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RIGIDITY OF FRAMEWORKS SUPPORTED ON

SURFACES

A. NIXON, J.C. OWEN, AND S.C. POWER

Abstract. A theorem of Laman gives a combinatorial character-
isation of the graphs that admit a realisation as a minimally rigid
generic bar-joint framework in R2. A more general theory is devel-
oped for frameworks in R3 whose vertices are constrained to move
on a two-dimensional smooth submanifold M. Furthermore, when
M is a union of concentric spheres, or a union of parallel planes
or a union of concentric cylinders, necessary and sufficient combi-
natorial conditions are obtained for the minimal rigidity of generic
frameworks.

1. Introduction

A bar-joint framework realisation of a simple finite connected graph
G = (V,E) is a pair (G, p) where p = (p1, . . . , pn) is an assignment of
the vertices v1, . . . , vn in V to framework points in Rd. In the case of
frameworks in the plane there is a celebrated characterisation of those
graphs G whose typical frameworks are both rigid and minimally rigid.
By rigid we mean that any edge-length-preserving motion is necessar-
ily a rigid motion. That is, a continuous edge-length-preserving path
p(t), t ∈ [0, 1], with p(0) = p, is necessarily induced by a continuous
path of isometries of Rd. The function p(t) is known as a continu-
ous flex of the framework (G, p) and minimal rigidity means that the
framework is rigid with the removal of any framework edge resulting
in a nonrigid framework.

In the following theorem the term generic means that the frame-
work coordinates of (G, p), of which there are 2|V | in number, are
algebraically independent over Q. This is one way of formalising the
notion of a “typical ”framework for G.

Theorem 1.1. A finite connected simple graph G = (V,E) admits a
minimally rigid generic realisation (G, p) in R2 if and only if

(i) 2|V | − |E| = 3 and
(ii) 2|V ′|−|E ′| ≥ 3, for every subgraph G′ = (V ′, E ′) with |E ′| > 1.
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Moreover every generic realisation (G, p) of such a graph is mini-
mally rigid.

There is a well-known notion of infinitesimal rigidity, which coincides
with rigidity in the case of generic frameworks. See Gluck [5] and Asi-
mow and Roth [1] for example. However frameworks may be infinites-
imally flexible while being (continuously) rigid so this is a stronger
notion. The theorem above is due to Laman [10] in its infinitesimally
rigid formulation.

A graph satisfying (ii) above is said to be an independent graph for
the plane, or simply an independent graph when the context is under-
stood. The terminology here relates to the connections between the
rigidity of geometric framework structures and the theory of matroids.
We shall not need these connections which may be found, for example,
in Graver, Servatius and Servatius [6], Jackson and Jordan [8], [7] and
Whiteley [19]. When both (i) and (ii) hold then G is said to be a max-
imally independent graph for the plane. We also refer to these graphs
as Laman graphs and as maximally independent graphs of type 3.

In what follows we analyse frameworks (G, p) supported on general
smooth surfacesM embedded in R3. In particular in Section 3 we define
continuous and infinitesimal rigidity and show that these notions are
equivalent for completely regular frameworks in the sense of Definition
3.3. Also we define the ambient degrees of freedom of a framework on a
surface M and obtain necessary counting conditions for minimally rigid
completely regular realisations. The development here is in the spirit of
the well-known characterisations of rigidity for free frameworks given by
Asimow and Roth [1], [16], [2] where regular frameworks were identified
as the appropriate topologically generic notion. The primary construct
in rigidity theory is the rigidity matrix and for a framework (G, p) onM

we form a relative rigidity matrix R(G, p,M), with |E|+ |V | rows and
3|V | columns, which incorporates the local tangent vectors forM at the
framework points. While we restrict attention to embedded surfaces
in R3 there are straightforward extensions to higher dimensions, as is
also the case in Asimow and Roth [1].

In Section 4, we pay particular attention to the construction of Hen-
neberg moves between frameworks (rather than graphs) which preserve
minimal rigidity. These constructions together with the graph theory
of Section 2 are the main ingredients in the proof of the main result,
Theorem 5.3. This shows that there is a precise version of Laman’s
theorem for frameworks on a circular cylinder with the class of max-
imally independent graphs of type 2 (see Definition 2.2) playing the
appropriate role.

The approach below embraces reducible surfaces and varieties and
we obtain variants of Laman’s theorem for frameworks supported on
parallel planes, on concentric spheres and on concentric cylinders. As
a direct corollary of this for the spheres and planes cases we recover
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some results of Whiteley [18] on the rigidity of cone frameworks in R3.
On the other hand from the cylinders case we deduce a novel variant
for point-line frameworks in R3 with a single line.

The development is entirely self-contained and we begin with some
pure graph theory for maximally independent graphs of type 3 and type
2. We show that with the exception of the singleton graph K1 each
maximally independent graph of type 2 is generated from K4 by the
usual Henneberg moves together with the new move of extension over a
rigid subgraph in the sense of Definition 2.10. This result parallels the
well-known simpler result for Laman graphs, which we also prove, to
the effect that they are derivable from K2 by Henneberg moves alone.

There are well known characterisations of maximally independent
graphs of types 2 and 3 which derive from a celebrated combinatorial
result of Nash-Williams for multi-graphs [12], [11]. These characteri-
sations, in terms of spanning trees, are less suited to frameworks on
surfaces where we require inductive schemes and graphs with no loops
or multi-edges. Although we do not need the spanning tree viewpoint
for completeness we derive the Nash-Williams characterisations (The-
orems 2.12 and 2.13).

In all cases we are concerned with the usual Euclidean distance in R3

rather than surface geodesics or other distance measures. We note that
Whiteley [19] and Saliola and Whiteley [17] examine first order rigidity
for spherical spaces and various spaces where there is local flatness.
(See also Connelly and Whiteley [3] for global rigidity concerns.) For
the sphere there is an equivalence between the direct distance and
geodesic distance viewpoints which may be exploited, however this is
a special case and in general one must take account of curvature and
local geometry. Thus on the flat cylinder, derived from R2/Z and
direct distance in R2, a generic K4 framework with no wrap-around
edges has three infinitesimal motions, while a typical K4 framework on
the classical curved cylinder has only two.

We would like to thank Walter Whiteley for some useful discussions.

2. Graph theory.

The Henneberg 2 move, or Henneberg edge-split move, is an op-
eration G → G′ on simple connected graphs in which a new vertex
of degree 3 is introduced by breaking an edge (vi, vj) into two edges
(vi, w), (vj, w) at a new vertex w and adding an edge (w, vk) to some
other vertex vk of G. The operation maps the set of independent graphs
(for the plane) to itself and also preserves maximal independence. A
key step in the standard proof of Laman’s theorem is to show that if
the independent graph G has a minimally rigid generic framework re-
alisation then so too does G′, and in Section 4 we pursue this in wider
generality for Henneberg moves on frameworks on smooth surfaces.
However, for such steps to be sufficient we also need to know that the
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desired class of graphs can be derived inductively by such tractable
moves or related moves. This is a purely graph theoretical issue and
we now address this for Laman graphs, Laman plus one graphs and
maximally independent graphs of type 2.

Recall that a Henneberg 1 move or vertex addition move G → G′ is
the process of adding a degree two vertex with two new edges which
are incident to any two distinct points of G.

Proposition 2.1. Every Laman graph G arises from a sequence

G0 → G1 → · · · → Gn = G

where G0 = K2, the complete graph on two vertices and where Gk →
Gk+1 is either a Henneberg 1 move or a Henneberg 2 move.

The starting point for the proof of this fact is the observation that if
G is Laman with no degree 2 vertex then there are at least 6 vertices of
degree 3. Indeed, if ni is the degree of the ith vertex then Σini = 2|E|
and so

6 = 4|V | − 2|E| = Σi(4− ni).

On any of these vertices there is a way of performing a reverse Hen-
neberg 2 move on G to create a Laman graph. This was established by
Laman [10] and requires some care for one can easily see that there are
non-Laman graphs which become Laman after a particular Henneberg
2 move. The proof is given in Lemma 2.4 and this, together with the
corresponding elementary lemma for degree 2 vertices and Henneberg
1 moves, completes the proof of Proposition 2.1.

Define f(H) = 2|V (H)| − |E(H)| for any graph H = (V (H), E(H)).
This could be referred to as the freedom number of H (representing a
sense of the total degrees of freedom when the vertices are viewed as
having two degrees of freedom). We remark that the definition of a
graph (V,E) entails that |V | ≥ 1 and |E| ≥ 0.

Definition 2.2. (a) A graph G is independent of type 3 if f(H) ≥
3 for all subgraphs H containing at least one edge and is maximally
independent (of type 3) if it is independent and f(G) = 3.

(b) A graph G is independent of type 2 if f(H) ≥ 2 for all subgraphs
H and is maximally independent (of type 2) if it is independent and
f(G) = 2.

The maximally independent graphs of type 1 and type 0 are similarly
defined and are also relevant to frameworks on surfaces, but apart from
our closing remark in Section 3 we do not consider them here.

Recall that k-connectedness means that if fewer than k vertices are
removed from a graph then it remains path-connected. One can readily
check that while a Laman graph is 2-connected, a maximally indepen-
dent graph of type 2 is in general just 1-connected.
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Lemma 2.3. Let r = 2 or 3. Let G be independent of type r with
subgraphs G1 and G2 which are maximally independent of type r. If
f(G1 ∩G2) ≥ r then G1 ∪G2 is maximally independent of type r.

Proof. We have

f(G1 ∪G2) = f(G1) + f(G2)− f(G1 ∩G2)

and so, from the hypotheses,

f(G1 ∪G2) ≤ r + r − r = r.

On the other hand this quantity is greater than or equal to r, since G
is independent of type r. �

Lemma 2.4. Let G be a maximally independent graph of type 3 with a
degree 3 vertex. Then there is a maximally independent graph G′ with
a Henneberg 2 move G′ → G.

Proof. Suppose that v is a vertex of degree 3 of G with 3 distinct
neighbours x, y, z. We claim that for some pair ab in {xy, yz, xz} we
have f(H) ≥ 4 for all subgraphs H with a, b ∈ V (H), v /∈ V (H). To
see that this claim completes the proof note that there is a reverse
Henneberg 2 move from G to G′ = G\v+(a, b) and for every subgraph
of the latter graph containing (a, b) the freedom number is no smaller
than 3. The other subgraphs of G′ are subgraphs of G and it follows
that G′ is maximally independent of type 3.

To prove the claim suppose, by way of contradiction, thatHxy, Hyz, Hxz

are subgraphs of K = G\v containing, respectively, the pairs {x, y},
{y, z}, {x, z} and that the freedom number of each is 3. There are a
number of cases but each leads to the conclusion that

f(Hxy ∪Hyz ∪Hxz) = 3,

and now adding back v and its three edges leads to the contradiction

f(Hxy ∪Hyz ∪Hxz + (x, v) + (y, v) + (z, v)) = 3 + 2− 3 = 2.

To see that f(Hxy∪Hyz∪Hxz) = 3 suppose first that f(Hxy∩Hyz) ≥
3. Then by Lemma 2.3 f(Hxy∪Hyz) = 3. Now apply the lemma to the
pair Hxy ∪ Hyz, Hxz. Their intersection contains at least two vertices
and so f(Hxy ∪Hyz ∪Hxz) = 3.

It remains to consider the case where all three pairwise intersections
are singletons (necessarily x, y, z). In this case note that if H is the
union Hxy ∪Hyz ∪Hxz then

|E(H)| = |E(Hxy)|+ |E(Hyz)|+ |E(Hxz)|,

|V (H)| = |V (Hxy)|+ |V (Hyz)|+ |V (Hxz)| − 3

and so

f(H) = f(Hxy) + f(Hyz) + f(Hxz)− 6 = 9− 6 = 3

as desired. �
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We remark that the subclass of 3-connected Laman graphs is rele-
vant to the Galois nonsolvability of frameworks in the plane and here
one needs alternative moves for an inductive analysis. See Owen and
Power [13]. (The general problem in this area remains open.) Such al-
ternative moves include 3-cycle reduction (an identification of adjacent
vertices combined with the removal of two suitable edges) which is also
a necessary step in the derivability of maximally independent graphs
of type 1.

We now discuss a particular class of maximally independent graphs
of type 2.

Definition 2.5. A graph G = (V,E) is a Laman plus one graph if it
is connected and simple, with no degree 1 vertices and is such that the
graph G\e = (V,E\e) is a Laman graph for some edge e.

Note that if G is constructed as two copies of K4 joined at a com-
mon vertex, or joined by two connecting edges, then G is maximally
independent of type 2 but is not a Laman plus one graph.

In terminology to follow the next proposition asserts that the fam-
ily of Laman plus one graphs is the smallest Henneberg closed family
containing K4.

Proposition 2.6. Every Laman plus one graph is obtained from K4

by a sequence of Henneberg 1 and 2 moves.

Proof. Let G be a Laman plus one graph which does not have a pre-
decessor by a Henneberg move which is Laman plus one. Suppose
moreover that G∗ is such a graph with the smallest number of vertices.
Note that G∗ has no degree 2 vertex. It will be enough to show that
G∗ = K4.

For some edge e = (u, v) we have G∗ = H + e with H a Laman
graph and for H we have the degree counting equation 6 =

∑

i(4−ni).
Suppose first that the degrees of u and v in H are two and that H has
exactly two degree 3 vertices, w and z say. Each of these have reverse
Henneberg 2 moves H → H− to a Laman graph. We show that either
G∗ is K4 or else at least one of these moves does not reintroduce the
edge e. If the latter holds then adding e to the Laman graph results
in a graph which invalidates the minimality of G∗ and so the proof is
complete in this case. However, if e arises from reverse Henneberg 2
moves on w and on z then these vertices must each be adjacent to u
and v. Let x (resp. y) be the other vertex adjacent to w (resp. z). (See
Figure 1.) If x = z and w = y then G∗ is K4. We may assume then
that x 6= z. Now we obtain a contradiction since any reverse Henneberg
moves H → H− on w which results in a graph H− with added edge e
leads to a graph which is not 2-connected.

On the other hand if there is one degree 2 vertex v in H (again,
necessarily a vertex of the removed edge e) then there are at least four
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degree 3 vertices at least one of which is not adjacent to v. Thus a
reverse Henneberg move is possible which does not reintroduce e and
this case contradicts minimality.

Finally, if there are no degree 2 vertices in H then there are at least
6 degree 3 vertices in H . We show that there is a reverse Henneberg
2 move on H that does not add the edge e and so again obtain a
contradiction. Note that G∗ has at least four degree 3 vertices. Suppose
first that there are exactly four. Deleting e adds at most two degree
3 vertices, so this must happen and u, v have degree 4 in G. Thus u
cannot be adjacent in H to all four of the degree 3 vertices that are
not equal to v. Thus we may apply the reverse Henneberg move to the
nonadjacent degree 3 vertex and obtain a contradiction.

x

y

eu v

z

w

Figure 1. Part of H = G∗\e.

Similarly, if G∗ has exactly 5 degree 3 vertices then, since H has six
such vertices, one of u or v, say u, has degree 4 andH has 5 other degree
3 vertices. Not all of these others can be adjacent to u and so again we
may perform a reverse Henneberg move that does not reintroduce the
edge e. �

We note also the following alternative proof based on the following
useful proposition of independent interest.

Proposition 2.7. If G is maximally independent of type 2 then either
(i) G has a vertex of degree 2, or
(ii) each vertex of degree 3 lies in a K4 subgraph, or
(iii) there is a maximally independent graph G′ of type 2 and a Hen-

neberg 2 move G′ → G.

We may apply this in particular to a Laman plus one graph G : if (i)
does not hold then there are at least 4 vertices of degree 3. This occurs
when G = K4 but otherwise since G is Laman plus one it follows that



8 A. NIXON, J.C. OWEN, AND S.C. POWER

there is at least one degree 3 vertex which is not in a K4 subgraph.
Thus (iii) holds and this completes the alternative proof.

Proof. Suppose that (i) and (ii) do not hold. Then there is a degree
3 vertex v that is not in a K4 subgraph. Then at least one of the
neighbour pairs (x, y), (y, z), (z, x) is not an edge. Call such a pair a
ghost edge. We claim there is a reverse Henneberg 2 move onto one of
the ghost edges which creates a maximally independent type 2 graph.

The claim follows if there is a ghost edge pair ab such that every
subgraph H containing a and b but not v has f(H) ≥ 3.

Suppose first that there are two ghost edges (x, y), (y, z) and suppose
by way of contradiction there are graphsHxy, Hyz with freedom number
2. Since they share a common vertex their intersection has freedom
number 2 or more and so by Lemma 2.3 their union has freedom 2.
Now add v and its three edges to this union and one obtains a subgraph
with freedom equal to 1, contradicting independence.

Similarly, suppose that there is only one ghost edge, (x, y) say, and
there is a subgraph H with freedom number 2 containing x and y
but not v. If H contains z then adding v and its edges leads to a
contradiction of independence as above. If H does not contain z then
adding v and z and the 5 edges (v, x), (v, y), (v, z), (z, x), (z, y) provides
a subgraph with freedom number 1, contradicting independence. �

Remark 2.8. A simple connected graph is said to be a generically
rigid graph for the plane if it is rigid as a framework in R2 in some
vertex-generic realisation. In view of Laman’s theorem this means that
G is a Laman graph plus some number of extra edges. More strongly,
a graph G is redundantly rigid if it is rigid and remains so on removal
of any edge. Redundant rigidity is plainly stronger than being Laman
plus one and is intimately tied up with the topic of global (unique
realisation) rigidity. We remark that the globally rigid graphs are K2,
K3 and those that are derivable from K4 by Henneberg 2 moves plus
edge additions. This rather deeper result is discussed in Jackson and
Jordan [8], [7].

The following simple lemma is the key to bridge the gap between
Laman plus one graphs and maximally independent graphs of type 2.

Lemma 2.9. Let G be a maximally independent graph of type 2 with
at least one edge. Then one of the following holds.

(i) G has a proper subgraph that is maximally independent of type 2.
(ii) G is a Laman plus one graph.

Proof. We may assume that G has no vertices v of degree two, for in
this case (i) holds for the subgraph G\v. Let e be any edge of G and
suppose that H = G\e, which has no degree one vertices, is not a
Laman graph. Then, since all subgraphs H ′ of H satisfy f(H ′) ≥ 2
(being subgraphs also ofG) there is a subgraphH ′ ofH with f(H ′) = 2.
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Thus H ′ is a proper maximally independent subgraph of G of type 2
and (i) holds. �

Note that, as with the K4 examples above, two maximally indepen-
dent graphs of type 2 may be joined at a common vertex, or may be
joined by two disjoint edges to create a new maximally independent
graph of type 2. Thus the class of maximally independent graphs of
type 2 is closed under these two joining operations. Using these two
moves with K4 one obtains large graphs which are maximally indepen-
dent of type 2 which have no inverse Henneberg move to a maximally
independent graph of type 2.

The following contraction move, which is a companion to the last
lemma, will be used in the proof of Theorem 2.11.

Let G be independent of type 2 and let H be a proper subgraph
with f(H) = 2. Write G/H for the multigraph in which H is con-
tracted to a single vertex. This is the graph for which the vertex set is
(V (G)\V (H))∪ {v∗} and the edge set is (E(G)\E(H))∪E∗ where E∗

consists of the edges (v, v∗) associated with edges (v, w) with v outside
H and w in H . If G is independent of type 2 then so is G/H if it
happens to be a simple graph.

To see that G/H is independent let K ⊆ G/H and let K̂ ⊂ G be
the subgraph for which

V (K̂) = (V (K)\{v∗}) ∪ V (H), E(K̂) = π−1
e (E(K)) ∪ E(H)

where πe : E(G) → E(G/H) is the natural map defined on E(G)\E(H).
Since π−1

e : E(K) → E(G) is one-to-one it follows that

2 ≤ f(K̂) = 2(|V (K)| − 1) + 2|V (H)| − (|E(K)|+ |E(H)|)

= f(K)− 2 + f(H) = f(K)

as desired.
Note that G/H is simple in the case that H is maximal with respect

to inclusion. Indeed, note first that, by maximality H is vertex induced
and so G/H has no loop edges. Also if w is a vertex outside H then it
is incident to at most one vertex in H , for otherwise adding w and two
of these edges contradicts maximality.

We now identify a natural set of moves through which we may derive
from K4 all the maximally independent graphs of type 2 with at least
one edge.

Definition 2.10. A family C of finite connected simple graphs is said
to be Henneberg closed if it is closed under Henneberg moves and to be
Henneberg complete if

(i) C is Henneberg closed and
(ii) C is closed under subgraph extensions in the sense that, if H is

a vertex induced subgraph of G and if H and G/H are in C then so too
is G.
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Theorem 2.11. Let C be a Henneberg complete family of maximally
independent graphs of type 2. If C contains K4 then C contains every
maximally independent graph of type 2 except, possibly, the singleton
graph K1.

Proof. Suppose that there is a graph G∗ which is maximally indepen-
dent of type 2, which is not contained in C and which has at least one
edge. Suppose also that G∗ has a minimal number of vertices amongst
such graphs. If K4 is in C then by Proposition 2.6 G∗ is not Laman plus
one. By Lemma 2.9 G∗ is either the singleton graph or has a proper
vertex induced maximally independent subgraph H , with G∗/H also
maximally independent of type 2. In the latter case, by minimality, H
and G∗/H are in C and so G∗ is also in C which is not the case. �

We now obtain the Nash-Williams characterisations mentioned in
the introduction as the equivalences between (i) and (ii) in the next
two theorems.

In a similar spirit, Crapo [4] showed that maximally independent
graphs of type 3 are exactly the graphs which have a 3T2 decomposi-
tion. This is a decomposition into 3 edge disjoint trees such that each
vertex is in exactly 2 of them and no subgraph with at least one edge
is spanned by subgraphs of two of the three trees. Spanning tree de-
compositions are of interest because they produce efficient polynomial
time algorithms for checking generic minimal rigidity, whereas algo-
rithms based on checking that all subgraphs satisfy the independence
type are exponential in the number of vertices. See Graver, Servatius
and Servatius [6] for more details on this approach.

A graphH = (V,E) is said to be an edge-disjoint union of k spanning
trees if there is a partition E1, . . . , Er of E such that the subgraphs
(V,E1), . . . , (V,Er) are (connected) trees.

Theorem 2.12. The following assertions are equivalent for a (simple)
connected graph G.

(i) G is maximally independent of type 3.
(ii) If G+ is the graph (or multi-graph) obtained from G by adding

an edge (including doubling an edge) then G+ is an edge-disjoint union
of two spanning trees.

(iii) G is derivable from K2 by Henneberg moves.

Proof. That (ii) implies (i) is elementary (as given explicitly in the
proof below) and that (i) implies (iii) follows from Proposition 2.1. We
show by elementary induction that (iii) implies (ii).

Let G → G
′

be a Henneberg 1 move, adding a degree 2 vertex v,
and let (G

′

)+ be obtained from G
′

by addition of an edge e (including
doubling).

If e is added to G then we may assume G+ e is the union of 2 edge
disjoint spanning trees. To each of the trees we may add one of the
new edges.
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The other case is when e = (u, v) for some u ∈ V (G), indicated in
the figure below.

u

v
G

Figure 2. (G′)+, obtained fromG by Henneberg 1 move
plus added edge (u, v).

Suppose G+ = G + f, f = (g, h), decomposes into two edge disjoint
spanning trees T1, T2. We now have a decomposition of G into a span-
ning tree T1 and T2\f which is either (a) an edge disjoint spanning
(disconnected) forest or (b) an edge disjoint (non-spanning) tree. In
case (a) if v is adjacent to vertices in both connected components of
T2\f then add both new edges (in the Henneberg move) to T2\f to
form T

′

2 and add the “addition”edge to T1 to get T
′

1. If v is adjacent
to vertices in the same connected component then add one of the new
edges (in the Henneberg move) to T1 and one to T2\f , then add the
“addition”edge to the other component of T2\f to get T

′

1 and T
′

2.
In case (b) suppose the vertex not in T2\f is w, if w is adjacent to

v then add (v, w) and some (v, x) to T2\f and add the “addition”edge
to T1 to form T

′

1 and T
′

2.
Finally if w is not adjacent to v then add the new edges one to each

of T1 and T2\f and add the “addition”edge (v, w) to T2\f to get T
′

1

and T
′

2.
By construction in each case T

′

1 and T
′

2 are edge disjoint spanning
trees for (G

′

)+ and a very similar elementary argument holds for the
Henneberg 2 move which we leave to the reader.

Since K+
2 is an edge-disjoint union of two spanning trees the proof

is complete.
�

Theorem 2.13. The following assertions are equivalent for a (simple)
connected graph G with at least one edge.

(i) G is maximally independent of type 2.
(ii) G is an edge-disjoint union of two spanning trees.
(iii) G is derivable from K4 by Henneberg moves and subgraph ex-

tensions.
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Proof. That (ii) implies (i) is elementary as follows. Let the two edge
disjoint spanning trees be T1 = (V,E1) and T2 = (V,E2). It is a simple
property of trees that |Ei| = |V |−1 and |E ′

i| ≤ |V ′|−1 for all subgraphs
T ′
i = (V ′, E ′

i) of T , for i = 1, 2. Clearly E is the disjoint union of E1

and E2 and so |E| = 2|V | − 2 and |E ′| ≤ 2|V ′| − 2.
Theorem 2.11 shows that (i) implies (iii) and we now show that (iii)

implies (ii) by induction.
As in the last proof (with simplification due to the absence of edge

addition) the Henneberg 1 and 2 moves preserve the spanning trees
property of (ii). Suppose then that G/H and H decompose into edge
disjoint spanning trees and let G be formed by the graph extension
move, where v∗ ∈ G/H is replaced by H . We show that G decomposes
into edge disjoint spanning trees.

Note v∗ has degree d ≥ 2. Suppose the two spanning trees for G/H
are T1 and T2 and the two for H are H1 and H2. Suppose there are m
edges incident to v∗ in T1 and n edges incident to v∗ in T2. Call these
subsets of edges E1 and E2 respectively. That is, Ei = {(a, v∗) : a ∈ Si}
where Si ⊆ V (Ti), i = 1, 2.

In the extension move these edges are replaced with edges incident to
vertices in H . Call these new subsets of edges E

′

1 and E
′

2 respectively,
so that

E
′

1 = {(a, wa) : a ∈ S1}, E
′

2 = {(a, ua) : a ∈ S2}.

Then we claim that G decomposes into two edge disjoint spanning trees
G1 and G2 where, abusing notation slightly,

Gi = ((Ti\Ei) ∪Hi ∪ E
′

i).

It is clear that every edge of G is in G1 or G2, that no edge is in
both, that every vertex is in G1 and in G2, and that G1 and G2 are
connected. It remains to show that G1 and G2 are trees and we need
only consider G1. Suppose that there is a cycle in G1. Then there exists
some pair of vertices a, b ∈ V (G)\V (H) incident to some edges in E

′

1

such that a and b are connected in G\H . However this connectedness
is necessarily present in (G/H)\v∗ and so there is a cycle in G/H , a
contradiction. �

Remark 2.14. The class of maximally independent multigraphs of
type 2 has been considered by Ross [15] in the setting of periodic
frameworks and has been shown to be the relevant class of graphs
for a Laman type theorem for periodic isostaticity. Here the flat torus
plays the role of the ambient space and finite frameworks on it, with
possibly wrap-around (locally geodesic edges) model the relevant peri-
odic frameworks. Interestingly all such graphs derive from the singleton
graph by Hennenberg 1 and 2 moves together with the move of a single-
vertex double-edge addition move (being a variant of the Henneberg 1
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move for multigraphs) and a double-edge variant of the Henneberg 2
move (arising when, in our earlier notation, vk = vi or vj).

3. Frameworks on surfaces.

We now consider infinitesimal and continuous rigidity for bar-joint
frameworks on general surfaces. In particular we focus on completely
regular frameworks as the appropriate topologically generic notion, not-
ing that for algebraic surfaces this includes the case of algebraically
generic frameworks. It is shown that continuous rigidity and infinites-
imal rigidity coincide for completely regular frameworks, a fact which
will be a convenience later particularly in the consideration of frame-
works on the cylinder.

We remark that the basic theory of the rigidity and flexibility of
frameworks on surfaces considered here is a local one in the sense that
the concepts and properties depend on the nature of M near the frame-
work points p1, . . . , pn.

3.1. Continuous rigidity. Let M ⊆ R3 be a surface. Formally this is
a subset with the relative topology which is a two-dimensional differ-
entiable manifold. However, of particular interest are the elementary
surfaces which happen to be disjoint unions of algebraic surfaces.

A framework on M is a framework (G, p) in R3 with G a simple
connected graph such that the framework vector p = (p1, . . . , pn) has
framework points pi in M. The framework is separated if its framework
points are distinct.

The edge-function fG of a framework (G, p) on M is the function

fG : M|V | → R|E|, fG(q) = (|qi − qj|
2)e=(vi,vj).

This is the usual edge function of the free framework in R3 restricted
to the product manifold M|V | = Mn = M × · · · × M consisting of
all possible framework vectors for G. It depends only on M and the
abstract graph G and for the moment, without undue confusion, we
omit the dependence on M in the notation.

In the next definition we write (Kn, p) for the complete framework
on the same set of framework vertices as (G, p).

Definition 3.1. Let (G, p) be a framework on the surface M with p =
(p1, . . . , pn).

(i) The solution space of (G, p) is the set

VM(G, p) = f−1
G (fG(p)) ⊆ M

n

consisting of all vectors q that satisfy the distance constraint equations

|qi − qj |
2 = |pi − pj|

2, for all edges e = (vi, vj).

(ii) A framework (G, p) on M is rigid, or, more precisely, continuously
rigid, if for every continuous path p : [0, 1] → VM(G, p) with p(0) = p
there exists δ > 0 such that p([0, δ)) ⊆ VM(Kn, p).
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It is easy to see that this is equivalent to the following definition,
which is simply the standard definition of continuous rigidity with R3

replaced by M. A framework (G, p) onM is continuously rigid if it does
not have a continuous flex p(t) (a continuous function p : [0, 1] → M|V |

with p(0) = p, |pi(t)− pj(t)| = |pi − pj | for each edge) such that p(t) is
not congruent to p for some t.

The solution space is topologised naturally with the relative topology
and, as with free frameworks, may be referred to as the realisation space
of the constrained framework.

We now take into account the smoothness of M and the smooth
parametrisations of M near framework points.

Let h(x, y, z) be a rational polynomial with real algebraic variety
V (h) in R3. Assume that M is a subset of V (h) which is a two-
dimensional manifold, not necessarily connected, and let (G, p) be a
framework on M with n vertices as before. We associate with the
framework the following augmented equation system for the 3n coor-
dinate variables of points q = (q1, . . . , qn):

|qi − qj |
2 = |pi − pj|

2, for (vi, vj) ∈ E,

h(qi) = 0, for vi ∈ V.

The solution set for these equations is the solution set VM(G, p) which
we also view as the set

f̃−1
G (f̃G(p))

where f̃G is the augmented edge function from R3|V | → R|E|+|V | given
byf̃G(q) = (fG(q), h(q1), . . . , h(qn)), where now fG is the usual edge
function for G defined on all of R3n, rather than just on Mn.

More generally let M be a surface in R3 for which there are smooth
functions h1, . . . , hn which determine M near p1, . . . , pn, respectively.
Then we define the augmented edge function by

f̃G(q) := (fG(q), h1(q1), . . . , hn(qn)), q ∈ R3|V |.

Suppose for the moment that (G, p) is a free framework in Rd. Write
B(p, δ) for the product B(p1, δ) × · · · × B(p|V |, δ) of the open balls
B(pi, δ) of radius δ centred at the framework points. Then (G, p) in
Rd is regular if the point p in the domain of the edge function fG :
Rd|V | → R|E| is one where the derivative function Df̃G(·) achieves its
maximal rank. This is to say that p is a regular point for this function
on R3|V |. The regular points form a dense open set in R3|V |, since
the nonregular (singular) points are determined by a finite number of
polynomial equations. By standard multivariable analysis a regular
point p in V (G, p) has a neighbourhood

V (G, p)δ = B(p, δ) ∩ V (G, p),

which is diffeomorphic to a Euclidean ball in Rk ⊆ R3|V | for some k.
We take the dimension k as the definition of the (“free”) dimension
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dim(G, p) of the framework. It follows that all points q close enough
to p are regular and dim(G, q) = dim(G, p).

These facts extend naturally to frameworks on surfaces.

Definition 3.2. Let (G, p) be a framework on a smooth surface M with
local coordinate functions h1, . . . , hn.

(i) Then (G, p) is regular if p is a regular point for the augmented

edge function f̃G in the sense that the rank of the derivative matrix is
constant in a neighbourhood of p in R3|V |.

(ii) If (G, p) on M is regular then its dimension is the dimension of
the kernel of the derivative of the augmented edge function evaluated at
p;

dimM(G, p) := dimkerDf̃G(p).

For simple examples of irregular frameworks on the sphere one may
take a framework which has an antipodal edge, or a triangle whose
vertices lie on a great circle.

The local nature of M near a regular point p = (p1, . . . , pn) for
the complete graph Kn determines what we refer to as the number of
ambient degrees of freedom at p. We define this formally as d(M, p) =
dimM(Kn, p). Thus d(M, p) = 3, 2, 1 or 0.

The path-wise definition of continuous rigidity of (G, p) on M given
above is in fact equivalent to the following set-wise formula: for some
δ > 0 the inclusion

VM(Kn, p)
δ ⊆ VM(G, p)δ

is an equality. This equivalence for a general framework p is a little
subtle in that it follows from the local path-wise connectedness of real
algebraic varieties. (That is, each point has a neighbourhood which is
path-wise connected.) However for a regular framework VM(G, p)δ is an
elementary manifold, diffeomorphic to a Euclidean ball, with subman-
ifold VM(Kn, p)

δ and the equivalence is evident. It follows, somewhat
tautologically, that if (G, p) is a regular framework, then (G, p) is rigid
on M if and only if dimM(G, p) = d(M, p).

As in the case of free frameworks the regular framework vectors for
a graph form a dense open set in M|V |. However, the most amenable
constrained frameworks are those that are completely regular in the
sense of the next definition.

Definition 3.3. A framework (G, p) on a smooth surface M is com-
pletely regular if (H, p) is regular on M for each subgraph H.

For an example of a regular framework which is not completely regu-
lar consider the following. Let M consist of two parallel planes distance
1 apart and for the complete graph K6 let (K6, p) be a separated frame-
work with three non-colinear framework points in each plane. Such
continuously rigid frameworks are regular. However if there are points
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pi, pj on separate planes at a minimal distance of 1 apart then (K6, p)
is not completely regular.

One might view the completely regular frameworks as those that are
“topologically generic”and in examples one can readily identify a dense
open set of completely regular frameworks.

The next proposition establishes a necessary “Maxwell count”condition.
Here p′ is the restriction of p to V (G′).

Proposition 3.4. Let (G, p) be a completely regular minimally rigid
framework on a smooth two-dimensional manifold M. Then

2|V | − |E| = dim(M, p)

and for each subgraph G′ with |E(G′)| > 0,

2|V (G′)| − |E(G′)| ≥ dim(M, p′).

Proof. Let G1 be a spanning tree with edges e1, . . . , em and let Gk ⊆
Gk+1 be subgraphs with |E(Gk+1)| = |E(Gk)| + 1, for 1 ≤ k ≤ r − 1,
where m+ r = |E(G)|. Since (G1, p) is regular we have dimM(G1, p) =
2|V | − |E(G1)| = |V | + 1. By complete regularity the dimensions
dimM(Gk, p) are defined and for each k

dimM(Gk, p) ≥ dimM(Gk+1, p).

Suppose that (G, p) is minimally rigid on M. From continuous rigidity
we have dimM(G, p) = d(M, p) and by minimal rigidity the inequalities
are strict. To see this note that the elementary manifolds VM(Gk, p)

δ

are determined by multiple intersections. For example if ek+1 = (vi, vj)
then, for all small enough δ > 0,

VM(Gk+1, p)
δ = VM(Gk, p)

δ ∩ V (|qi − qj| = |pi − pj|).

Thus if there is an equality at the kth step then removal of ek+1 does
not affect the subsequent inequalities and we arrive at the rigidity of
(G\ek+1, p), contrary to minimal rigidity.

By the strict inequalities and noting that r = |E(G)| − |E(G1)| =
|E(G)| − (|V | − 1)) we see that

d(M, p) = dimM(G, p) = |V |+ 1− r = 2|V | − |E|

as desired. �

Remark 3.5. Recall that a generic point p1 for a connected surface M
defined by an irreducible rational polynomial equation h(x, y, z) = 0 is
one such that every rational polynomial g vanishing at p1 necessarily
vanishes on M. One may similarly define a generic framework (G, p) on
M as one for which every rational polynomial g in 3n variables which
vanishes on the framework vector (p1, . . . , pn) necessarily vanishes on
Mn. Since the set of generic framework vectors is a dense set, generic
framework vectors can be found amongst the open set of completely
regular framework vectors.
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3.2. Infinitesimal rigidity. Fix a smooth surface M in R3.

Definition 3.6. Let (G, p) be a frameworkM in R3 and let hk(x, y, z) =
0 be the local equation for the surface M in a neighbourhood of the
framework point pk, for 1 ≤ k ≤ |V |. The rigidity matrix, or relative
rigidity matrix, of (G, p) on M is the |E|+ |V | by 3|V | matrix defined

in terms of the derivative of the augmented edge-function f̃G as

R(G, p,M) = 1/2(Df̃G)(p).

The factor of 1
2
is introduced for consistency with existing usage

for the rigidity matrices of free frameworks. For example the usual
three-dimensional rigidity matrix R(G, p) for (G, p) viewed as a free
framework appears as the submatrix of R(G, p,M) given by the first
|E| rows. In block operator matrix terms we have

R(G, p,M) =

[

R(G, p)
1
2
Dh(p)

]

where, with |V | = n, the mapping h : R3|V | → Rn is

h = (h1(x1, y1, z1), . . . , hn(xn, yn, zn)).

Note that the kernel of the matrix (Dh)(p) is determined by the re-
maining |V | rows and is the subspace of vectors u = (u1, . . . , un) where
uk is tangent to M at pk. Thus the kernel of the relative rigidity ma-
trix is the subspace of kerR(G, p) (the space of free infinitesimal flexes)
corresponding to tangency to M. Vectors in this kernel are referred to
as infinitesimal flexes for (G, p) on M. The subspace of rigid motion
flexes is defined to be kerR(Kn, p,M). When (Kn, p) is regular this
space has dimension d(M, p).

Definition 3.7. Let (G, p) be a regular framework with n framework
vertices on the smooth surface M and suppose that (Kn, p) is regular.
Then (G, p) is infinitesimally rigid if

dimkerR(G, p,M) = dimkerR(Kn, p,M) = d(M, p).

The following theorem is useful when contemplating Henneberg moves
on frameworks and the preservation of rigidity which we turn to in the
next section.

Theorem 3.8. Let M be a smooth surface in R3. A regular framework
(G, p) on M is infinitesimally rigid if and only if it is continuously
rigid.

Proof. Let p : [0, 1] → VM(G, p), as in Definition 3.1, be a (one-sided)
continuous flex of (G, p) on M. Since p is a regular point, if (G, p) is
not rigid on M then the inclusion

VM(Kn, p)
δ ⊆ VM(G, p)δ
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is proper for all small enough δ > 0. Since this is an inclusion of
elementary smooth manifolds there exists a differentiable two-sided flex
p(t), t ∈ (−1, 1) taking values in the difference set (for t ∈ (0, δ)).
Moreover p(t) may be chosen so that p′(0) is not in the tangent space
of VM(Kn, p)

δ at p. Note that the derivative vector p′(0) = (Dp)(0) in
R3n lies in the kernel of R(G, p,M). Indeed, if dk denotes the squared
length of the kth edge of (G, p) then we have

f̃G ◦ p(t) = f̃G(p(t)) = (d1, . . . , d|E|, 0, . . . , 0),

a constant function, and so the derivative (column matrix) D(f̃G◦p)(0)
is zero. By the chain rule and noting that p(0) = p this is equal to

the matrix product (Df̃G)(p).(Dp)(0). Thus the flex v = (Dp)(0) is
an infinitesimal flex of (G, p) on M which is not in ker(R(Kn, p,M)).
Thus infinitesimal rigidity implies continuous rigidity.

On the other hand continuous rigidity implies equality, for suffi-
ciently small δ, for the elementary manifold inclusion above, and hence
equality of the tangent spaces at p. This equality corresponds to infin-
itesimal rigidity. �

In the next section we consider minimally continuously rigid com-
pletely regular frameworks. In view of the theorem above these coin-
cide with the class of minimally infinitesimally rigid completely regular
frameworks. As in the case of free frameworks, we also say that (G, p)
is isostatic on M if it is minimally infinitesimally rigid.

Theorem 3.9. Let (K|V |, p) be regular and let (G, p) be a completely
regular framework on the smooth surface M. Then (G, p) is isostatic if
and only

(i)
rankR(G, p,M) = 3|V | − d(M, p),

and (ii)
2|V | − |E| = d(M, p).

Proof. From the definition a framework is infinitesimally rigid if and
only if

rankR(G, p,M) = 3|V | − dimkerR(G, p,M) = 3|V | − d(M, p).

If (G, p) is minimally infinitesimally rigid then by the last theorem
and the hypotheses it is also minimally continuously rigid. Thus (ii)
holds by Proposition 3.4. It remains to show that if (i) and (ii) hold
then the framework, which is infinitesimally rigid (by (i)) is minimally
infinitesimally rigid. This follows since if E ′  E and ((V,E ′), p) is
rigid then |E ′| + |V | is greater than or equal to the row rank and so
|E|+ |V | > 3|V | − d(M, p) and 2|V | − |E| < d(M, p). �

Remark 3.10. Note that for the circular cylinder M we have

dimM(K3, q) = dimM(K2, r) = 3 and dimM(K4, p) = 2,
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when these frameworks are completely regular. These are continuously
rigid frameworks, while if G is the double triangle graph obtained from
K3 by a Henneberg move, then a typical framework (G, p) is not contin-
uously or infinitesimally rigid. In fact G = K4\e and we see that a full
“rotation”(flex) of (G, p) on the cylinder passes through noncongruent
realisations of the “unrotatable”framework (K4, p).

Remark 3.11. Let (K4, p) be a separated regular realisation of K4

in R3. Then a specialisation of six vertex coordinates is sufficient to
remove all continuous nonconstant flexes of (K4, p). If the framework
vertices are all constrained to a smooth surface M then a specialisation
of at most three equations is needed to remove all continuous flexes.
That three may be necessary can be seen when M is a plane, or a
union of parallel planes, or when M is a sphere, or a union of concen-
tric spheres. Let us define the degrees of freedom d(M) of the surface M
as the minimum number of vertex coordinate specifications necessary
to remove the rigid motions of all proper completely regular realisations
of K4 on M. Thus, for the sphere and the plane there are 3 degrees
of freedom, for the infinite circular cylinder there are 2, and for many
familiar surfaces with only rotational symmetry, such as cones, ellip-
soids and tori, there is one degree of freedom. The degrees of freedom
of M coincides with the minimum value of dimM(K4, p) as p ranges
over separated completely regular quadruples in M. In light of this,
and our Laman style theorem for the cylinder, a plausible conjecture
is the following: for reasonable manifolds the graphs for which every
completely regular framework on M is continuously rigid are those that
are maximally independent of type d(M), together with a number of
small exceptions.

4. Henneberg moves on constrained frameworks.

We now work towards combinatorial (Laman type) characterisations
of rigid frameworks on some elementary surfaces. The proofs follow a
common scheme in which we are required to

(i) establish an inductive scheme for the generation of the graphs
in the appropriate class C for the surface, where the scheme employs
moves of Henneberg type or other moves such as graph extensions,

(ii) show that the moves for C have their counterparts for frameworks
on M in which minimal rigidity is preserved.

We remark that in the case of algebraic manifolds one may define
for each graph G the rigidity matroid R(G, p,M), determined by a
generic framework vector, as the vector matroid induced by the rows
of R(G, p,M). Thus realising the proof scheme amounts to the determi-
nation of a matroid isomorphism between R(G, p,M) and the matroid
defined by maximal independence counting in G. Further in the case of
the plane, combining this with Laman’s theorem shows that the vector
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matroids R(G, p,M) and R(G, p′) (the standard 2-dimensional rigidity
matroid) are isomorphic. See [6], [7]. This is perhaps surprising since
these matroids are induced by matrices of different sizes. However the
isomorphism can be seen by considering the |V | rows in R(G, p,M) as
fixed (independent) and identifying the |E| rows in R(G, p,M) with
the |E| rows in R(G, p′). Of course it is only in the case of planes and
spheres that such an identification can be made.

Let G → G′ be the Henneberg 2 move at the graph level in which
the edge e = (v1, v2) is broken at a new vertex vn+1 and in which the
new edge (v3, vn+1) is added. Let p = (p1, . . . , pn). A Henneberg 2
framework move (G, p) → (G′, q), with (G′, q) also on M, is one for
which the edges associated with the common graph edges have the
same length.

In constructions of such moves the framework points q1, . . . , qn may
usually be taken close to p1, . . . , pn. Indeed a Henneberg 2 framework
move will arise from a sequence

(G, p) → (G\e, p) → (G\e, p(t)) → (G′, (p(t), pn+1(t))) = (G′, q)

where the middle step takes place by a small flex on M and the final
step is determined by a location of qn+1 = pn+1(t) on M, with t small,
for the vertex vn+1. We consider (G, p) also to be minimally rigid so
that (G\e, p) has one degree of freedom, in the sense that the local
solution space V (G, p)δ is a manifold of dimension d(M, p) + 1.

To clarify the consideration of such Henneberg framework moves
which preserve minimal (continuous) rigidity we first consider frame-
works in the plane under the requirement of a simple geometric nonco-
linearity condition.

Proposition 4.1. Let δ > 0, let (G, p) with p = (p1, . . . , pn), n ≥ 2 be a
completely regular minimally rigid framework in the plane whose frame-
work vector has noncolinear triples, and let G → G′ be a Henneberg
2 move. Then there is a completely regular minimally rigid frame-
work (G′, p′), with p′ = (p′1, . . . , p

′
n, p

′
n+1), with noncolinear triples, and

|p1 − p′i| < δ, for 1 ≤ i ≤ n.

Proof. Consider the depleted framework (G\e, p) with e = (v1, v2). By
minimal rigidity and complete regularity this framework has one degree
of freedom modulo ambient isometries or, more precisely, dim(G\e, p) =
4. Consider the 1-dimensional subset N of V (G\e, p)δ consisting of
points q for which q1 = p1 and q2 lies on the line though p1 and
p2. Thus there is a continuous flex p(t) = (p1(t), . . . , pn(t)) in N for
which |p1(t) − p2(t)| is decreasing on some small interval [0, δ) and
we may also assume that this flex is differentiable. Now note that
this “normalised”flex p(t) extends to a flex of the enlarged framework
((G\e)+, p+) formed by introducing pn+1 on the line segment [p1, p2],
with the two new edges, [p1, pn+1] and [p2, pn+1]. See Figure 3.
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p3

p1

p2

Figure 3. Splitting the edge [p1, p2].

p2

p1

p3

Figure 4. The two flexes of ((G\e)+, p+).

There are precisely two such extensions, according to the sense of
motion of the hinge point pn+1. It follows from the noncolinearity
of p1, p2 and p3 that for at least one of these flexes the separation
s(t) = |p3(t) − pn+1(t)| is a non constant function on every interval
[0, δ] for all δ < δ1, for some δ1. (See the next subsection for a formal
proof.) Since the flex is differentiable s(t) is strictly decreasing or in-
creasing on a small interval (0, δ2). Choose t in this interval and add
the edge [p3(t), pn+1(t)] to create the framework (G′, (p(t), pn+1(t))). By
construction this is continuously rigid since there is no nonconstant nor-
malised flex (with p1 fixed and p2 moving on the line through p1 and p2).
It also follows readily from the openness of the set of completely regular
framework vectors that, for sufficiently small t, (G′, (p(t), pn+1(t))) is
completely regular. �

In the ensuing discussion we focus on continuous flexes and the intu-
itive device of hinge separation which we expect to be useful for general
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manifolds. However, there are alternative approaches for algebraic sur-
faces based on flex specialisation at generic points. We illustrate this
with the following alternative proof to the generic framework variant of
the proposition above. Note that Proposition 4.2 together with Propo-
sition 2.1 provide a short proof of the interesting (sufficiency) direction
of Laman’s theorem.

Proposition 4.2. Let G → G′ be a Henneberg 2 move and let (G, p)
and (G′, p′) be generic frameworks on the plane with G a Laman graph.
If (G, p) is isostatic on the plane (minimally infinitesimally rigid) then
so too is (G′, p′).

Proof. As before we let v1, v2, v3 and vh be the vertices involved in
the Henneberg move for the edge (v1, v2). Suppose that (G′, p′) is
not isostatic. Since G′ is a Laman graph it follows that the rank of
the rigidity matrix R(G′, p′) is less than 2|V | − 3. Since p′ is generic
this is the case for any specialisation of p′ and in particular for p′ =
(p1, . . . , pn, ph) where (p1, . . . , pn) = p and ph is any point on the open
line segment from p1 to p2; ph = ap1+ (1− a)p2, with 0 < a < 1. Thus
there is an infinitesimal flex u′ = (u1, . . . , un, uh) for (G′, p′) which is
not a rigid motion flex. We have

〈u1 − uh, p1 − ph〉 = 0, 〈u2 − uh, p2 − ph〉 = 0,

and so by the colinearity of p1, p2, ph,

〈u1 − uh, p1 − p2〉 = 0, 〈u2 − uh, p1 − p2〉 = 0.

Thus

〈u1 − u2, p1 − p2〉 = 0,

and so the restriction to (G, p), namely u = (u1, . . . , un), is an infini-
tesimal flex of (G, p).

By the hypotheses u is an infinitesimal rigid motion of (G, p). In
particular the restriction ur = (u1, u2, u3) of u to the triangle p1, p2, p3
is a rigid motion infinitesimal flex for some isometry T : R2 → R2. But
note that ur is also a restriction of u′, and the triangle is noncolinear,
so it follows that uh must be equal to au1+(1−a)u2. Thus u

′ itself is a
rigid motion flex, also associated with T , contrary to assumption. �

4.1. Hinge frameworks. In the proof of Proposition 4.1 the key point
is that the edge [p1, p2] is replaced by two edges [p1, pn+1] and [pn+1, p2]
which can “hinge”in two directions when p1, p2 flex towards each other.
Similarly, for frameworks on surfaces we examine the placement of pn+1

at such special points. With two flex directions (and with a version of
the non-colinearity condition for p3 relative to p1 and p2) we obtain a
“proper separation”of |p3(t)−pn+1(t)| on all small enough intervals for
at least one of these directions. This last idea is formalised rigourously,
in a three-dimensional setting, in assertion (ii) of the hinge framework
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lemma below. While it seems evident that, roughly speaking, generi-
cally one can make a rigidifying Henneberg 2 move, it should be borne
in mind that the motion p3(t) is undetermined (and can be an arbi-
trary algebraic curve [9]). Thus one needs some systematic method for
avoiding exceptional placements of pn+1 in which there is no proper
separation.

Let H be the cycle graph with four edges and four vertices v1, . . . , v4
in cyclic order. Let (H, q) be a framework in R3 with q = (a, b, c, d)
where a, . . . , d are points in R3 with |a− b| = |a− d| 6= 0 and |c− b| =
|c− d| 6= 0. We refer to this as a hinge framework and when b = d as
a closed hinge framework.

Lemma 4.3. Let q(t) = (a(t), b(t), c(t), d(t)) be a continuous flex of
the closed hinge framework (H, q) in R3, with q(0) = q, such that

t → |b(t)− d(t)|

is nonconstant on every interval [0, δ), δ < 1, and let v(t) be a path in
R3. Then one of the following holds:

(i) for some δ > 0 and all t ∈ [0, δ)

〈b(t)− d(t), a(t)− v(t)〉 = 0,

(ii) at least one of the functions t → |v(t) − b(t)|, t → |v(t)− d(t)|
is nonconstant on all intervals [0, δ) for δ less than some δ1.

Proof. Suppose that (ii) fails and the functions are constant in some
interval [0, δ). Since b(0) = b = d = d(0) the functions are equal in this
interval. Then, on this interval,

〈v(t)− d(t), v(t)− d(t)〉 = 〈v(t)− b(t), v(t)− b(t)〉

and so 〈v(t), b(t)− d(t)〉 = (|b(t)|2 − |d(t)|2)/2. The same is true with
v(t) replaced by a(t) and so (i) follows. �

Consider a fixed value of t > 0 and note that apart from the ex-
ceptional case when b(t) and d(t) coincide and a(t), b(t), c(t) are col-
inear there is a unique plane P (a(t), b(t), c(t)) which passes through
the midpoint of the line segment [b(t), d(t)] and is normal to the vector
b(t)− d(t). With r = (x, y, z) this is the plane with equation

〈b(t)− d(t), a(t)− r〉 = 0.

Because of distance preservation in the flex q(t) note that the plane
P (a(t), b(t), c(t)) passes through a(t) and c(t). For t = 0 and a, b, c
not colinear we define P (a(0), b(0), c(0)) simply as the plane through
a, b, c. In particular, if a, b and c are not colinear and v(0) does not lie
on P (a, b, c) then (i) fails (at t = 0) and (ii) holds.

This lemma may be applied, with the useful conclusion (ii), when-
ever one is able to place pn+1 on a surface M in such a way that the
added hinge framework (H, (p1, pn+1, p2, pn+1)) is “opened”(on M) by
decreasing separation motion p1(t) and p2(t).
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4.2. Spheres and planes. The case of Henneberg 2 moves on frame-
works on concentric spheres and parallel planes is straightforward in
that it follows the format of the proof of Proposition 4.1 for the plane,
making use of the hinge lemma at an appropriate point.

Lemma 4.4. Let M1,M2,Mn+1 be concentric spheres. Let p1(t), p2(t)
be paths on the spheres M1 and M2 respectively with p1 = p1(0), p2 =
p2(0) such that the separation |p1 − p2| is not a local maximum or
minimum and such that |p1(t)− p2(t)| is decreasing. Let pn+1 ∈ Mn+1

be such that p1, p2, pn+1 are not colinear and the plane P (p1, p2, pn+1) is
orthogonal to the tangent plane to Mn+1 at pn+1. Then for some δ1 > 0
the closed hinge framework H(q1, q2, q3, q4) = H(p1, pn+1, p2, pn+1) has a
flex q(t) for t ∈ [0, δ1) with q1(t) = p1(t), q3(t) = p2(t) and |q2(t)−q4(t)|
nonconstant on all intervals [0, δ), δ ≤ δ1.

Proof. Note that as for a single sphere the union M of the spheres Mi

has three ambient degrees of freedom. That is d(M, p) = 3 whenever p
is a separated framework vector (p1, . . . , pn) with n > 1. Without loss
of generality the flex may be assumed to be normalised so that p1(t) is
fixed on M1 and p2(t) moves towards p1 along the shorter arc of a great
circle on M2 (whose plane meets p1). The hypothesis on pn+1 ensures
that it lies on a corresponding great circle, and also that pn+1 is not
on the radial line through either of these points, or coincident to them
in the case that M1 = Mn+1 or M2 = Mn+1. The conclusion follows
readily from the simple geometry of concentric spheres. �

The case of parallel planes has a verbatim statement, with concentric
spheres replaced by parallel planes, and a completely similar proof.

For the Henneberg move construction we require a mild geometric
requirement, being the counterpart to noncolinearity in the case of a
single plane. More precisely we require that for each pair pi, pj the
separation |pi − pj | is not a local maximum or minimum and that the
unique plane P (p1, p2) through the pair, which is orthogonal to the
planes (or spheres) of M, meets no other framework point. We refer to
such frameworks as geometrically generic. (In fact one can relax the
no extremals condition and treat this class of semigeneric frameworks
separately, although we do not do so here.)

The next Henneberg 2 framework move proposition has an analogue
for the Henneberg 1 move which is entirely elementary. These frame-
work moves together with standard Laman graph theory are all that
are needed for the proof of the sufficiency direction for Theorem 5.1.

Lemma 4.5. Let M = M1∪· · ·∪MN be a union of parallel planes, or a
union of concentric spheres, and let (G, p) be a minimally continuously
rigid geometrically generic completely regular framework on M. Let
δ > 0, let s ∈ {1, . . . , N} and let G → G′ a Henneberg 2 move. Then
there is a minimally continuously rigid geometrically generic completely
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regular framework (G′, p′) on M, with p′ = (p′1, . . . , p
′
n, p

′
n+1) and |pi −

p′i| < δ, for 1 ≤ i ≤ n, and pn+1 ∈ Ms.

Proof. The proof has exactly the same form as that of Proposition 4.1;
with the notation above Lemmas 4.3 and 4.4 allow for the placement
of pn+1 so that the flex of (G\e, p) extends to ((G\e)+, p+) with the
separation function |pn+1(t)− p3(t)| nonconstant on all small intervals.

�

4.3. Cylinders and surfaces. We now examine more generally how
to place pn+1 to create an opening hinge in the manner of Lemma 4.4.
This involves the consideration of extremal points in the sense of the
next definition.

Definition 4.6. Let M ⊆ R3 be a smooth manifold and p1, p2 distinct
points of M. A point q ∈ M is extremal for the pair p1, p2 if there exists
a point w on the straight line through p1, p2, not equal to p1 or p2, such
that |q − w| < |q′ − w| for all points q′ ∈ M, q 6= q′, with |q − q′| < δ,
for some δ > 0.

If q is extremal for a pair, as above, then the tangent plane Tq to M

at q is normal to q−w. Moreover, for small δ the curve of intersection

M ∩ S(p1, |p1 − q|) ∩ B(q, δ)

for the surface S(p1, |p1−q|) of the closed ballB(p1, |p1−q|) is tangential
at q to S(p2, |p2 − q|) and, apart from the contact point q, lies outside
the close ball B(p2, |p2 − q|). Indeed, if this were not the case, for all
small δ, then the local closest point property of the extremal point
would be violated.

Figure 5 is indicative of an extremal point q, where the plane of the
diagram is the plane P (p1, p2, q) through the triple, the bold curve is in
the intersection of this plane with M, and the tangent plane Tq to M

at q is orthogonal to the plane. Figure 6 is indicative of the perspective
view of such a point and the tangency of the curves S(p1, |q− p1|)∩M

and S(p2, |q − p2|) ∩M at q.

p1p2

q

w

Figure 5. An extremal point q for p1, p2, elevation view.
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p1p2

q

Figure 6. An extremal point q for p1, p2, perspective
view, with arcs from S(p2, |p2 − q|) and S(p1, |p1 − q|).

Suppose now that M is a (circular) cylinder. If p1(t) and p2(t) are
continuous paths emanating from p1 and p2 respectively then by rigid
motion normalisation we may assume p1(t) = p1 for all t. There is now
no further normalisation available for the adjustment of the motion of
p2(t) or the specification of p′2(0). This makes the location of pn+1 more
problematical in the case that the derivative of the separation |p1 −
p2(t)| vanishes at t = 0. However this complexity only arises (in our
edge-deleted framework context) when (G, p) on M is infinitesimally
flexible (before the edge deletion). Thus, in view of the equivalence
between continuous rigidity and infinitesimal rigidity this difficulty does
not occur for our consideration here. Explicitly, we have the following
condition which expresses that the separation motion of the pair p1(t)
and p2(t) is a nontangential separation:

〈p′2(0)− p′1(0), p2 − p1〉 < 0.

The following simple lemma is needed. In paraphrase it asserts the
geometrical fact that the tangential departure q(t) of the point q from
the surface of the ball B(0, |q|), together with an acute-to-q departure
p(s) from the origin allows for the solution of the distance equation
|q(t)− p(s(t))| = |q| for all t in some small interval, where t → s(t) is
a continuous parameter change.

Lemma 4.7. Let q(s), s ∈ [0, 1], be a path in R3 starting at q = q(0) 6=
0 such that 〈q′(0), q〉 = 0 and such that for s > 0 the path points q(s)
lie outside the closed ball B(0, |q|). Also, let p(t), t ∈ [0, 1], be a path
starting at p = p(0) = 0 with

〈p′(0), q〉 > 0.

Then there is a continuous parameter change t = t(s), for some range
s ∈ [0, δ], such that in this range

|p(t(s))− q(s)| = |p− q|.

Proof. Let f(s, t) = |p(t)− q(s)|2 − |q|2. Consider first the function

t → f(t, t) = |p(t)− q(t)|2 − |q|2,
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which is zero at t = 0. In view of the hypotheses, for some positive
number c we have 〈p(t), q(t)〉 ≥ ct in some small interval [0, δ1]. It
follows readily that the function t → f(t, t) is strictly decreasing, and
in particular f(t, t) < 0, for all t in some small interval [0, δ2].

We now see that for fixed s in [0, δ2] the function t → f(s, t) has
a strictly positive value at t = 0 and is negative at t = s. By the
intermediate value theorem there is a first point t(s) with f(s, t(s)) = 0
and moreover, the function s → t(s) is continuous. �

Lemma 4.8. Let p1, p2 be distinct points on a cylinder M such that
the line segment from p1 to p2 does not lie in M. Let p2(t) be a path
on M with p2(0) = p2 such that

〈p′2(0), p2 − p1〉 < 0.

Then there is an extremal point pn+1 for the pair p1, p2 such that the
closed hinge framework H(q1, q2, q3, q4) = H(p1, pn+1, p2, pn+1) has a
flex q(t), t ∈ [0, δ1), on M, with q1(t) = p1, q3(t) = p2(t) and |q2(t) −
q4(t)| a nonconstant function on all intervals [0, δ), δ ≤ δ1, for some
δ1 > 0.

Proof. In view of the discussion above we may choose an extremal point
q for the point pair p1, p2 such that

〈p′2(0), p2 − q〉 < 0.

For example, q may be chosen close to p1, as a local closest point to
a point w close to p1. Let q(t), t ∈ [−1, 1] be a parametrisation of the
curve

M ∩ S(p1, |p1 − q|) ∩ B(q, δ)

for appropriate δ > 0, as above. Apply the lemma to the path pair
p2(t), q(t), t ∈ [0, 1], to create q2(t). Similarly, use the path pair
p2(t), q(−t), t ∈ [0, 1] to create q4(t) and the proof is complete. �

A similar hinge construction lemma holds for frameworks supported
on a union M of concentric cylinders Mi. The only new aspect is that
the extremal point q must be chosen on a preassigned cylinder Mk of
M and we must maintain the inequality

〈p′2(0), p2 − p1〉 > 0.

when p1 is replaced by q. Maintaining this inequality corresponds to
choosing q in the halfspace of points z with 〈p′2(0), p2 − z〉 > 0. To see
that this is possible note that the line of points wt = p2+ t(p1−p2), t ∈
R, is not parallel to the common cylinder axis (by assumption) and
also that the line is not orthogonal to p′2(0). Thus for all t large wt lies
in the half space. Since the cylinder Mk passes through the half space
it follows (from simple geometry) that for large enough t the closest
point qt on Mk to wt will also lie in the half space, as required.
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5. Combinatorial characterisations of rigid frameworks

We now obtain variants of Laman’s theorem for bar-joint frameworks
constrained to parallel planes, to concentric spheres and to concentric
cylinders. In each case the proof scheme is the same.

Theorem 5.1. Let M1,M2, . . . ,MN be parallel planes or concentric
spheres in R3 with union M, let G be a simple connected graph and
let π : V → {1, . . . , |V |}. Then G admits a minimally rigid completely
regular framework (G, p) on M, with pk ∈ Mπ(k) for each k, if and only
if G is a Laman graph.

Proof. Section 3 shows that the Laman counting conditions are nec-
essary. For sufficiency note that there are minimally rigid completely
regular frameworks (K2, p) with p1, p2 placed on any pair Mi,Mj. Thus
the constructions of the last section together with the graph theory of
Section 2 lead to the stated framework realisations if G is a Laman
graph. �

We now turn to the proof of a Laman theorem for the cylinder for
which we require the following matricial companion to the rigid graph
extension move.

Lemma 5.2. Let M be a union of concentric cylinders in R3. Let H
be a subgraph of the simple connected graph G such that K = G/H is
simple and suppose that G,H,K are maximally independent of type 2.
Suppose that for H and K all completely regular framework realisations
on M are isostatic. Then the same is true of G.

Proof. Let (G, p) be completely regular, n = |V (G)|. Let v∗ be a fixed
vertex of H . Consider the rigidity matrix R(G, p,M) with column
triples in the order of v1, . . . , vr−1, v∗, vr+1, . . . , vn where v1, . . . , vr−1,
vr = v∗ are the vertices of H . Order the rows of R(G, p,M) in the order
of the edges e1, . . . , e|E(H)| for H followed by the n rows of the block di-
agonal matrix whose diagonal entries are the vectors h1(p1), . . . , hn(pn)
in R3, followed by the remaining rows for the edges of E(G)\E(H).
Note that the principle submatrix formed by the first |E(H)|+ r rows
is the 2 by 1 block matrix [R(H, p,M) 0].

Suppose, by way of contradiction that G is not isostatic. Since 2|V |−
|E| = 2 there is a vector u in the kernel of R(G, p,M) which is not a
rigid motion (infinitesimal) flex. By adding to u some rigid motion
flex we may assume that ur = 0. Write u = (uH, uG\H) where uH =
(u1, . . . , ur). The matrix R(G, p,M) has the block form

R(G, p,M) =

[

R(H, p,M) 0
X1 X2

]

where X = [X1X2] is the matrix formed by the last |E(G)| − |E(H)|
rows. Since (H, p) is isostatic on M and R(H, p,M)uH = 0 it follows
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that uH is a rigid motion infinitesimal flex. But the coordinate ur = 0
and so uH = 0.

Consider now the specialisation pi → p′i = pr for i < r, pi → p′i =
pi for i ≥ r. We show that dim kerR(G/H, p′,M) > 2. This is a
contradiction because we may assume at the outset that p is such that
(G, p), (H, p) and (G/H, p′) are completely regular.

Note that the final 3(n−r+1) columns of the matrix X resembles in
some respects the matrix R(G/H, p′,M). To see a precise connection
perform column operations on X that add to the vr column triple all
prior column triples. Write X({pi}) for the submatrix of the result
formed by the columns for vr to vn. Note that specialisation results in
the identification X({p′i}) = R(G/H, p′,M). Thus, noting that ur = 0
and uG\H 6= 0 we obtain the desired contradiction,

R(G/H, p′,M)(ur, uG\H) = X({p′i})(ur, uG\H)

= X({pi})(0, uG\H) = R(G, p,M)u = 0.

�

Theorem 5.3. Let M be a circular cylinder in R3 and let G be a simple
connected graph. Then G admits a minimally rigid completely regular
framework (G, p) on M if and only if G is maximally independent of
type 2.

Proof. Note that the necessity of the condition on the graph follows
from Proposition 3.4.

Let C be the class of graphs that admit a minimally rigid completely
regular framework on the cylinder. Then C contains K4 since there are
frameworks (K4, p) on the cylinder that are regular and minimally rigid
as free frameworks. Also C is closed under Henneberg 1 moves and by
the results of the last section, by Henneberg 2 moves. This, together
with the lemma above shows that C is Henneberg complete. Thus
sufficiency follows from Theorem 2.11 and the fact that the singleton
graph evidently has an isostatic realisation. �

It follows from the discussion in the last section that there is a similar
combinatorial characterisation for frameworks on concentric cylinders,
with statement and proof in the style of Theorem 5.1.

Remark 5.4. We note that Whiteley [19] discusses analogous results
for frameworks on the flat (geodesic) cylinder and other flat spaces. The
cylinder context here concerns infinitesimal rigidity on the cyclic plane
and the infinitesimal motion equations derive from equations in the
plane. While this keeps some aspects of the rigidity matrix analogous
to the plane there is the added feature of geodesic edges which wrap
around the cylinder (for which k-frame matroids are introduced to play
a role).
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5.1. Cone graphs. We say that a graph G = (V,E) is a cone graph if
there is at least one distinguished vertex v which is adjacent to every
other vertex. The following corollary and its plane variant indicated
below is due to Whiteley [18]. It is well-known that the equivalence of
(i) and (ii) does not hold in general (as the so called double banana
graph reveals).

Corollary 5.5. Let G = (V,E) be a cone graph. Then the following
statements are equivalent.

(i) G is maximally independent for R3, so that 3|V | − |E| = 6 and
3|V ′| − |E ′| ≥ 6 for every subgraph G′ = (V ′, E ′) with |V ′| > 2.

(ii) There is a minimally rigid completely regular framework realisa-
tion (G, p) in R3.

Proof. One can readily see that, with v1 = v and G0 = G\v, the set of
points q in VR3(G, p) ⊆ R3n with fixed ”centre” q1 = p1 is in bijective
isometric correspondence with the variety VM(G0, (p2, . . . , pn)) whereM
is the union of the p1-centred spheres S(p1, |pk − p1|), for k = 2, . . . , n.
The stated equivalence follows from this correspondence. �

There is a companion result for free bar-joint frameworks in R3 sub-
ject to the family of constraints that all points are a specified distance
from a single plane. This follows from the parallel planes Laman theo-
rem above. With the plane playing the role of a vertex, for the purposes
of counting, the counting requirement is as above.

In a similar way we obtain from the concentric cylinders theorem the
following corollary.

Let G = (V,E) be a cone graph with |V | = n + 1 and with distin-
guished cone vertex vn+1. Let p = (p1, . . . , pn) be a framework vector,
as usual and let p∗ be a straight line. Then the triple (G, p, p∗) is a
point-line distance framework for the cone graph G. A line has 4 de-
grees of freedom and so the natural class of graphs for “typical”general
point-line distance frameworks are those for which

3|Vp|+ 4|Vl| − |E| = 6

with a corresponding inequality for subgraphs. We refer to such graphs
as maximally independent point-line graphs. One can define the in-
finitesimal rigidity of general point-line-distance frameworks and also
generic frameworks in a natural way. (See for example Owen and
Power, [14].)

Corollary 5.6. Let G = (V,E) be a cone graph, viewed as a point-line
graph G = (Vp ∪ Vl, E) with a single line corresponding to the cone
vertex. Suppose also that the subgraph induced by Vp is connected with
at least 4 points. Then the following statements are equivalent.

(i) G is maximally independent point-line graph.
(ii) There is a minimally infinitesimally rigid point-line framework

realisation (G, p) in R3.
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Proof. Infinitesimal rigidity of the point-line distance framework is equiv-
alent to the infinitesimal rigidity of the subframework of points con-
strained to the concentric cylinders (one for each point) determined
by the point line distances. This, by the concentric cylinders theorem
above is equivalent to

2|Vp| − |Epp| = 2

with a similar inequality for subgraphs. For each point there is a point-
line edge, and so |Vp| = |Epl|. Thus,

3|Vp|+4|Vl|−|E| = (2|Vp|+|Vp|)+4−|Epl|−|Epp| = 2|Vp|+4−|Epp| = 6,

with an associated inequality for subgraphs, as desired. �
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