1,Xti,k,Y i,k (ti,k+1)(tn+1) and combining the
last two summands we obtain

E f
(
Xt0,X0(tn+1)

)
− E f

(
Y n+1,0

)

=

n∑

i=0

K−1∑

k=0

(
E f
(
Xti,k+1,Xti,k,Y i,k (ti,k+1)(tn+1)

)
− E f

(
Xti,k+1,Y i,k+1

(tn+1)
))

+

n∑

i=0

(
E f
(
Xti,K ,Y i,K

(tn+1)
)
− E f

(
Xti+1,0,Y i+1,0

(tn+1)
))
.

Using Xti,K ,Y i,K

(tn+1) = Xti+1,0,Xti,K,Y i,K (ti+1,0)(tn+1) and the definition of g this
implies

E f
(
Xt0,X0(tn+1)

)
− E f

(
Y n+1,0

)

=

n∑

i=0

K−1∑

k=0

(
E g
(
ti,k+1,Xti,k,Y i,k

(ti,k+1)
)
− E g

(
ti,k+1,Y i,k+1

))

+

n∑

i=0

(
E f
(
Xti+1,0,Xti,K,Y i,K (ti+1,0)(tn+1)

)
− E f

(
Xti+1,0,Y i+1,0

(tn+1)
))
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=

n∑

i=0

K−1∑

k=0

(
E g
(
ti,k+1,Xti,k,Y i,k

(ti,k+1)
)
− E g

(
ti,k+1,Y i,k+1)

))

+

n∑

i=0

(
E g
(
ti+1,0,Xti,K ,Y i,K

(ti+1,0)
)
− E g

(
ti+1,0,Y i+1,0

))
.

Thus, (7.2) and (7.3) imply

|E f
(
Xt0,X0(tn+1)

)
− E f

(
Y[L](t

n+1)
)
|

≤
n∑

i=0

K−1∑

k=0

ECg(Y
i,k

[L] )δtpφ+1 +

n∑

i=0

(
CL∆t+ C̃L(∆t)peδtpφ + C̃Lδt

pφ+1
)
,

which yields together with condition (ii) the desired convergence.

7.2. A result using multistep state extrapolation. For multistep state ex-
trapolation, the analysis is complicated by the multistep nature of the method. In this
subsection we therefore restrict ourselves to consider linear SDEs (5.9) with normally
distributed initial values and restriction operator

R(Y ) =

(
EY

VarY

)
. (7.4)

If we assume now equidistant coarse time steps and that the extrapolation step is
given by (6.12), then we obtain

EY n+1,0 =

pe∑

s=0

ls(β) EY n−s,K , VarY n+1,0 =

pe∑

s=0

ls(β) VarY n−s,K

with ls and β given in (6.5) and (6.13). Application of the one step method φ to (5.9)
yields

Y n+1,K =R̂φ(a1, t
n+1,K−1, δt, ηn+1,K−1)Y n+1,K−1

+ Ŝφ(a1, a2, b, t
n+1,K−1, δt, ηn+1,K−1) (7.5)

=

K−1∏

k=0

R̂φ(a1, t
n+1,k, δt, ηn+1,k)Y n+1,0

+

K−1∑

k=0

Ŝφ(a1, a2, b, t
n+1,k, δt, ηn+1,k)

K−1∏

i=k

R̂φ(a1, t
n+1,i, δt, ηn+1,i),

where R̂φ and Ŝφ are functions depending on φ, similar to the stability function in
the deterministic case, and ηn+1,k are (vectors of) i. i. d. random variables used by
φ. Assuming that R̂φ(a1, t

n+1,k, δt, ηn,k) is independent of ηn,k, which holds, e.g., for
typical Runge-Kutta methods, we obtain the multistep formulas

EY n+1,K =

K−1∏

k=0

R̂φ(a1, t
n+1,k, δt)

pe∑

s=0

ls(β) EY n−s,K

+

K−1∑

k=0

E Ŝφ(a1, a2, b, t
n+1,k, δt, ηn+1,k)

K−1∏

i=k

R̂φ(a1, t
n+1,i, δt), (7.6)
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VarY n+1,K =

K−1∏

k=0

R̂φ(a1, t
n+1,k, δt)2

pe∑

s=0

ls(β) VarY n−s,K

+

K−1∑

k=0

Var Ŝφ(a1, a2, b, t
n+1,k, δt, ηn+1,k)

K−1∏

i=k

R̂φ(a1, t
n+1,i, δt)2. (7.7)

As due to the consistency of φ we have R̂φ(a1, t
n+1,k, 0) = 1 and

E Ŝφ(a1, a2, b, t
n+1,k, 0, ηn+1,k) = Var Ŝφ(a1, a2, b, t

n+1,k, 0, ηn+1,k) = 0,

the corresponding characteristic polynomial is given for both equations by

P (ξ;β, pe) = ξpe+1 −
pe∑

s=0

ls(β)ξs.

As in the deterministic case (theory of linear multistep methods) we then obtain the
following theorem.

Theorem 7.3. Assume that all roots ξ of P (ξ;β, pe) = 0 lie within the unit circle
and that all roots with absolute value one are simple. If then the one-step method is
weakly consistent of order pφ and given by (7.5) with Rφ independent of η, then
coarse multistep state extrapolation with restriction operator (7.4) and extrapolation
given by (6.12) is convergent of order p = min{pe, pφ} for linear SDEs (5.9) with
normally distributed initial values.

8. Numerical results. In this section, we provide further numerical results. We
first illustrate the dependence of the local error in one accelerated time step on the step
size (Subsection 8.1). Subsequently, we perform a number of long-term simulations
(Subsection 8.2).

Below, we consider equation (2.6) in one space dimension, with F (X) the FENE
force (2.7) with γ = 49, We = 1. As the velocity field, we choose κ(t) = 2 · (1.1 +
sin(πt)), and we impose standard normally distributed initial states. We discretize in
time with the classical Euler-Maruyama scheme with time step δt = 2·10−4. As before,
the macroscopic state U[L] consists of the first L even centralized moments. We study
the micro/macro acceleration algorithm with first order projective extrapolation, and
with first and second order multistep state extrapolation. In all cases, we perform
K = 1 microscopic steps before extrapolation.

8.1. Local error. We simulate J = 1 · 105 realizations up to time t∗ = 1.6, and
record the microscopic state Y− at time t− = 1.4, as well as the macroscopic states
U[L](t

−+∆t) for L = 3, 4, 5, and the approximated function of interest τ̃p(t−+∆t) for
∆t ∈ [0, t∗ − t−]. We then extrapolate from time t− to time t = t− + ∆t, and project
the ensemble Y− onto U[L](t

− + ∆t). Subsequently, we compute the corresponding
value of the stress as τ̂p(t− + ∆t). We record the relative error with respect to the
reference solution, |τ̂p(t)− τ̃p(t)|/τ̃p(t), as a function of ∆t. To reduce the statistical
error, we report the averaged results of 50 realizations of this experiment. Then, the
statistical error has an order of magnitude of about 10−5. The results are shown in
Fig. 8.1.

For projective integration, we clearly see a first order behavior as a function of
∆t; this is a consequence of the amplification of the statistical error during projective
extrapolation. Note that, due to the presence of three competing sources of errors
(extrapolation, projection, and statistical error), which may be of opposite signs, the



28 K. DEBRABANT AND G. SAMAEY

10−5

10−4

10−3

10−2

er
ro
r
in

ta
u

0.001 0.01

∆t

10−5

10−4

10−3

10−2

er
ro
r
in

ta
u

0.001 0.01

∆t

L = 3

L = 4

L = 5

O(∆t)

O(∆t2)

Fig. 8.1. Error of the stress after extrapolating and projecting a prior ensemble of J = 1 · 105

FENE dumbbells onto the first L even centralized moments of a reference ensemble, as a function
of ∆t for several values of L. Displayed is the result averaged over 50 realizations of the experi-
ment. Left: First order projective extrapolation. Right: First order multistep state extrapolation.
Simulation details are given in the text.
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Fig. 8.2. Error of the stress after extrapolating and projecting a prior ensemble of J =
1 · 103 FENE dumbbells onto the first L even centralized moments of a reference ensemble, as
a function of ∆t for several values of L. Displayed is the result averaged over 20 realizations
of the experiment. Left: First order projective extrapolation. Right: First order multistep state
extrapolation. Simulation details are given in the text.

effect of extrapolating more macroscopic state variables is not so clearly visible as
in Fig. 5.2. Note that for L = 4 the statistical and projection errors seem to be a
bit lower, such that the second order behavior of the extrapolation error is already
apparent for the largest displayed time steps.

For multistep state extrapolation, the situation is slightly different. Here, we see
that, for modest gains (small ∆t), the statistical error remains more or less unaffected.
For ∆t > 2 · 10−3 (gain factor 10), however, the error increases as ∆t2, as a conse-
quence of the large extrapolation error. Note that, as soon as the extrapolation error
dominates, the error appears to be independent of the number of moments used.

To emphasize the effect of the statistical error, we repeat the experiment using
J = 1000 realizations (averaged over 20 realizations of the experiment). The results
are shown in Fig. 8.2. Compared to Fig. 8.1, we see qualitatively the same behavior.
Again, the error of projective extrapolation increases linearly (but it is now an order
of magnitude larger), while, for multistep state extrapolation, larger gains appear to
be possible since the statistical error now dominates for a wider range of extrapolation
step sizes ∆t.

8.2. Long-term simulation. We now turn to a long-term simulation, and com-
pare the behavior of the sample mean and sample standard deviation of a full micro-
scopic simulation (which we will call the reference simulation) with the micro/macro
acceleration algorithm. We consider 500 realizations of a computational experiment
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Fig. 8.3. Results of micro/macro acceleration of the FENE model (2.6) using ∆t = 1 · 10−3

and projective extrapolation for different numbers L of macroscopic state variables, as well as a full
microscopic (reference) simulation. Top left: evolution of the sample means of the stresses τ̃p and
τ̂p. Bottom left: deterministic error on τ̂p. Right: evolution of the sample standard deviation of τ̂p.
Simulation details are given in the text.

with J = 1000 SDE realizations. We denote by τ̃p(t) the approximation to the func-
tion of interest calculated from one realization of the reference simulation using J SDE
realizations, and by τ̂p(t) the function of interest obtained via one realization of the
micro/macro acceleration technique. As extrapolation techniques, we use first order
projective extrapolation and second order multistep state extrapolation. (For the set-
up in this example, the deterministic error of first order multistep state extrapolation
is too high to be considered further.)

Figure 8.3 (top left) shows the evolution of the stress as a function of time. We
see that the simulation exhibits a periodic behavior, with a fast increase of the stress
followed by a relaxation. During the fast increase of the stress, we observed that
the projection operator fails for time steps ∆t > 1 · 103, whereas larger accelerations
are possible during the relaxation. Therefore, we will use adaptive macroscopic time
steps, as outlined in Subsection 4.2.

In a first experiment, we use ∆t = 1 ·10−3 and vary the number L of macroscopic
state variables. The results are shown in Fig. 8.3. We make two main observations.
First, the deterministic error decreases with increasing L, whereas the sample standard
deviation is independent of L. (The different lines in the plot are nearly indistinguish-
able.) Note also that the variance on the sample standard deviation is quite large in
this example. Second, from Fig. 8.3, we see that the error of the micro/macro accel-
eration algorithm with respect to the reference simulation also decreases as a function
of time, until it reaches a level of the order of the statistical error. This behavior
can be attributed to the fact that, in this example, the macroscopic behavior of the
system on long time scales is determined by only a few macroscopic state variables.
The results for multistep state extrapolation (not shown) in terms of L are similar.

In a second experiment, we fix L = 3 and consider varying ∆t. (This experiment
and its conclusions closely resemble the one in Subsection 6.3.) The results are shown
in Fig. 8.4. The left figure again shows that the deterministic error grows with increas-
ing ∆t, whereas the right figure illustrates that the sample standard deviation is larger
for larger ∆t. For second order multistep state extrapolation, we obtain Fig. 8.5. The
behavior of the sample standard deviation is similar to the linear case. When zooming
in to the behavior for small t, we observe that, over a short time interval, the sam-
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Fig. 8.4. Results of micro/macro acceleration of the FENE model (2.6) using L = 3 moments
and projective extrapolation for different values of ∆t, as well as a full microscopic (reference) simu-
lation. Top left: evolution of the sample means of the stresses τ̃p and τ̂p. Bottom left: deterministic
error on τ̂p. Right: evolution of the sample standard deviation of τ̂p. Simulation details are given
in the text.
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Fig. 8.5. Results of micro/macro acceleration of the FENE model (2.6) using L = 3 moments
and second order multistep state extrapolation for different numbers L of macroscopic state variables,
as well as a full microscopic (reference) simulation. Top left: evolution of the sample means of the
stresses τ̃p and τ̂p. Bottom left: deterministic error on τ̂p. Right: evolution of the sample standard
deviation of τ̂p. Simulation details are given in the text.

ple standard deviation using the micro/macro acceleration technique increases at the
same rate as the sample standard deviation in the reference simulation, which corre-
sponds to the theoretical result on the local propagation of statistical error. However,
on longer time scales, we again see that the sample standard deviation for large t
grows rapidly, and seems to be larger for larger ∆t, due to accumulation effects. Note
that, in this case, second order multistep state extrapolation even behaves worse than
first order projective integration on long time scales for sufficiently large ∆t.

9. Conclusions and outlook. We presented and analyzed a micro/macro accel-
eration technique for the Monte Carlo simulation of stochastic differential equations
(SDEs) in which short bursts of simulation using an ensemble of microscopic SDE
realizations are combined with an extrapolation of an estimated macroscopic state
forward in time. The method is designed for problems in which the required time
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step for each realization of the SDE is small compared to the time scales on which the
function of interest evolves. For such systems, one often needs to take a very small
microscopic time step, which results in a deterministic error that is much smaller than
the statistical error.

We showed that the proposed procedure converges in the absence of statistical er-
ror, provided the projection operator satisfies a number of natural conditions, and we
introduced a projection operator that satisfies these conditions for Gaussian random
variables. We also conjectured that this projection operator is suitable for general dis-
tributions, and provided numerical evidence to support this conjecture. Concerning
the statistical error, a local analysis of projective extrapolation shows that the am-
plification of statistical error depends on the ratio α of macroscopic (extrapolation)
and microscopic (simulation) time steps, while this is not the case for multistep state
extrapolation. Numerical evidence, however, suggests that, when using higher order
multistep state extrapolation, accumulation of statistical error over macroscopic time
scales may nevertheless induce an α-dependent statistical error.

This paper has not focused on quantifying the computational gains that can be
expected from this method. It is clear from the description that the method will be
more efficient when there is a bigger separation in time scales between the microscopic
and macroscopic levels. The numerical examples in this text do not exhibit such a
strong time-scale separation; they were mainly chosen for their ability to clearly illus-
trate the effects of the different sources of numerical error. However, some conclusions
on efficiency can nevertheless be drawn. For a given required variance on the solu-
tion, the computational cost using first order projective extrapolation is comparable
to that of a full simulation, since the former requires more SDE realizations due to
the α-dependent amplification of statistical error. For first order multistep state ex-
trapolation, extrapolation without such a drastic amplification of statistical error is
possible, at the cost of an amplified deterministic error. This can be acceptable if
the macroscopic function of interest changes slowly compared to the time step of the
SDE.

We note that, for the model problem of coupled micro/macro simulation of dilute
polymer solutions, the amplification of statistical error using projective extrapolation
need not be dramatic: while the computational cost of a micro/macro accelerated
simulation and a full microscopic simulation are comparable for given variance, this
is no longer true when coupling this Monte Carlo simulation to a PDE for the sol-
vent. Indeed, when extrapolating the complete coupled system forward in time, a
computational gain is obtained since the PDE for the solvent also does not need to
be simulated on the whole time domain.

In future work, we will study stability and propagation of statistical error on
long time scales. The numerical experiments indicate that these issues can be studied
in a linear setting. Another open question is for which distributions the conjecture
can be proved. From an algorithmic point of view, this work raises questions on
the adaptive/automatic selection of all method parameters (number of moments to
extrapolate, macroscopic time step, number of SDE realizations) to ensure a reliable
computation with minimal computational cost. Also, a numerical comparison with
other approaches, such as implicit approximations, could be envisaged.
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