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Abstract—Accurate modeling of high speed RLC interconnects
has become a necessity to address signal integrity issues in current
VLSI design. To accurately model a dispersive system of inter-
connects at higher frequencies; a full-wave analysis is required.
However, conventional circuit simulation of interconnects with full
wave models is extremely CPU expensive. We present an algorithm
for reducing large VLSI circuits to much smaller ones with similar
input-output behavior. A key feature of our method, called Frequency
Shift Technique, is that it is capable of reducing linear time-varying
systems. This enables it to capture frequency-translation and sampling
behavior, important in communication subsystems such as mixers,
RF components and switched-capacitor filters. Reduction is obtained
by projecting the original system described by linear differential
equations into a lower dimension. Experiments have been carried out
using Cadence Design Simulator c©which indicates that the proposed
technique achieves more % reduction with less CPU time than the
other model order reduction techniques existing in literature. We
also present applications to RF circuit subsystems, obtaining size
reductions and evaluation speedups of orders of magnitude with
insignificant loss of accuracy.
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I. INTRODUCTION

THE recent trend in the VLSI industry toward miniature
designs, low power consumption, high speed digital cir-

cuits and increased integration of analog circuits with digital
blocks has made the signal integrity analysis a challenging
task. When analyzing high-performance integrated circuit de-
signs, it is well known that the single lumped resistor- capaci-
tor (RC) model of interconnect is insufficiently accurate. It has
been shown [1] that reasonably accurate electro-quasistatic,
or transient interconnect, simulations could be performed by
computing the time evolution of the electric field both inside
and outside the conductors via a finite-difference discretization
of Laplace’s equation. A boundary-element approach [2] based
on Green’s theorem was proposed which performs the calcu-
lation using the same surface discretization used for ordinary
capacitance extraction, thereby avoiding the large exterior
domain mesh and computation.

To verify the effects induced by interconnects, a com-
bination of extraction and analysis is necessary. Extraction
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determines the resistance, the capacitance and the inductance
of interconnects, which can then be used to build a circuit
model for the analysis of interconnect effects. For analysis (or
simulation), research has been carried out of the use of model
order reduction (MOR) [3-5], complex frequency hopping
[6-8], krylov-space techniques [9, 10] and multi conductor
transmission lines [11-13]. Model order reduction is based
on approximating the Laplace-domain transfer function of a
linear (or linearized) network by a relatively small number of
dominant poles and zeros. Such reduced-order models can be
used to predict the time-domain or frequency-domain response
of the linear network. A multipoint moment-matching or
complex frequency hopping (CFH) technique extracts accurate
dominant poles of a linear sub-network up to any predefined
maximum frequency. This method generates a single transfer
function for a large linear sub-network and provides for a
CPU/accuracy tradeoff. Model order reduction can also be
obtained using projecting the original system described by
nonlinear differential equations into krylov subspace of lower
dimension. This reduced model can be simulated using con-
ventional numerical techniques. Simulation of interconnects
can also be performed treating the interconnect as full-wave
model.

The rest of the paper is organized as follows: MOR
techniques of linear circuits are explained in section 2. An
introduction to linear time varying systems is given in section
3. Frequency shift technique is stated in section 4 and the
problem statement is given in section 5. Simulation results
are shown in section 5 while conclusions are made in section
6.

II. MODEL ORDER REDUCTION OF LINEAR CIRCUITS

Model order reduction is a technique that takes a circuit
containing a large number of poles and reduces it to a smaller
representation consisting of the dominant poles from the origi-
nal linear circuit as shown in Fig. 1. There are two approaches
to model order reduction: moment matching techniques [14-
16] and matrix approximation [17].

A lumped linear time-invariant circuit can be described by
first-order differential equations

ẋ = Ax + Bu
y = Cx + Du

(1)

where x is an n-dimensional state vector, A is an n×n matrix,
u is the system’s input, y is the output of interest, and D
denotes the direct coupling matrix. It is desired to obtain the
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Fig. 1. Model Order Reduction

zero-state impulse response of a linear circuit described by
eq. (1), which in turn can be used to determine its response
to any excitation. Hence, the Laplace transform is applied to
eq. (1) assuming zero initial conditions and for convenience
the direct coupling matrix D is neglected. Then, we obtain

sX = AX + BU
Y = CX

(2)

Where X , Y , and U denote the Laplace transform of x, y,
and u respectively. It follows from eq. (2) that the transfer
function, or the Laplace transform of the impulse response,
defined as H(s) = Y (s)/U(s), is given by

H(s) = C(sI − A)−1B (3)

Where I is identity matrix. H(s) can be expanded using
Maclaurin series

H(s) =
∞∑

i=0

misi (4)

Comparing eq (3) and (4) and equating like powers of s, it
can be shown that

mi = −CA−i−1B, i = 0, 1, 2 · · · · · · (5)

In a reduced-order model, especially one obtained by mo-
ment matching, the transfer function is approximated by the
reduced-order system of proper rational function of s having
q-poles

H(s) =
nq−1s

q−1 + nq−2s
q−2 + · · · · · · + n1s + n0

sq + dq−1sq−1 + · · · · · · d1s + d0
(6)

Because there are 2q unknowns in the reduced-order system,
it is forced to correspond to the first 2q terms of eq.(6) by
using Padé approximation, yielding the following equality:

nq−1s
q−1 + nq−2s

q−2 + · · · · · · + n1s + n0

sq + dq−1sq−1 + · · · · · · d1s + d0

= m0 + m1s + · · · · · · + m2q−1s
2q−1 (7)

Multiplying both sides of eq. (7) by the denominator of the
left-hand side yields a set of equations that can be solved for
2q coefficients. After finding roots of the denominator of the
reduced-order model, eq. (6) can be expressed as a partial
fraction expansion form given by

Ĥ(s) =
q∑

i=1

ri

s − pi
(8)

where ri is a residue of Ĥ(s) at the pole pi. It is then
straightforward to obtain the approximated impulse response
ĥ(t) from (8).

III. LINEAR TIME VARYING SYSTEMS

A nonlinear system driven by a large signal bL(t) and
a small signal u(t) can be described by a set of nonlinear
differential algebraic equations

dq(x(t))
dt

+ f(x(t)) = bL(t) + bu(t)

z(t) = dT x(t) (9)

where x(t) ∈ R
n is the vector of node voltages; q(.) and f(.)

are nonlinear functions describing the charge/flux and resistive
elements, respectively; z(t) is the set of output nodes; b and
d are selector vectors that map the input and output ports to
the space of the networks, and n is number of nodes in the
network. Splitting the response into two parts:

x(t) = xL(t) + xS(t) (10)

where xL(t) and xS(t) are the responses due to the large
signal bL(t) and small signal u(t), respectively. Substituting
from eq.(10) into eq.(9) and linearizing around xL(t) yields
the LTV system,

d(C(t)xS(t))
dt

+ G(t)xS(t) = bu(t) (11)

where,

G(t) =
∂f

∂x

∣∣∣∣
x=xL(t)

C(t) =
∂q

∂x

∣∣∣∣
x=xL(t)

(12)

Zadeh [18] has introduced the concept of time varying system
function to describe the response of LTV systems. According
to Zadeh’s formalism, an LTV system can be characterized
by using a time-varying transfer function, h(s, t), where the
response of the system due to an input of the form est is given
by esth(s, t) [12]. Thus, by substituting in eq.(11) we get,

d(C(t)h(s, t))
dt

+ sC(t)h(s, t) + G(t)h(s, t) = b (13)

The transfer path from the input to the set of the output nodes
can be represented by a time-varying transfer function Φ(s, t)
where,

Φ(s, t) = dT h(s, t) (14)

It is clear from eq. (14) that a full characterization of the
system transfer function requires a solution of LTV system
for many values of ‘s’.

IV. FREQUENCY SHIFT TECHNIQUE

Model order reduction is a technique that takes a circuit
containing a large number of poles and reduces it to a smaller
representation consisting of the dominant poles from the
original linear circuit. The generalized dynamic equations of
RLC circuit shown in Fig.2 can be written as

MV̈ (x, s) + KV (x, s) = F (x, s) (15)

MÏ(x, s) + KI(x, s) = G(x, s) (16)
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Fig. 2. Cross Section of a Transmission Line

From eq. (15) and eq. (16), K
M = −γ2 and F (x, s) and G(x, s)

are two different excitations. Solving for I(x, s) from eq. (15)
and eq. (16) results

I(x, s) = �V (x, s) (17)

where � is called response-dependent condensation matrix.
Eq. (17) is called governing equation with frequency shift
technique or eigenvalue shift technique [19].

A. Selection of Frequency Shift Value

The frequency shift technique has two functions:
1) Accelerating the convergence and
2) Making the reduced model close to the original model

within any given frequency range.
For the first case, the frequency shift value is

0 ≤ q < λ1 (18)

where the λ1 is the lowest eigenvalue of the original model.
The frequency shift value in the second case can be found as

q ≈ ω2
min + ω2

max

2
(19)

where ωmin and ωmax are the lower and upper boundary of the
frequency range within which the characteristics are required
to be kept in the reduced model.

V. PROBLEM STATEMENT

Consider linear circuit which can be described by difference
equations as follows:

xk = Axk−1 + Buk + vk

yk = Cxk−1 + Duk + wk
(20)

where k ∈ Z, x is the R
n real valued state, u is the

R
m- valued observed input, v and w are unobserved input

disturbances and y is the R
q- valued observed output.

The main point of this work is that the unobserved input
disturbances can be time varying. Hence, rearranging eq.(10)

xk = Axk−1 + Buk + M(k)vk

yk = Cxk−1 + Duk + N(k)wk
(21)

where
[

M(k)
N(k)

] [
M

T (k) N
T (k)

]
(22)

is the time-varying covariance matrix, M and N are transfor-
mation matrices.
Problem: The system matrices A and C must be identified
on the basis of state space eq.(21) or it is required to identify
(λ, ϕλ), where λ is the set of eigen values (the poles of system
matrix A) and ϕλ are the set of corresponding eigen vectors of
system matrix A. When model order reduction techniques are
applied to any system, the expected system matrices Ã and C̃

must be identified by considering the eigen values (they effect
the stability of the system) and eigen vectors.
Solution: The objective of this work is to show that the
Frequency Shift Technique provides consistent estimations.
The proposed technique reduces the CPU time and increases
the % reduction.

VI. SIMULATION RESULTS

A. Analysis of Up-Converter
As shown in Fig. 3., an up-converter which consists of a

low-pass filter, a mixer, and two bandpass filter. The compo-
nents values chosen to be: R1=160Ω, R2=1.6kΩ, R3=500Ω,
C1=C2=C3=10nF, and L2=L3=25.35nH.
The transfer function of up-converter can be given as

Fig. 3. Low-pass filter-mixer-two bandpass filters

H(s) =
0.5

1 + sC1R1

Z1

P1

Z2

P2
(23)

where,

Z1 =
(s + s0)L2

1 + (s + s0)2L2C2
; P1 = R2 +

(s + s0)L2

1 + (s + s0)2L2C2

Z2 =
(s + s0)L3

1 + (s + s0)2L3C3
; P2 = R3 +

(s + s0)L3

1 + (s + s0)2L3C3

The dominant poles of transfer function of up-converter using
eq. (9) is found out using frequency shift technique. Because
of the numerical complexity, impulse response (h(s, t)) of
transfer function is not shown here. The proposed method for
LTV has been used to find the order reduction of the system
by considering the derivatives of the network Fig. 3.

The response of the network is calculated using generic
sub-space algorithm. This result is shown in Fig. 4 for both
original model as well as reduced model.
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Fig. 4. Comparison of output response of original and reduced model

B. Steady State Response of LTV System using Frequency Shift
Technique

Consider once again the mixer as shown in Fig. 3. Steady-
state solution was first obtained using the proposed method

Fig. 5. Steady State Output Response

by taking the input as e1(t) = sin(100 × 106t). Figure. 5.
shows the steady state output waveform. It is observed from
Fig. 5 that at peaks, the output has unwanted components. To
demonstrate the efficiency of the proposed method, consider a
RLC linear time variant circuit. Let us assume that the model
matrix A is of the order 10, 50, 250, 1000. After applying the
frequency shift technique the model order has become to 6,
31, 134, and 231, respectively. All these results are tabulated
in Table 1.

TABLE I
EFFICIENCY OF THE PROPOSED SCHEMES

Full Modle Size 10 50 250 1000
Frequency Shift Technique 6 31 134 231

C. Comparison with Existing Techniques
The proposed Frequency Shift Technique is compared with

the existing techniques and the results are tabulated in Table
2.

TABLE II
COMPARISON WITH EXISTING TECHNIQUES–% REDUCTION AND CPU

TIME

Method Order % CPU Time
(1918) Reduction (secs)

Elfadel [20] 690 64 55.12
Yu [21] 575 69 64.18

Pavan [9] 537 72 169.91
Roychowdhury [22] 770 61 243.12

Phillips[23] 383 79 84.81
Frequency Shift Technique 222 88 11.31

To analyze CPU time, a two port network containing a set
of six coupled transmission lines as well as 12 single lines
was considered. The size of the original matrices is 1918.
After applying Frequency Shift Technique, the size of the
reduced order model that would match the original network
up to 10GHz is 222.

D. Transient Responses
In order to avoid unwanted transient response resulting from

the coupling capacitors, the LTV transfer function has been
expanded on the positive real axis. These transient responses
have been drawn for s0=0 and s0=106 and shown in Fig. 6
and 7 respectively.

Fig. 6. Transient response for the system at s0 = 0

The reliability of the Frequency Shift Technique is further
demonstrated by Monte Carlo tests. Shown in Fig. 8 are the
Monte Carlo test results for the RLC tree circuit with 100
runs.

From the Fig. 8, we conclude that the delays measured from
the reduced-order models are mostly accurate. The rela. delay
error is defined by the formula[24]. The relative-delay-error
percentage mostly falls within 1%, meaning that the balancing-
free square root method has an adequate robustness and results
are tabulated in Table 3.

Delay of reduced model − Delay of full model

Delay of full model
(24)
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Fig. 7. Transient response for the system at s0 = 106

Fig. 8. Monte Carlo test of the RLC ladder circuit reduction using Freqency
Shift Technique

TABLE III
SPEED UP VS MODEL SIZE

Full Model Size 10 50 250 1000
Proposed Algorithm 6 31 134 231

Speed Up 2 24 63 191
Rela. Delay Error (%) < 0.8 <0.6 <0.3 <0.15
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