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HYPERBOLIC SURFACE SUBGROUPS OF

ONE-ENDED DOUBLES OF FREE GROUPS

SANG-HYUN KIM AND SANG-IL OUM

Abstract. Gromov asked whether every one-ended word-hyperbolic
group contains a hyperbolic surface group. We prove that every
one-ended double of a free group contains a hyperbolic surface
group if the free group has rank two, or every generator is used
the same number of times in the list of amalgamating words. Our
method is based on formulating a stronger conjecture on tilings of
closed surfaces combinatorially in terms of Whitehead graphs and
proving it for certain classes of graphs.

1. Introduction

A hyperbolic surface group is the fundamental group of a closed sur-
face with negative Euler characteristic. Gromov [13, p. 277] raised the
following remarkable question.

Question 1 (Gromov). Does every one-ended word-hyperbolic group
contain a hyperbolic surface group?

Question 1 has been answered affirmatively for the following cases.

(1) Coxeter groups [10].
(2) Graphs of free groups with infinite cyclic edge groups with non-

trivial second rational homology [5].
(3) The fundamental groups of closed hyperbolic 3-manifolds [15].

The case (2) is not resolved when the nontrivial second rational ho-
mology condition is removed. A basic, but still captivating case is when
the group is given as a double of a free group, which is defined as fol-
lows. For a list U of nontrivial words u1, . . . , ur in Fn, we denote by
Dn(U) the fundamental group of a graph of groups, where there are
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two vertex groups isomorphic to Fn and r infinite cyclic edge groups
joining the two vertex groups; here, each cyclic edge group Ei is amal-
gamated along the isomorphic image of 〈ui〉 in each vertex group. We
call Dn(U) a double of Fn along U . The presentation of Dn(U) is given
in Section 2.1. In this paper, we discuss the groups of the form Dn(U).
By specializing [5], Gordon and Wilton [11] constructed explicit fam-

ilies of examples of Dn(w) = Fn ∗〈w〉Fn that contain hyperbolic surface
groups, where w is a word in Fn. Kim and Wilton [17] formulated a dif-
ferent condition, called polygonality, for a word w in Fn. Polygonality is
a combinatorial condition concerning van Kampen diagrams on closed
surfaces; see Section 2.1 for a precise definition. Kim and Wilton [17]
proved that polygonality of w ∈ Fn guarantees the existence of a hy-
perbolic surface subgroup of Dn(w), and this result generalizes to a set
(or a list, allowing redundancy) of words; see [16].

Theorem 1 ([17, 16]). If U is a polygonal list of words in Fn, then
Dn(U) contains a hyperbolic surface group.

Let U be a list of words in Fn. We call U diskbusting if one cannot
write Fn = A ∗B in such a way that A,B 6= {1} and each word in U is
conjugate into A or B [6, 26, 25]. If U is not diskbusting, then Dn(U)
splits as a nontrivial free product and therefore Dn(U) is not one-
ended. Conversely, if Dn(U) is one-ended, then U is diskbusting [28].
This observation lets us consider only the case when U is diskbusting.
The length of U is the sum of the lengths of the words in U . The list

U is called minimal if the length of U is at most the length of φ(U) for
every φ ∈ Aut(Fn).

Conjecture 2 (Tiling Conjecture; see [17, 16]). A minimal and disk-
busting list of cyclically reduced words in Fn is polygonal when n > 1.

If Conjecture 2 is true, an affirmative answer to Question 1 for the
groups of the form Dn(U) would follow from Theorem 1; see Propo-
sition 13 for a more detailed implication of Tiling Conjecture. We
note that without the hypothesis of minimality, Tiling Conjecture is
no longer true [17].
We allow graphs to have parallel edges or loops. A loop is an edge

with only one endpoint. For a graph G, the degree degG(v) of a vertex v
is the number of edges incident with v, assuming that loops are counted
twice. A graph is k-regular if every vertex has degree k. A cycle is
a (finite) 2-regular connected graph. Let δG(v) be the set of non-loop
edges incident with v. For a set X of vertices, we write δG(X) to denote
the set of edges with exactly one endpoint in X . We write V (G) and
E(G) to denote the vertex set and the edge set of G, respectively. For
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two vertices x and y of a graph G, the local edge-connectivity λG(x, y)
is the maximum number of pairwise edge-disjoint paths from x to y
in G. We omit the subscript G in degG, δG, and λG if the underlying
graph G is clear from the context.
We say that an involution µ : V (G) → V (G) is fixed point free if

µ(x) 6= x for every vertex x of G. A fixed point free involution of V (G)
can be regarded as a partition of V (G) into pairs of vertices. For a
fixed point free involution µ on the vertex set V (G), we will be mostly
interested in the case when

λ(v, µ(v)) = deg(v)

for every vertex v ∈ V (G). If so, then we can easily deduce that
deg(v) = deg(µ(v)) for each vertex v and G has no loops.
A graph is non-acyclic if the graph contains at least one cycle. Us-

ing Whitehead graphs, we will restate Conjecture 2 combinatorially as
follows.

Conjecture 3. Let G = (V,E) be a non-acyclic graph with a fixed
point free involution µ : V → V and a bijection σv : δ(v) → δ(µ(v))
for every vertex v such that λ(v, µ(v)) = deg(v) and σµ(v) = σ−1

v . Then
there exists a nonempty list of cycles of G such that for each pair of
edges e and f incident with a vertex v, the number of cycles in the
list containing both e and f is equal to the number of cycles in the list
containing both σv(e) and σv(f). Moreover, the list can be required to
contain at least one cycle of length greater than two if G has a connected
component which has at least four vertices.

In Section 4, we will prove Conjecture 3 for regular graphs. This
amounts to proving Conjecture 2 with the additional assumption that
every generator of Fn is used the same number of times in U ; more
precisely speaking, this is the case when the number of occurrences of
a or a−1 as a letter of a word in U is the same for every generator a of
Fn.

Theorem 4. Let U be a list of cyclically reduced words in Fn such that
every generator of Fn is used the same number of times in U . If U
is minimal and diskbusting, then U is polygonal; in particular, Dn(U)
contains a hyperbolic surface group.

Even the minimality assumption can be lifted for rank-two free groups:

Corollary 5. Let U be a list of cyclically reduced words in F2 such that
every generator of F2 is used the same number of times in U . Then U
is diskbusting if and only if U is polygonal; in this case, D2(U) contains
a hyperbolic surface group.
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In Section 5, we prove Conjecture 3 for 4-vertex graphs. This will
answer Question 1 for the groups of the form D2(U):

Theorem 6. A minimal and diskbusting list of cyclically reduced words
in F2 is polygonal.

Corollary 7. Let U be a list of words in F2. Then D2(U) contains a
hyperbolic surface group if and only if U is diskbusting.

Note that Theorems 4 and 6 do not depend on whether Dn(U) is
word-hyperbolic or not. We also note that there is a polynomial-time
algorithm to decide whether a list of words in a free group is diskbust-
ing [27, 26, 25, 22].
The above theorems will be proved as follows. In Section 2, we will

summarize some of the known results relating polygonality to hyper-
bolic surface subgroups of doubles of free groups. In Section 3, we
will prove the equivalence between Conjectures 2 and 3. In Section 4,
we will prove Conjecture 3 for subdivisions of regular graphs. In Sec-
tion 5, we will verify Conjecture 3 for subdivisions of 4-vertex graphs.
Section 6 discusses other aspects of Tiling Conjecture and a related
question.

Acknowledgement. Authors would like to thank Daniel Král’ for
pointing out Example 30.

2. Polygonality and Doubles of Free Groups

The original proof [17] of Theorem 1 relies on the subgroup separabil-
ity of free groups and the normal form theorem for graphs of groups. In
this section, we give a self-contained, alternative proof for convenience.
Then we describe a consequence of Tiling Conjecture.

2.1. Basic definitions and notations. Throughout this paper, we
will let Fn be a free group of rank n > 1 and An = {a1, a2, . . . , an} be
a free basis of Fn. Each word in Fn can be written as w = x1x2 · · ·xl

where xi ∈ An∪A
−1
n ; each xi is called as a letter of w, and the subscript

of xi is taken modulo l. We say that w is cyclically reduced if xi+1 6= x−1
i

for each i = 1, 2, . . . , l. With respect to the given basis An, we denote
the Cayley graph of Fn by Cayley(Fn). There is a natural free action of
Fn on Cayley(Fn), so that Cayley(Fn)/Fn is a bouquet of circles. Let
α1, . . . , αn denote the oriented circles in Cayley(Fn)/Fn corresponding
to a1, . . . , an. The loop obtained by a concatenation αm1

i1
αm2

i2
· · ·αmk

ik
where mi ∈ Z is said to read the word am1

i1
am2

i2
· · · amk

ik
.

Given a list U of nontrivial words u1, u2, . . . , ur in Fn, take two copies
Γ and Γ′ of Cayley(Fn)/Fn. To Γ and Γ′, we glue a cylinder along the
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copies of the closed curve reading ui, for each i. Let Xn(U) be the
resulting space and let Dn(U) = π1(Xn(U)) be the fundamental group
ofXn(U). We callDn(U) a double [1]. If we let Bn and V = {v1, . . . , vr}
denote the copies of An and U respectively, then a presentation of
Dn(U) is given as:

Dn(U) ∼= 〈An,Bn, t2, t3, . . . , tr | u1 = v1, u
ti
i = vi for i = 2, . . . , r〉.

Since the isomorphism type of Dn(U) does not change if some words in
U are replaced by their conjugates, we may always assume that every
word in U is cyclically reduced.

2.2. Whitehead graph and square complex structure on Xn(U).
We briefly summarize elementary facts on CAT(0)-spaces; a standard
reference for this subject is [4]. We denote by E2 the Euclidean plane.
Let X be a geodesic metric space. For a geodesic triangle ∆ ⊆ X ,
there is a geodesic triangle ∆′ ⊆ E2 of the same side-lengths and a
length-preserving map f : ∆ → ∆′. We say that X is a CAT(0)-space
if dX(x, x

′) ≤ dE2(f(x), f(x′)) for every choice of ∆, f and x, x′ ∈ ∆.
A metric space X is non-positively curved if each point in X has a
neighborhood which is a CAT(0)-space. Properties of non-positively
curved spaces can be effectively used to prove the π1-injectivity of a
map:

Proposition 8 (see [4]). Let X be a non-positively curved space, and
f : Y → X be locally an isometric embedding. Then Y is non-positively
curved and f∗ : π1(Y ) → π1(X) is injective.

Let I denote the unit interval. A cube complex is a piecewise-
Euclidean cell complex X inductively defined as follows: for all k, the
k-skeletonX(k) is obtained fromX(k−1) by attaching k-dimensional unit
cubes Ik such that the restriction of each attaching map to a (k − 1)-
face of Ik is a (k − 1)-dimensional attaching map. If X = X(2), we
say that X is a square complex. A finite-dimensional cube complex is
known to be a complete geodesic metric space [3]. For a cube complex
X and v ∈ X(0), LinkX(x) is defined to be the set of unit vectors from v
toward X ; in particular, a link is naturally equipped with a piecewise-
spherical metric. We will only consider simple cube complexes, in the
sense that no vertex has a link containing a bigon; hence, each link will
be a simplicial complex [14]. A simplicial complex L is a flag complex
if every complete subgraph of L(1) is the 1-skeleton of some simplex in
L. Gromov gave a combinatorial formulation of non-positive curvature
for a cube complex.
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Proposition 9 ([12]). A finite-dimensional cube complex X is non-
positively curved if and only if the link of each vertex is a flag complex.

Recall that for a simplicial complex L and a set of vertices S in L, a
full subcomplex L′ on S is the maximal subcomplex of L whose vertex
set is S. A map f : Y → X between cube complexes is cubical if f maps
each cube to a cube of the same dimension. The condition for a cubical
map to be locally an isometric embedding can also be combinatorially
formulated in terms of the links as follows.

Proposition 10 ([7, 8]). Let X and Y be cube complexes and f : Y →
X be a cubical map. Then f is locally an isometric embedding if the
following are true for each vertex y ∈ Y (0).

(i) The induced map on the links Link(f ; y) : LinkY (y) → LinkX(f(y))
is injective.

(ii) The image of Link(f ; y) is a full subcomplex of LinkX(f(y)).

For a word w = x1x2 . . . xl ∈ Fn, x1x2, x2x3, . . . , xl−1xl, xlx1 are
called length-2 cyclic subwords of w. For a list U of cyclically re-
duced words in Fn, the Whitehead graph Wn(U) of U is constructed as
follows [27]:

(i) the vertex set of Wn(U) is An ∪ A−1
n ;

(ii) For each length-2 cyclic subword xy of a word in U , we add an
edge joining x and y−1 to Wn(U).

A polygonal disk means a topological 2-disk P equipped with a graph
structure on the boundary ∂P ≈ S1. For a list U of cyclically reduced
words u1, . . . , ur in Fn, Zn(U) denotes the presentation 2-complex of
Fn/〈〈U〉〉. We have Zn(U)(1) = Cayley(Fn)/Fn and for each ui in U ,
a polygonal disk Di is glued along the loop reading ui; here, ∂Di is a
|ui|-gon. Let αj denote the oriented loop in Zn(U)(1) = Cayley(Fn)/Fn

reading aj . The link of the unique vertex in Zn(U) is seen to be the
Whitehead graph of U , by identifying the incoming (outgoing, respec-
tively) portion of αj with the vertex aj (a

−1
j , respectively) in Wn(U).

Let us fix a point di in the interior of Di and triangulate Di so that
each triangle contains di and one edge of ∂Di. Remove a small open
neighborhood of di for each i, to get a square complex Z ′; see Figure 1
(a). We obtain a square complex structure on Xn(U) by taking two
copies of Z ′ and gluing the circles corresponding to the boundary of
the neighborhood of each di. The unique vertex of Zn(U) gives two
special vertices of Xn(U). Note that the link of each special vertex
is the barycentric subdivision Wn(U)′ of Wn(U). Since Wn(U) has no
loops, Wn(U)′ is a bipartite graph without parallel edges. It follows
from Proposition 9 that Xn(U) is non-positively curved.
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(a) Z ′ (b) S′

Figure 1. Square complex structures on Z ′ and on S ′.
A single and a double arrow denote the generators a and
b, respectively. Figure (a) shows a punctured Di in Z ′,
divided into squares. Figure (b) is a punctured Pi in S ′,
where ∂Pi → Cayley(F )/F reads (b−1aba2)2.

A side-pairing on polygonal disks P1, . . . , Pm is an equivalence rela-
tion on the sides of P1, . . . , Pm such that each equivalence class consists
of two sides, along with a choice of a homeomorphism between the two
sides of each equivalence class. For a given side-pairing ∼ on polygonal
disks P1, . . . , Pm, one gets a closed surface

∐
i Pi/ ∼ by identifying the

sides of Pi by ∼. A graph map φ : G → Cayley(Fn)/Fn induces an
orientation and a label by An on each edge e of G, so that the oriented
loop φ(e) reads the label of e. An edge labeled by ai is called an ai-edge.
An immersion is a locally injective graph map.

Definition 11 ([17, 16]). Let U be a list of cyclically reduced words in
Fn. Consider a side-pairing ∼ on some polygonal disks P1, P2, . . . , Pm,
so that we have a closed surface S =

∐
i Pi/∼ naturally equipped with

a 2-dimensional CW-structure. We say U is polygonal if the following
are true.

(i) There exists an immersion S(1) → Cayley(Fn)/Fn such that the
composition ∂Pi → S(1) → Cayley(Fn)/Fn reads a nontrivial
power of a word in U for each i.

(ii) The Euler characteristic χ(S) of S is less than m.

We call S a U-polygonal surface.

Remark. Polygonality has been defined for a set of words [17, 16], but
we generalize to a (possibly redundant) list of words. The main impli-
cation of polygonality still holds, as described in Theorem 1.

Proof of Theorem 1. As in Definition 11, let S be a closed surface ob-
tained by a side-pairing ∼ on polygonal disks P1, P2 . . . , Pm such that
∂Pi → S(1) → Cayley(Fn)/Fn is an immersion reading a nontrivial
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power of a word in U , and χ(S) < m. Choose pi in the interior
of Pi and triangulate Pi so that pi is the common vertex, similarly
to the triangulation of Di in Zn(U). There is a natural extension
φ : S → Zn(U) of the immersion S(1) → Cayley(F )/F . In particu-
lar, φ respects the triangulation and φ is locally injective away from
p1, . . . , pm. We obtain a square complex S ′ from S by taking out small
open disks around p1, . . . , pm; see Figure 1 (b). As what we have done
for Z ′, we glue two copies of S ′ along the corresponding boundary
components. The resulting square complex S ′′ is a closed surface such
that χ(S ′′) = 2χ(S ′) = 2(χ(S) − m) < 0. With the square complex
structure on Xn(U) described above, we have a locally injective cubi-
cal map φ′′ : S ′′ → Xn(U). For a vertex v ∈ S ′′(0), Link(f ; v) embeds
LinkS′′(v) ≈ S1 onto a cycle in a link Wn(U)′ of Xn(U). Since each
cycle in Wn(U)′ is a full subcomplex, Propositions 8 and 10 imply that
φ′′ is locally an isometric embedding and φ′′

∗ is injective. �

2.3. Implication of Tiling Conjecture.

Lemma 12. The following groups contain no hyperbolic surface groups.

(1) Gm = 〈a, b | am = bm〉, where m ∈ Z.
(2) Hm = 〈a, b, t | (am)t = bm〉, where m ∈ Z.

Proof. (1) Our proof follows the same line as Theorem 3.5 in [10]. Sup-
pose the fundamental group of a closed hyperbolic surface S is con-
tained in Gm. Note that Z = 〈am〉 is the center of Gm. Since π1(S)
is centerless, π1(S) should embed into Gm/Z ∼= Zm ∗ Zm; this is a
contradiction.
(2) Note the following.

Hm
∼= 〈a, b, t, x | x = at, xm = bm〉 ∼= 〈a, b, t, x | a = xt−1

, xm = bm〉
∼= 〈b, t, x | xm = bm〉 ∼= Gm ∗ Z. �

If Tiling Conjecture is true, one would be able to precisely describe
when doubles contain hyperbolic surface groups as follows.

Proposition 13. Let n > 1. Suppose that every minimal and disk-
busting list of cyclically reduced words in Fm is polygonal for all m =
2, 3, . . . , n. Then for a list U of cyclically reduced words in Fn, Dn(U)
contains a hyperbolic surface group if and only if Fn cannot be written
as Fn = G1 ∗ G2 ∗ · · ·Gn in such a way that each Gi is infinite cyclic
and each word in U is conjugate into one of G1, . . . , Gn.

Proof. There exists a maximum k such that Fn = G1 ∗· · ·∗Gk for some
nontrivial groups G1, . . . , Gk and each word in U is conjugate into one
of the G1, . . . , Gk. Note that 1 ≤ k ≤ n.
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For the necessity, suppose k < n. Then we may assume that G1 has
rank m > 1. Let U1 be the list of all the words in U conjugate into G1.
Then suitably chosen conjugates of the words in U1 form a diskbusting
list U ′

1 in the rank-m free group G1. We note that Dm(U
′
1) ⊆ Dn(U

′
1) ⊆

Dn(U
′
1 ∪ (U \ U1)) ∼= Dn(U); here, the second inclusion can be seen by

Propositions 8 and 10. From the hypothesis, a free basis B of G1 can
be chosen so that U ′

1 is polygonal as a list of words written in B. By
Theorem 1, Dm(U

′
1) contains a hyperbolic surface group; hence, so does

Dn(U).
For the sufficiency, assume k = n and we claim that Dn(U) does

not contain a hyperbolic surface group. Since we are only interested in
the isomorphism type of Dn(U), we may assume that each word in U
is contained in one of G1, . . . , Gn, by taking conjugation if necessary.
By choosing the basis An of Fn from the bases of G1, . . . , Gn, one may
write An = {a1, . . . , an} and U = (am1

1 , am2

2 , . . . , amr

r ) for some r ≤ n
and m1, m2, . . . , mr 6= 0. Let Bn = {b1, . . . , bn} be a copy of An, so
that

Dn(U) = 〈a1, a2, . . . , an, b1, b2, . . . , bn, t2, . . . , tr |

am1

1 = bm1

1 , (ami

i )ti = bmi

i for i = 2, 3, . . . , r〉.

Hence, Dn(U) is the free product of 〈a1, b1 | a
m1

1 = bm1

1 〉 and the groups
〈ai, bi, ti | (ami

i )ti = bmi

i 〉 for i = 2, . . . , r, as well as 〈ai, bi〉 for i =
r + 1, . . . , n. The claim follows from Lemma 12. �

3. Combinatorial Formulation of Tiling Conjecture

3.1. Graph and connecting map. Berge [2, Section 8] gave a char-
acterization of a minimal set of words: a set A of cyclically reduced
words in Fn is not minimal if and only if for some i, there exists a set
C of edges in the Whitehead graph Wn(A) such that Wn(A) \ C has
no path from ai to a−1

i and |C| is strictly less than degWn(A)(ai). By
Menger’s theorem [21], it follows that A ⊆ Fn is minimal if and only if

λWn(A)(ai, a
−1
i ) = degWn(A)(ai) for each i.

Also, a minimal set A ⊆ Fn is diskbusting if and only if Wn(A) is
connected [27, 26, 25]. These results on sets of words in Fn immediately
generalize to lists of words as follows.

Proposition 14 ([27, 2, 26, 25]). A list U of cyclically reduced words
in Fn is minimal and diskbusting if and only if Wn(U) is connected and
λWn(U)(v, v

−1) = degWn(U)(v) for each vertex v of Wn(U).
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Let U be a list of cyclically reduced words in Fn. The Whitehead
graph Wn(U) is equipped with a canonical fixed point free involution µ
on An∪A−1

n such that µ(a) = a−1 for all a ∈ An∪A−1
n . For each vertex

v, the connecting map σv associated with Wn(U) at v is a bijection from
δWn(U)(v) to δWn(U)(µ(v)) [16]. For an edge e given by xixi+1 in a word
w = x1x2 . . . xl in U , σx−1

i+1
maps the edge e joining xi and x−1

i+1 to the

edge f joining xi+1 and x−1
i+2 created by the following length-2 cyclic

subword xi+1xi+2 of w. We assume that xl+1 = x1 and xl+2 = x2. We
note that if σy−1 ◦ σx−1(e) is well-defined for an edge e and vertices
x 6= y−1, then there exists a word w in U such that xy is a length-2
cyclic subword of w or w−1. The proof of the following observation is
now elementary.

Lemma 15. Let U be a list of cyclically reduced words in Fn. In
Wn(U), consider an edge f0 and vertices x1, x2, . . . , xl where l > 0,
such that xi+1 6= x−1

i for i = 1, . . . , l. Suppose that

σx−1

l

◦ σx−1

l−1

◦ · · · ◦ σx−1

1
(f0)

is well-defined and equal to f0. Then x1x2 · · ·xl is a nontrivial power
of a cyclic conjugation of a word in U . �

Connecting maps can be described in the link of Zn(U). The presen-
tation 2-complex Zn(U) of Fn/〈〈U〉〉 was obtained from Cayley(Fn)/Fn

by attaching polygonal disks Di along the loops reading the words ui

in U . The link of a vertex p in a polygonal disk P is called the corner
of P at p. Suppose an edge e is incident with a−1

i in Wn(U), where e
corresponds to the corner of a vertex x in some Dj . Since we are as-
suming that every word in U is cyclically reduced, there exists a unique
ai-edge α outgoing from x. Choose the other endpoint y of α, and let
e′ ∈ E(Wn(U)) correspond to the corner of Dj at y; see Figure 2. We
note that σa−1

i

(e) = e′ and σai(e
′) = e.

3.2. Tiling conjecture is equivalent to Conjecture 3. The polyg-
onality was described in terms of Whitehead graphs [16, Propositions 17
and 21]. But this description required infinitely many graphs to be ex-
amined. In the following lemma, we obtain a simpler formulation of
polygonality requiring only one finite graph to be examined.

Lemma 16. Let U be a list of cyclically reduced words in Fn. For each
vertex v of Wn(U), let σv be the connecting map associated with Wn(U)
at v. Then U is polygonal if and only if Wn(U) has a nonempty list of
cycles such that one of the cycles has length at least three and for each
pair of edges e and f incident with a vertex v, the number of cycles in
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x yα

e e′

a−1

a

a

b

(a) Dj

a−1

e

a
e′

b

b−1

(b) Wn(U)

Figure 2. Each corner of a cell Dj in Zn(U) corre-
sponds an edge in Wn(U). Here, F2 = 〈a, b〉 and U =
{b−1aba2}. In these two figures, we note that σa−1(e) = e′

and σa(e
′) = e.

the list containing both e and f is equal to the number of cycles in the
list containing both σv(e) and σv(f).

We prove the necessity part by similar arguments to [16, Proposi-
tions 17 and 21]. The sufficiency part is what we mainly need for this
paper.

Proof. We denote by µ the involution on the vertices of Wn(U) defined
by µ(a±1

i ) = a∓1
i .

To prove the necessity, assume U is polygonal; we can find a U -
polygonal surface S =

∐
1≤i≤m Pi/∼ as in Definition 11. In particular,

each edge in S(1) is oriented and labeled by An. Put S
(0) = {v1, . . . , vt}.

Fix pi in the interior of each Pi. In Section 2.2, we have seen that there
exists a map φ : S → Zn(U) such that φ is locally injective away from
p1, . . . , pm. Since S is a closed surface and φ is locally injective at vi,
the image of each LinkS(vi) by φ is a cycle, say Ci, in Wn(U).
Choose a vertex v ∈ Wn(U) and two edges e, f incident with v.

Without loss of generality, we may assume that v = a−1 for some gen-
erator a ∈ An and C1, . . . , Ct′ is the list of the cycles among C1, . . . , Ct

which contain both e and f . Then for each i = 1, . . . , t′, there exists a
unique a-edge ei outgoing from vi. Let vi′ be the endpoint of ei other
than vi. There exist exactly two polygonal disks Qi and Ri sharing ei
in S, so that Link(φ; vi) sends the corner of Qi at vi to e, and that of
Ri at vi to f . By the definition of a connecting map, Link(φ; vi′) maps
the corners of Qi and Ri at vi′ to σa−1(e) and σa−1(f), respectively;
see Figure 3, which is similar to [16, Figure 7]. The correspondence
e ∪ f → σa−1(e) ∪ σa−1(f) defines an involution on the list of length-2
subpaths of C1, . . . , Ct. The conclusion follows.
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vi ei vi′

e

f

σa−1(e)

σa−1(f)

Qi

Ri

(a) S

b−1
f

a−1

e

b c
σa−1(f)

a

σa−1(e)

c−1

(b) Wn(U)

Figure 3. Consecutive corners in S and their images by
a connecting map. F3 = 〈a, b, c〉, and single, double and
triple arrows denote the labels a, b and c, respectively.

For the sufficiency, consider a list of cycles C1, . . . , Ct in Wn(U) sat-
isfying the given condition. For each Ci, let Vi be a polygonal disk
such that ∂Vi is a cycle of the same length as Ci. We will regard ∂Vi

as the dual cycle of Ci, in the sense that each edge of ∂Vi corresponds
to a vertex of Ci and incident edges correspond to adjacent vertices.
Choose a linear order ≺ on {(v, e) : e ∈ δ(v)} for each v ∈ V (Wn(U))
such that (v, e) ≺ (v, e′) if and only if (µ(v), σv(e)) ≺ (µ(v), σv(e

′)).
An edge g of ∂Vi will be labeled by (a, {e, f}) if the vertex v of Wn(U)
corresponding to g is labeled by a or a−1 for some a ∈ An, and e and
f are the two edges of Ci incident with v; see Figure 4 (a) and (b).
Considered as a side of Vi, g will be given with a transverse orienta-
tion, which is incoming into Vi if v ∈ An and outgoing if v ∈ A−1

n . If
we and wf denote the vertices of g corresponding to e and f respec-
tively, and (v, e) ≺ (v, f), then we shall orient g from wf to we. Define
a side-paring ∼0 on V1, . . . , Vt such that ∼0 respects the orientations,
and moreover, an incoming side labeled by (a, {e, f}) is paired with
an outgoing side labeled by (a, {σa(e), σa(f)}) for each a ∈ An and
e, f ∈ δ(a) where e and f are consecutive edges of some cycle Ci; the
existence of such a side-pairing is guaranteed by the given condition.
Consider the closed surface S0 =

∐
i Vi/∼0. Denote by η and ζ the

numbers of the edges and the faces in S0, respectively. Each edge in S0

is shared by two faces, and each face has at least two edges; moreover,
at least one face has more than two edges by the given condition. So,
2ζ <

∑
i(the number of sides in Vi) = 2η.

By the duality between Ci and Vi, each corner of Vi corresponds to
an edge in Ci. Then the link of a vertex q of S0 corresponds to the
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(a,e)≺(a,f)

a

a−1 b−1

c−1

b

f

e

(a) Ci

wf

we

(a,{e,f})g

f

e

(b) Vi

q

Vj Vi

(a,{σa(e),σa(f)}) (a,{e,f})

σa(f) f

f1=σa(e) f0=e

(c) S0

q

f0

f2f1

(d) Link(q)

Figure 4. Constructing Vi and S0 from Ci in the proof
of Lemma 16. In this example, we note from (d) that
f1 = σa(f0), f2 = σc−1(f1) and f0 = σb−1(f2).

union of edges in Wn(U) written as the following sequence

f0, f1 = σx−1

1
(f0), f2 = σx−1

2
(f1), . . . , fl = σx−1

l

(fl−1)

so that f0 = fl = σx−1

l

◦σx−1

l−1

◦ · · · ◦σx−1

1
(f0) for some vertices x1, . . . , xl

of Wn(U); see Figure 4 (c). By Lemma 15, x1 · · ·xl can be taken as a
nontrivial power of a word in U . We will follow the boundary curve α
of a small neighborhood of q with some orientation, and whenever α
crosses an edge of S0 with the first component of the label being a ∈ An,
we record a if the crossing coincides with the transverse orientation of
the edge, and a−1 otherwise. Let wq ∈ F be the word obtained by
this process. Then wq = x1 · · ·xl, up to taking an inverse and cyclic
conjugations.
Let S be a surface homeomorphic to S0. We give S a 2-dimensional

cell complex structure, by letting the homeomorphic image of the dual

graph of S
(1)
0 to be S(1). In particular, the 2-cells P1, . . . , Pm in S are

the connected regions bounded by S(1). The transverse orientations
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and the first components of the labels of the sides in V1, . . . , Vt in-
duce orientations and labels of the sides of P1, . . . , Pm. By duality, the
boundary reading of each Pi in S is of the form wq for some vertex q
of S0; hence, ∂Pi reads a nontrivial power of a word in U . Finally, if
we let ν be the number of the vertices in S0, then

χ(S)−m = χ(S0)− ν = −η + ζ < 0. �

Proposition 14 and Lemma 16 imply the following.

Proposition 17. Let n′ > 1. Conjecture 2 holds for all n = 2, . . . , n′

if and only if Conjecture 3 holds for graphs on 2n′ vertices.

Proof. (Conjecture 3 ⇒ Conjecture 2) Let 2 ≤ n ≤ n′ and let U be
a minimal and diskbusting list of cyclically reduced words in Fn. If
Conjecture 3 holds for 2n′, then it holds for 2n because we can add
isolated vertices. By Proposition 14, the connected graph Wn(U) is
equipped with the fixed point free involution µ(v) = v−1 on V (Wn(U))
and the associated connecting map σv at each vertex v such that
λ(v, µ(v)) = deg(v) and σµ(v) = σ−1

v . Note that Wn(U) is non-acyclic;
because otherwise deg(v) = λ(v, µ(v)) ≤ 1 for each vertex v and there-
fore Wn(U) would be disconnected, as Wn(U) has at least four vertices.
The conclusion of Conjecture 3 along with Lemma 16 implies that U
is polygonal.
(Conjecture 2⇒ Conjecture 3) We let G, µ, σv be as in the hypothesis

of Conjecture 3 such that |V (G)| = 2n′. Let n = n′. Since for each
vertex v, v and µ(v) belong to the same connected component of G, we
may assume that G is connected by taking a non-acyclic component
of G. If |V (G)| = 2, then the list of all bigons is a desired collection
of cycles. So we assume G is connected and |V (G)| ≥ 4. Label the
vertices of G as a1, a

−1
1 , . . . , an, a

−1
n so that a−1

i = µ(ai). Then G can
be regarded as the Whitehead graph of a list U of cyclically reduced
words in Fn. Proposition 14 implies that U is minimal and diskbusting,
as well. As we are assuming Conjecture 2 for Fn, U is polygonal.
Lemma 16 completes the proof. �

4. Regular Graph and Proof of Theorem 4

We will prove that Conjecture 3 holds for regular graphs. It turns
out that we can prove a slightly stronger theorem.

Theorem 18. Let k > 1. Let G = (V,E) be a k-regular graph with a
fixed point free involution µ : V → V such that λ(v, µ(v)) = k for every
vertex v ∈ V . Then there exists a nonempty list of cycles of G with
positive integers m1, m2 such that every edge is in exactly m1 cycles
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in the list and each adjacent pair of edges is contained in exactly m2

cycles in the list.

We obtain Theorem 4 as a corollary of Theorem 18.

Proof of Theorem 4. Note that Wn(U) is regular. By Proposition 14,
Wn(U) satisfies the hypotheses of Theorem 18. Since U is minimal and
diskbusting, Wn(U) is connected. Since Wn(U) has 2n vertices and
n > 1, it has two adjacent edges e and f , not parallel to each other.
By Theorem 18, there must be a cycle in the list containing both e and
f and that cycle must have length at least three. Lemma 16 completes
the proof. �

A graph H is a subdivision of G if H is obtained from G by replacing
each edge by a path of length at least one. From Theorem 18, we can
deduce the following.

Corollary 19. Conjecture 3 is true for all subdivisions of k-regular
graphs if k > 1. �

Let us start proving Theorem 18. A graph G = (V,E) is called a
k-graph if it is k-regular and |δ(X)| ≥ k for every subset X of V with
|X| odd. In particular if k > 0, then every k-graph must have an even
number of vertices, because otherwise |δ(V (G))| ≥ k.
Why do we care about k-graphs? It turns out that every k-regular

graph with the properties required by Conjecture 3 is a k-graph.

Lemma 20. Let G = (V,E) be a k-regular graph with a fixed point free
involution µ such that λ(v, µ(v)) = k for every vertex v ∈ V . Then G
is a k-graph.

Proof. Supposes X ⊆ V and |X| is odd. Then there must be x ∈ X
with µ(x) /∈ X because µ is an involution such that µ(v) 6= v for all
v ∈ V . Then there exist k edge-disjoint paths from x to µ(x) and
therefore |δ(X)| ≥ k. �

By the previous lemma, it is sufficient to consider k-graphs in or-
der to prove Theorem 18. By using Edmonds’ characterization of the
perfect matching polytope [9], Seymour [24] showed the following the-
orem. This is also explained in Corollary 7.4.7 of the book by Lovász
and Plummer [19]. A matching is a set of edges in which no two are
adjacent. A perfect matching is a matching meeting every vertex.

Theorem 21 (Seymour [24]). Every k-graph is fractionally k-edge-
colorable. In other words, every k-graph has a nonempty list of perfect
matchings M1, M2, . . ., Mℓ such that every edge is in exactly ℓ/k of
them.
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For sets A and B, we write A∆B = (A \B) ∪ (B \ A).

Lemma 22. Let k > 1. Every k-graph has a nonempty list of cycles
such that every edge appears in the same number of cycles and for each
pair of adjacent edges e, f , the number of cycles in the list containing
both e and f is identical.

Proof. Let M1, M2, . . ., Mℓ be a nonempty list of perfect matchings
of a k-graph G = (V,E) such that each edge appears in ℓ/k of them.
Then for distinct i, j, the set Mi∆Mj induces a subgraph of G such
that every vertex has degree 2 or 0. Thus each component of the
subgraph (V,Mi∆Mj) is a cycle. Let C1, C2, . . ., Cm be the list of
cycles appearing as a component of the subgraph of G induced by
Mi∆Mj for each pair of distinct i and j. We allow repeated cycles.
This list is nonempty because k > 1 and so there exist i, j such that
Mi 6= Mj .
Since each edge is contained in exactly ℓ/k of M1, M2, . . ., Mℓ, every

edge is in exactly ℓ
k
(ℓ − ℓ

k
) cycles in the list. For two adjacent edges

e and f , since no perfect matching contains both e and f , there are
(ℓ/k)2 cycles in C1, C2, . . ., Cm using both e and f . �

Lemmas 20 and 22 clearly imply Theorem 18.

Proof of Corollary 5. We note that a k-regular 4-vertex graph is always
a k-graph.
For the sufficiency, we recall that if U is diskbusting in F2, then

W2(U) is connected [26, 25]. Since a connected 4-vertex graph contains
at least one pair of incident edges which are not parallel, Lemma 22
implies that W2(U) contains a list of cycles, not all bigons, such that
each pair of incident edges appears the same number of times in the
list. Lemma 16 proves the claim.
For the necessity, we note that the proof of the sufficiency part of

Proposition 13 shows if U is not diskbusting in F2, then D2(U) does
not contain a hyperbolic surface group. �

5. Graphs on four vertices

Let G be a graph with a fixed point free involution µ : V (G) →
V (G) and a bijection σv : δ(v) → δ(µ(v)) for each vertex v so that
λ(v, µ(v)) = deg(v) and σµ(v) = σ−1

v . For a vertex w of G, a permuta-
tion π on δ(w) is called w-good if {e, σw(π(e))} is a matching of G for
every edge e incident with w. Note that {e, f} is a matching of G if
and only if either e = f or e, f share no vertex. In particular, if x is
an edge joining w and µ(w), then σw(π(x)) = x.



ONE-ENDED DOUBLES OF FREE GROUPS 17

A permutation π on a set X induces a permutation π(2) on 2-element
subsets of X such that π(2)({x, y}) = {π(x), π(y)} for all distinct x, y ∈
X . A w-good permutation π on δ(w) is uniform if π(2) has a list of
orbits X1, X2, . . ., Xt satisfying the following.

(i) If {x, y} ∈ Xi, then x and y do not share a vertex other than w
or µ(w) in G.

(ii) There is a constant c > 0 such that for every edge e ∈ δ(w),

|{(Xi, F ) : 1 ≤ i ≤ t, F ∈ Xi and e ∈ F}| = c.

The following lemma shows that in order to prove Conjecture 3 for
4-vertex graphs, it is enough to find a w-good uniform permutation on
the edges incident with a vertex w of minimum degree.

Lemma 23. Let G be a connected 4-vertex graph with a fixed point
free involution µ : V (G) → V (G) such that λ(v, µ(v)) = deg(v) for
each vertex v. Let w be a vertex of G with the minimum degree. Let
σw : δ(w) → δ(µ(w)) be a bijection.
If there is a w-good uniform permutation π on δ(w), then G admits

a nonempty list of cycles satisfying the following properties.

(a) For distinct edges e1, e2 ∈ δ(w), the number of cycles in the list
containing both e1 and e2 is equal to the number of cycles in the
list containing both σw(e1) and σw(e2).

(b) There is a constant c1 > 0 such that each edge appears in exactly
c1 cycles in the list.

(c) There is a constant c2 > 0 such that for a vertex v ∈ V (G) \
{w, µ(w)} and each pair of distinct edges e1, e2 ∈ δ(v), exactly c2
cycles in the list contain both e1 and e2.

(d) The list contains a cycle of length at least three.

Proof. We say that a list of cycles is good if it satisfies (a), (b), (c), and
(d). We proceed by induction on |E(G)|. Let u be a vertex of G other
than w and µ(w). If deg(u) = deg(w), then the conclusion follows by
Theorem 18. Therefore we may assume that deg(u) > deg(w). There
should exist an edge e joining u and µ(u). Moreover G \ e is connected
because otherwise G would not have deg(w) edge-disjoint paths from
w to µ(w).
By the induction hypothesis, G \ e has a good list of cycles C ′

1, C
′
2,

. . ., C ′
s. Note that we use the fact that deg(u) > deg(w) so that G \ e

has degG\e(v) edge-disjoint paths from v to µ(v) for each vertex v of
G \ e. Let c′1, c

′
2 be the constants given by (b) and (c), respectively, for

the list C ′
1, C

′
2, . . ., C

′
s of cycles of G \ e.
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Since π is w-good uniform, π(2) has a list of orbits X1, X2, . . ., Xt

satisfying (i) and (ii), where each edge in δ(w) appears c times in this
list.
Suppose that {x, y} ∈ Xi. Then {π(x), π(y)} ∈ Xi. If x, y ∈

δ(µ(w)), then we let Cxy be a cycle formed by two edges x = σw(π(x))
and y = σw(π(y)). If x, y /∈ δ(µ(w)), let Cxy be a list of two cycles, one
formed by three edges e, x, y, and the other formed by three edges e,
σw(π(x)), σw(π(y)). If exactly one of x and y, say y, is incident with
µ(w), then let Cxy be the cycle formed by four edges e, x, y = σw(π(y)),
σw(π(x)). Since x and y never share u or µ(u) by (i), Cxy always con-
sists of one or two cycles of G.
Let C1, C2, . . . , Cp be the list of all cycles in Cxy for each member

{x, y} of Xi for all i = 1, 2, . . . , t. Notice that we allow repetitions of
cycles.
We claim that the list C1, C2, . . . , Cp satisfies (a). For each occur-

rence of x, y ∈ δ(w) in a cycle in the list, there is a corresponding i
such that {x, y} ∈ Xi. Since Xi is an orbit, there is {x′, y′} ∈ Xi

where π(x′) = x and π(y′) = y. Then the list contains cycles in
Cx′y′ for Xi. This proves the claim because σw(x) = σw(π(x

′)) and
σw(y) = σw(π(y

′)).
By (ii) of the definition of a uniform permutation, for each edge f in-

cident with w, there are c cycles in the list C1, C2, . . . , Cp containing the
edge f of G. Notice that whenever an edge f in Cxy is in δ({w, µ(w)}),
Cxy contains e and σw(π(f)) by the construction. Therefore every edge
incident with w or µ(w) appears c times in the list C1, C2, . . . , Cp.
We now construct a good list of cycles for G as follows: We take

c′2 copies of C1, C2, . . . , Cp, c copies of C
′
1, C

′
2, . . . , C

′
s, and cc′2 copies of

cycles formed by e and another edge f 6= e joining u and µ(u). We
claim that this is a good list of cycles of G. It is trivial to check (a).
For distinct edges e1, e2 incident with u, the list contains cc′2 cycles
containing both of them, verifying (c). Let a be the number of edges in
δ(u) incident with w or µ(w) and let b be the number of edges joining u
and µ(u). By (c) on G \ e, we have c′1 = c′2(a+ b− 2). Finally to prove
(b), every edge incident with w or µ(w) appears cc′2+cc′1 = cc′2(a+b−1)
times in the list and the edge e appears acc′2+(b−1)cc′2 = cc′2(a+b−1)
times in the list. An edge f 6= e joining u and µ(u) appears cc′1+ cc′2 =
cc′2(a+ b− 1) times. �

5.1. Lemma on Odd Paths and Even Cycles. To find a w-good
uniform permutation of δ(w), we need a combinatorial lemma on a set
of disjoint odd paths and even cycles. The length of a path or a cycle
is the number of its edges.
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Lemma 24. Let D be a directed graph with at least four vertices such
that each component is a directed path of odd length or a directed cycle
of even length. Suppose that every vertex of in-degree 0 or out-degree
0 in D is colored with red or blue, while the number of red vertices of
in-degree 0 is equal to the number of red vertices of out-degree 0. We
say that a graph is good if at most half of all the vertices are blue
and at most half of all the vertices are red. We say that a directed
path or a cycle is long if its length is at least three. A directed path
or a cycle is said to be short if it is not long. A R-R path denotes a
directed path starting with a red vertex and ending with a red vertex.
Similarly we say R-B paths, B-B paths, B-R paths. A set of paths is
called monochromatic if it has no blue vertex or no red vertex.
If D is good, then D can be partitioned into good subgraphs, each of

which is one of eight types listed below. (See Figure 5.)

(1) A short R-R path, a short B-B path, and possibly a short cycle.
(2) A monochromatic path and one or two short cycles.
(3) A short cycle, a B-R path, and an R-B path.
(4) At least two short cycles.
(5) A long monochromatic path and monochromatic short paths,

possibly none.
(6) A B-R path, a R-B path, and monochromatic short paths, pos-

sibly none.
(7) A long cycle and monochromatic short paths, possibly none.
(8) A long cycle and a short cycle.

We remark that in a subgraph of type (5), we require that the long
path is monochromatic and the set of short paths monochromatic, but
we allow the long path to have a color unused in short paths.

Proof. We proceed by induction on |V (D)|. If D has a subgraph H
that is a disjoint union of a short R-R path and a short B-B path, then
D \V (H), the subgraph obtained by removing vertices of H from D, is
still good. IfD = H , then we have nothing to prove. If |V (D)\V (H)| =
2, then D is the disjoint union of a short R-R path, a short B-B path,
and a short cycle, and therefore D is a directed graph of type (1). If
|V (D) \ V (H)| ≥ 4, then H is a good subgraph of type (1). Then we
apply the induction hypothesis to get a partition for D \ V (H).
Therefore we may assume that D has no pair of a short B-B path

and a short R-R path. By symmetry, we may assume that D has no
short R-R path. Then in each component, the number of red vertices is
at most half of the number of vertices. Thus, in order to check whether
some disjoint union of components is good, it is enough to count blue
vertices.
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(1) (2) (3) (4)

(5) (6) (7) (8)

Figure 5. Description of eight types of good subgraphs

Suppose that D has a short cycle and a short B-B path. We are
done if D is a graph of type (2). Thus we may assume that D has at
least eight vertices. Let X be the set of vertices in the pair of a short
cycle and a short B-B path. Then the subgraph of D induced on X
is a subgraph of type (2). Because X has two blue vertices and two
uncolored vertices, D \ X is good and has at least four vertices. By
the induction hypothesis, we obtain a good partition of D \ X . This
together with the subgraph induced by X is a good partition of D.
We may now assume that either D has no short cycles, or D has no

short B-B path.
(Case 1) Suppose that D has no short cycles. The subgraph of D
consisting of all components other than short B-B paths can be par-
titioned into good subgraphs P1, P2, . . ., Pk of type (5), (6), or (7),
because the number of R-B paths is equal to the number of B-R
paths. We claim that short B-B paths can be assigned to those sub-
graphs while maintaining each Pi to be good. Suppose that Pi has
2bi blue vertices and 2ni = |V (Pi)|. Notice that bi and ni are inte-
gers. Let x be the number of short B-B paths in D. Since D is good,
2(2x +

∑k
i=1 2bi) ≤

∑k
i=1 2ni + 2x and therefore x ≤

∑k
i=1(ni − 2bi).

Each Pi can afford to have ni−2bi short B-B paths to be good. Overall
all P1, . . . , Pk can afford

∑k
i=1(ni − 2bi) short B-B paths; thus consum-

ing all short B-B paths. This proves the claim.
(Case 2) Suppose D has short cycles but has no short B-B paths.
If D has at least two short cycles, then we can take all short cycles
as a subgraph of type (4) and the subgraph of D consisting of all
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Figure 6. A graph and its auxiliary directed graph at w

components other than short cycles can be decomposed into subgraphs,
each of which is type (5), (6), or (7).
Thus we may assume D has exactly one short cycle. Since D has at

least four vertices, D must have a subgraph P consisting of components
of D that is one of the following type: a monochromatic path, a long
cycle, or a pair of a B-R path and an R-B path. Then P with the
short cycle forms a good subgraph of type (2), (8), or (3), respectively.
The subgraph of D induced by all the remaining components can be
decomposed into subgraphs of type (5), (6), and (7). �

5.2. Finding a Good Uniform Permutation. Let G be a connected
4-vertex graph with a fixed point free involution µ : V (G) → V (G) such
that λ(v, µ(v)) = deg(v) for each vertex v. Let w be a vertex of G with
the minimum degree and let u be a vertex of G other than w and µ(w).
Let σw : δ(w) → δ(µ(w)) be a bijection.
Let e1, e2, . . . , em be the edges incident with w and let f1, f2, . . . , fm

be the edges incident with µ(w) so that fi = σw(ei). We construct an
auxiliary directed graph D on the disjoint union of {e1, e2, . . . , em} and
{f1, f2, . . . , fm} as follows:

(i) For all i ∈ {1, 2, . . . , m}, D has an edge from fi to ei.
(ii) If ei and fj denote the same edge in G, then D has an edge from

ei to fj.

We have an example in Figure 6. It is easy to observe the following.

• Every vertex in {e1, e2, . . . , em} of D has in-degree 1.
• Every vertex in {f1, f2, . . . , fm} of D has out-degree 1.
• A vertex ei of D has out-degree 1 if the edge ei of G is incident
with µ(u), and out-degree 0 if otherwise.

• A vertex fi of D has in-degree 1 if the edge fi of G is incident
with u, and in-degree 0 if otherwise.

By the degree condition, D is the disjoint union of odd directed paths
and even directed cycles.
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Let r be the number of edges of G joining u and w and let b be the
number of edges of G joining µ(u) and w. For each i, we color ei red
if it is incident with u and blue if it is incident with µ(u). Similarly
for each i, we color fi blue if it is incident with u and red if it is
incident with µ(u). Clearly there are r red vertices and b blue vertices
in {e1, e2, . . . , em}.
Let r′ be the number of edges of G joining µ(u) and µ(w) and let

b′ be the number of edges of G joining u and µ(w). We claim that
r′ = r and b′ = b. Of course, there are r red vertices and b blue vertices
in {f1, f2, . . . , fm}. Since degw = deg µ(w) and deg u = deg µ(u), we
have r + b′ = b + r′ and r + b = r′ + b′. We deduce that r = r′ and
b = b′.
We also assume that G has deg(u) edge-disjoint paths from u to

µ(u). Therefore |δ({u, w})| ≥ |δ(u)| and |δ({u, µ(w)})| ≥ |δ(u)|. This
implies that b+ b+(m− r− b) ≥ b+ r and r+ r+(m− r− b) ≥ b+ r.
Thus

2r ≤ m and 2b ≤ m.

From now on, our goal is to describe a w-good permutation π on
δ(w) from a directed graph D with a few extra edges.

Lemma 25. Let D′ be a directed graph obtained by adding one edge
from each vertex of out-degree 0 to a vertex of in-degree 0 with the same
color so that every vertex has in-degree 1 and out-degree 1 in D′. Let
π be a permutation on δ(w) = {e1, e2, . . . , em} so that π(ei) = ej if and
only if D′ has a directed walk from ei to ej of length two. Then π is
w-good.

Let us call such a directed graph D′ a completion of D. A completion
of D′ always exists, because the number of red vertices of in-degree 0
is equal to the number of red vertices of out-degree 0. Clearly there
are r! b! completions of D.

Proof. It is enough to show that if D′ has an edge e from ei to fj , then
{ei, fj} is a matching of G. If e ∈ E(D), then ei = fj and therefore
{ei, fj} = {ei} is a matching of G. If e /∈ E(D), then ei and fj should
have the same color and therefore ei and fj do not share any vertex. �

Out of r! b! completions of D′, we wish to find a completion D′ of D
so that the w-good permutation induced by D′ is uniform.

Lemma 26. If D is a directed graph of type (1), (2), . . ., (8) described
in Lemma 24, then D has a completion D′ so that the induced w-good
permutation is uniform.
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Proof. We claim that for each type of a directed graph D, there is a
completion D′ of D such that its induced w-good permutation π on
δ(w) is uniform. Recall that a w-good permutation π is uniform if π(2)

has a list of orbits X1, X2, . . ., Xt satisfying the following conditions:

(i) If {x, y} ∈ Xi, then x and y do not share a vertex other than w
or µ(w) in G.

(ii) There is a constant c > 0 such that for every edge e ∈ δ(w),

|{(Xi, F ) : 1 ≤ i ≤ t, F ∈ Xi and e ∈ F}| = c.

Case 1: Suppose that D is of type (1) or (4) with k components. Then
There is a unique completion D′ of D. It is easy to verify that the list
of all orbits of π(2) satisfies the conditions (i) and (ii) where c = k− 1.

Case 2: Suppose that D is of type (2). Then D consists of a monochro-
matic path P and one or two short cycles. A completion D′ of D is
unique, as it is obtained by adding an edge from the terminal vertex of
P to the initial vertex of P . Let π be the permutation of δ(w) induced
by D′. Let x1, x2, . . . , xm be the edges in δ(w) that are in P such that
π(xi) = xi+1 for all i = 1, 2, . . . , m where xm+1 = x1. Let y1 ∈ δ(w) be
the vertex in the first short cycle such that π(y1) = y1. If D has two
cycles, then let y2 ∈ δ(w) be the vertex in the second short cycle such
that π(y2) = y2.
Then Oj = {{xi, yj} : 1 ≤ i ≤ m} is an orbit of π(2) satisfying (i). If

m > 1, then OP = {{xi, xi+1} : 1 ≤ i ≤ m} is an orbit of π(2) satisfying
(i) in which each xi appears twice if m > 2 and each xi appears once
if m = 2.
If D has only one cycle, then each xi appears once and y1 appears m

times in O1. So if m = 1, then O1 satisfies (i) and (ii). If m = 2, then
O1 and OP form a list of orbits of π(2) satisfying (i) and (ii). If m > 2,
then a list of two copies of O1 and (m − 1) copies of OP satisfies (i)
and (ii).
If D has two short cycles, then in O1 and O2, each xi appears twice

and each yj appears m times. Notice that {{y1, y2}} is an orbit of π(2).
If m = 1, then a list of O1, O2, and {{y1, y2}} satisfies (i) and (ii). If
m = 2, then a list of O1 and O2 satisfies (i) and (ii). If m > 3, then
a list of two copies of O1, two copies of O2, and (m − 2) copies of OP

satisfies (i) and (ii).

Case 3: If D is of type (3), then D has a unique completion D′. Let π
be the permutation of δ(w) induced by D′. Let y ∈ δ(w) be a vertex
of D in the short cycle such that π(y) = y. Let x1, x2, . . . , xm ∈ δ(w)
be the vertices on the long cycle in D′ such that π(xi) = xi+1 for all
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i = 1, 2, . . . , m where xm+1 = x1. Since D has two paths, m > 1.
Then OP = {{xi, xi+1} : i = 1, 2, . . . , m} and OC = {{y, xi} : i =
1, 2, . . . , m} are orbits of π(2). In OP , each xi appears twice if m > 2
and once if m = 2. In OC each xi appears once and y appears m
times. Now it is routine to create a list of orbits satisfying (i) and (ii)
by taking copies of OC and copies of OP .

Case 4: Suppose that D is of type (5) having both red and blue vertices
or D is of type (7) or (8). Let D′ be a completion of D obtained by
making each path of D to be a cycle of D′. Let x1, x2, . . . , xm ∈ δ(w)
be vertices in the long cycle of D′ so that π(xi) = xi+1 for all i =
1, 2, . . . , m where xm+1 = x1. Let y1, y2, . . . , yk ∈ δ(w) be vertices in
short cycles of D′ such that π(yi) = yi. Since D is good, k ≤ m.
Let Oj = {{xi, yj} : i = 1, 2, . . . , m} for j = 1, 2, . . . , k and OP =
{{xi, xi+1} : i = 1, 2, . . . , m} where xm+1 = x1. In the list of O1, O2,
. . ., Ok, each xi appears k times and each yj appears m times. In OP ,
each xi appears twice if m > 2 and once if m = 2. To satisfy (i) and
(ii), we can take a list of two copies of each Oj for j = 1, 2, . . . , k and
copies of OP .

Case 5: Suppose that D is a directed graph of type (5) not having
both red and blue, or D is a directed graph of type (6). Then D has
a completion D′ consisting of a single cycle. Let π be the permutation
of δ(w) induced by D′. Let x1, x2, . . . , xm ∈ δ(w) be vertices in D such
that π(xi) = xi+1 for all i = 1, 2, . . . , m. We OP = {{xi, xi+⌊m/2⌋} :
i = 1, 2, . . . , m} where xj+m = xj for all j = 1, · · · , ⌊m/2⌋. Then in
OP , each xi appears twice if m is odd and once if m is even. Moreover,
since all the vertices of the same color appear consecutively in D′ and
the number of vertices of the same color is at most half of m, OP

never contains a pair {xi, xj} of vertices of the same color, red or blue.
Therefore OP satisfies (i) and (ii). This completes the proof. �

Lemma 27. There exists a completion D′ of D so that the w-good
permutation induced by D′ is uniform.

Proof. By Lemma 24, D can be partitioned into good subgraphs D1,
D2, . . ., Dt of type (1), (2), . . ., (8). Lemma 26 shows that each Di

admits a completion that induces a w-good uniform permutation πi

with a list Li of orbits of π
(2)
i satisfying (i) and (ii). Let us assume that

each vertex of Di appears ci > 0 times in Li. Let c = lcm(c1, c2, . . . , ct).
Then let L be the list of orbits obtained by taking c/ci copies of Li for
each i = 1, 2, . . . , t. Then L satisfies (i) and (ii). This proves the
lemma. �
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Now we are ready to prove Conjecture 3 for 4-vertex graphs. Let us
state the theorem.

Theorem 28. Let G be a connected 4-vertex graph with a fixed point
free involution µ : V (G) → V (G) and a bijection σv : δ(v) → δ(µ(v))
for each vertex v such that λ(v, µ(v)) = deg(v) and σµ(v) = σ−1

v . Then
G has a nonempty list of cycles satisfying the following.

(a) For each pair of edges e and f incident with a vertex v, the number
of cycles in the list containing both e and f is equal to the number
of cycles in the list containing both σv(e) and σv(f).

(b) Each edge of G appears in the same number of cycles in the list.
(c) The list contains a cycle of length at least three.

Proof. Let w be a vertex of minimum degree. By Lemma 27, G has
a w-good uniform permutation π on δ(w). By Lemma 23, G has a
nonempty list of cycles satisfying (a), (b), and (c). �

Because of (b), we can obtain the following corollary.

Corollary 29. Conjecture 3 is true for subdivisions of connected 4-
vertex graphs. �

Theorem 6 is an immediate consequence of Theorem 28. Corollary 7
follows from Proposition 13, since we have shown that Tiling Conjec-
ture is true for n = 2.

6. Final Remarks

Minimality assumption in Tiling Conjecture. A graph G is 2-
connected if |V (G)| > 2, G is connected, and G \ x is connected for
every vertex x. It is well-known that a list U of cyclically reduced words
in Fn is diskbusting if and only ifWn(φ(U)) is 2-connected for some φ ∈
Aut(Fn) [26, 25]. However, the minimality assumption in Conjecture 2
cannot be weakened to the 2-connectedness of the Whitehead graph;
this is equivalent to saying that λ(v, µ(v)) = deg(v) in Conjecture 3
cannot be relaxed to 2-connectedness. Daniel Král’ [18] kindly provided
us Example 30 showing why this relaxation is not possible.

Example 30. Let G be a 4-vertex graph shown in Figure 7. For a vertex
v and edges e ∈ δ(v) and f ∈ δ(µ(v)), we let σv(e) = f if and only if
the number written on e near v coincides with the number written on
f near µ(v). Actually, G is the Whitehead graph of a(ab−1)3b−2 with
the associated connecting maps σv. While G is 2-connected, one can
verify that G does not have a list of cycles satisfying the conclusion of
Conjecture 3. Note that λ(a, µ(a)) = 3 < 4 = deg(a).
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Figure 7. Example 30.

Control over positive degrees. The following lemma states that
Conjecture 3 can be strengthened to require each edge to appear the
same number of times.

Lemma 31. Suppose Conjecture 3 is true. If G is connected and has
at least four vertices, then the list of cycles in the conclusion of Con-
jecture 3 can be chosen so that each edge appears the same number of
times.

Proof. Let G be a given graph. We claim that G is 2-connected. Sup-
pose not and let x be a vertex such that G \ x is disconnected. Let
C be a component of G \ x containing µ(x) and D be a component of
G \ x other than C. Since G is connected, x has an edge incident with
a vertex in D and therefore G can not have deg(x) edge-disjoint paths
from x to µ(x), a contradiction. This proves the claim.
Let e1, e2, . . . , em be the list of edges of G. Let G′ be a graph obtained

from G by replacing each edge with a path of length m. Let vij be
the j-th internal vertex of the path of G′ representing ei where j =
1, 2, . . . , m− 1. We extend µ of G to obtain µ′ of G′ so that µ′(vi,j) =
vj,i−1 and µ′(vj,i−1) = vi,j for all 1 ≤ j < i ≤ m.
Since G is 2-connected, for each pair of edges e and f of G, there is

at least one cycle containing both e and f . Thus in G′, there are two
edge-disjoint paths from vi,j to vj,i−1 for all 1 ≤ j < i ≤ m. So we
can apply Conjecture 3 to G′ and deduce that each edge of G is used
the same number of times because the number of cycles passing vi,j is
equal to the number of cycles passing vj,i−1 for all 1 ≤ j < i ≤ m. �

Suppose U is a polygonal list of cyclically reduced words u1, . . . , ur

in Fn. There exists a closed U -polygonal surface S obtained by a
side-pairing on polygonal disks P1, . . . , Pm equipped with an immersion
S(1) → Cayley(Fn)/Fn as in Definition 11. We shall orient each ∂Pi

so that each ∂Pi → S(1) → Cayley(Fn)/Fn reads a positive power of a
word in U . For each uj in U , if Pi1, Pi2 , . . . , Pik is the list of polygonal
disks whose boundaries read powers, say uc1

j , u
c2
j , . . . , u

ck
j , of uj , then

we say that c1 + c2 + · · ·+ ck is the positive degree of uj in S.
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Proposition 32. Let U be a minimal and diskbusting list of cyclically
reduced words u1, . . . , ur in Fn for some n > 1. We assume that either
Conjecture 2 is true, or n = 2.

(1) There exists a U-polygonal surface S such that the positive de-
gree of every word in U is the same.

(2) For every list of positive integers α1, . . . , αr, there exists φ ∈
Aut(Fn), a φ(U)-polygonal surface S, and a constant K such
that the positive degree of φ(ui) is Kαi for each i = 1, . . . , r.

Proof. (1) Suppose that Wn(U) has a list of cycles satisfying the con-
clusion of Conjecture 3 and each edge appears the same number of
times, say s, in the list. So, every word in U has the positive degree s
in the closed surface S which is constructed in the proof of Lemma 16.
Hence, the proof follows from Part (b) of Theorem 28 and Lemma 31.
(2) We make a new list U ′ by duplicating each ui for αi times. U ′

might not be minimal, but one can find φ ∈ Aut(Fn) such that φ(U ′) is
minimal. By applying Part (1) to φ(U ′), there exists a φ(U ′)-polygonal
surface S where the positive degrees are the same, say K. By regarding
S as a φ(U)-polygonal surface, one obtains the desired result. �

Non-virtually geometric words. Let Hn denote a 3-dimensional
handlebody of genus n. A word w in Fn can be realized as an embed-
ded curve γ ⊆ Hn. A word w is said to be virtually geometric if there
exists a finite cover p : H ′ → Hn such that p−1(γ) is homotopic to a
1-submanifold on the boundary of H ′ [11]. Using Dehn’s lemma, Gor-
don and Wilton [11] proved that if w ∈ Fn is diskbusting and virtually
geometric, then Dn({w}) contains a surface group; this also follows
from the fact that a minimal diskbusting geometric word is polygo-
nal [16]. On the other hand, Manning [20] showed that for n > 1,
there exist minimal diskbusting words which are not virtually geomet-
ric. More precisely, he proved that if the Whitehead graph of w ∈ Fn

is non-planar, k-regular and k-edge-connected for some k ≥ 3, then w
is not virtually geometric. Note that a graph G is k-edge-connected
if |δ(X)| ≥ k for all ∅ 6= X ( V (G). Even for such w, Theorem 18
implies that Dn({w}) contains a hyperbolic surface group.

Existence of separable surface subgroups. A subgroup H of a
group G is said to be separable if H coincides with the intersection
of all the finite-index subgroups of G containing H . If every finitely
generated subgroup of G is separable, we say G is subgroup separable.
The Virtual Haken Conjecture for a closed hyperbolic 3-manifold M
asserts that there exists a π1-injective, homeomorphically embedded,
closed hyperbolic surface in some finite cover of M [23]; this is a main
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motivation for Question 1. If π1(M) contains a separable hyperbolic
surface subgroup, then it is known that a closed hyperbolic surface
π1-injectively embeds into a finite cover of M [23]. So, it is natural to
augment Question 1 as follows.

Question 2. Does every one-ended word-hyperbolic group contain a
separable hyperbolic surface group?

Since Xn(U) has a non-positively curved square complex structure
(Section 2.2), and also decomposes a graph of free groups with cyclic
edge groups, Dn(U) is subgroup separable by [29].
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[19] László Lovász and Michael D. Plummer, Matching theory, North-Holland

Mathematics Studies, vol. 121, North-Holland Publishing Co., Amsterdam,
1986, Annals of Discrete Mathematics, 29. MR 859549 (88b:90087)

[20] Jason F. Manning, Virtually geometric words and Whitehead’s algorithm,
Math. Res. Lett. 17 (2010), no. 5, 917–925.

[21] Karl Menger, Zur allgemeinen kurventheorie, Fund. Math. 10 (1927), 96–115.
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