
A Force-directed Graph Drawing based on the
Hierarchical Individual Timestep Method

T. Matsubayashi, and T. Yamada

Abstract— In this paper, we propose a fast and efficient method for
drawing very large-scale graph data. The conventional force-directed
method proposed by Fruchterman and Rheingold (FR method) is
well-known. It defines repulsive forces between every pair of nodes
and attractive forces between connected nodes on a edge and calcu-
lates corresponding potential energy. An optimal layout is obtained
by iteratively updating node positions to minimize the potential
energy. Here, the positions of the nodes are updated every global
timestep at the same time. In the proposed method, each node has
its own individual time and timestep, and nodes are updated at
different frequencies depending on the local situation. The proposed
method is inspired by the hierarchical individual timestep method
used for the high accuracy calculations for dense particle fields such
as star clusters in astrophysical dynamics. Experiments show that
the proposed method outperforms the original FR method in both
speed and accuracy. We implement the proposed method on the
MDGRAPE-3 PCI-X special purpose parallel computer and realize
a speed enhancement of several hundred times.

Keywords— visualization, graph drawing, Internet Map

I. INTRODUCTION

IN many scientific and engineering domains, complicated
relational data structures are frequently represented by

networks or, equivalently, graphs. For example, WWW (World
Wide Web) sites are often represented by hyperlink networks,
with pages as nodes and hyperlinks between pages as edges,
the interactions between genes, proteins, metabolites and other
small molecules in an organism are represented by gene
regulatory networks, and the relationships between people and
other social entities are characterized by social networks. This
popularity is because network representations often provide
important insights to researchers in understanding the intrinsic
data structure with the help of some mathematical tools such
as graph theory, as well as by examining an embedded layout
in a low-dimensional Euclidean space. Embedding a graph
in a low-dimensional Euclidean space, which is called graph-
drawing, is especially useful when the graph is sparse as most
of the real world graph data are.

In this paper, we propose a fast and efficient method for
drawing undirected large-scale graph data based on the force-
directed method proposed by Fruchterman and Rheingold
(1991)[3]. In their method, an optimal layout is obtained by
iteratively updating node positions to minimize the potential
energy. Here, the all positions of the nodes are updated in

T. Matsubayashi is with the Communication Science Laboratories, NTT
Corporation, 2-4 Hikaridai, Seika-cho, Soraku-gun, Kyoto, 619-0237 Japan
(corresponding author to provide phone: +81-774-93-5360; fax: +81-774-93-
5155; e-mail:tatsushi@cslab.kecl.ntt.co.jp

T. Yamada is also with the Communication Science Laboratories, NTT
Corporation (e-mail: yamada@cslab.kecl.ntt.co.jp)

every step at the same time. Our proposal, on the other hand,
gives each node its own individual time and timestep, and
nodes are updated with a different frequency depending on
the local situation. The proposed method is inspired by the
hierarchical individual timestep method used in astrophysical
dynamics. We have implemented the proposed method on the
MDGRAPE-3 PCI-X special purpose parallel computer, and
succeeded in achieving a speedup of several hundred times.
Thus, the proposed method with parallel processing enables
us to visualize graphs that have more than 104 nodes N and
edges E.

The organization of the paper is as follows. In §II, we intro-
duce some related works. In §III, we describe the suggested
algorithm and its updating method. In §IV, we describe the
results of simulations. The summary is presented in §V.

II. RELATED WORK

Various methods have been proposed to solve the graph
layout problem since the 1980’s. Among them, the most suc-
cessful strategy is the “force-directed method”. The basic idea
of the force-directed method is to simulate a system of natural
forces and find the minimum energy state of the system by
updating coordinates (node positions) to reflect the direction
of the force computed based on the graph distance, geodesic
distance between nodes on the graph, or some other adjacency
measure. This corresponds to finding the zero temperature state
of a crystal structure in molecular dynamics. In this section,
we briefly review related research in the force-directed method
literature.

A. Spring Embedder method

The most popular method for drawing undirected graphs is
the so-called spring method. The first spring method, called the
spring embedder method, was proposed by Eades (1984) [1].
This method likens a graph to a mechanical collection of
rings (the nodes) and connecting springs (the edges). Two
connected rings are attracted to each other or repelled from
each other according to their distance and the properties of the
connecting spring. A state with minimum energy in the springs
corresponds to a nice drawing of the underlaying graph.

B. Kamada & Kawai Method

Kamada and Kawai (1989) [2] proposed another spring
method (hereafter referred to as the KK method). In the KK
method, a graph is modeled as a system of springs spanning
nodes; their natural lengths are proportional to the graph

International Journal of Electronics, Circuits and Systems Volume 1 Number 2

116

distance of the nodes. Let xi be the position of node i in
the given graph layout. The spring force on node i is defined
as follows:

aKK,i =
N∑

j �=i

kij

(
1 − lij

|xij |
)

xij , (1)

where |xij | = |xi−xj | and lij are the Euclidean distance and
the graph distance between node i and j, respectively. The
spring constant, kij , is defined as kij = k/l2ij , where k is the
normalization factor.

The KK method sequentially updates the node positions
based on the Newton-Raphson method: a node in the highest
energy state is selected and its positions, and then the total
energy, are updated. On the other hand, the FR method that
will be described later updates all node positions at once.
The KK method requires O(N2) memory space to store lij
matrix. Even modern general-purpose computers, which can
have memory resources of several Giga bytes, may suffer
system memory overflow when N ≥ 105. Thus, the KK
method is not applicable to large-scale graph data.

C. Fruchterman & Reingold Method

Fruchterman and Reingold proposed a method (hereafter
referred to as the FR method) based on the attractive force aa

between the nodes on an edge (i.e., between connected nodes)
as well as the repulsive force ar between all (connected or
unconnected) nodes defined as follows:

aa,i =
1

k

Ei∑
j �=i

|xij |xij , (2)

ar,i = −k2

N∑
j �=i

xij

|xij |2 , (3)

where Ei is the number of edges connected from node i, and
k is the normalization factor. The sum of force ai for node i
is derived from equations(2) and (3) as ai = aa,i + ar,i.

As mentioned before, the FR method updates the positions
of all the nodes simultaneously with equal frequencies by
moving them toward the direction of the force given by
equation (2). Here, the maximum step size is upper bounded
by the cooling function tcool as follows:

xi(t + 1) = xi(t) + ai × min (1, tcool(t)/|ai|) . (4)

The cooling function tcool(t) is defined as

tcool(t) = C × (1 − t/TEND) . (5)

where C is the initial maximum step size. In this method, we
have to determine the appropriate values for C and TEND for
a given data set before starting a simulation. We will discuss
this issue in more detail in §IV-A. An outline of node update
is shown below.

(a) Set initial positions randomly.
(b) Calculate force ai on each node i.
(c) Update tcool.
(d) Calculate xi(t + 1) on each node i.
(e) Update the time, t = t + 1.
(f) Go back to step (b), until t = TEND.

D. Recent works

The conventional methods described in the previous section
require computation of the interaction between all nodes,
thus, the computational order is O(N2). However, several
approximation techniques have been proposed in recent years.

Quigley and Eades(2000) [4] proposed an efficient method
using Burns-Hut tree code [Burns and Hut(1986)[5]]. The
Barnes-Hut tree code is an approximation algorithm developed
for astrophysical dynamics. In this method, the forces from
distant nodes are grouped together and computed as a joint
force from their barycenter. This reduces the computational
cost for each node interaction from O(N2) to O(N log N).

Adai et al.(2004) [6] proposed LGL (Large Graph Layout)
method for drawing large-scale networks. In their method, the
minimum spanning-tree is constructed from the link structure
of the original network data, and the coordinates are decided
according to the minimum spanning-tree. Recently, the graph-
drawing project called “Opte Project” has visualized the largest
Internet network mapping [7]. It examined 5 million nodes
and 50 million edges, and took 252.68 hours to compute.
However, the quality of the results is questionable, because
the LGL method disregards a certain number of the network
connections that are not the part of the minimum spanning-
tree. This problem will be discussed again in § IV-B.

III. NEW ALGORITHM

The primary focus of the conventional methods described
above is the definition of the forces, and their efficient cal-
culations. Another challenge is to speed up the optimization
process.

In this paper, we propose a new method in which each node
has an individual time and timestep based on the “individual
timestep method”. The FR method uses the Shared timestep
with which all nodes update simultaneously. The proposed
method is based on the FR method. Hereafter, we refer to
the proposed method as the FR-HI method. The individual
timestep method was originally developed to realize the high-
accuracy and high speed N-body calculations needed for
astrophysical dynamics [8]-[10], especially for a star cluster
or cluster of galaxies where density contrast is large. Figure
1 shows pictorial views of time evolution in the shared and
individual timestep schemes, respectively.

Shared timestep Individual timestep

Fig. 1. The left and right figures show a the schematic figure of time evolution
for the shared and individual timestep scheme, respectively. For Individual
timestep, longer timestep nodes are calculated as predictor ©.

In the shared timestep method, even if the force on a node
is almost zero and its effect on the coordinates of the node is

International Journal of Electronics, Circuits and Systems Volume 1 Number 2

117

small, the coordinates and the value of the force are updated
every timestep. On the other hand, in the individual timestep
method, every node has its own individual time which is
different from the system-wide global time. When the force
on a node is strong, then the individual time of the node
becomes short, and the node is updated frequently. When the
force is weak, the individual time becomes long and the node
is updated only infrequently, so the computational cost can
be reduced. Moreover, the forces from the other nodes are
calculated by using the approximated coordinates which we
call “predictor”.

If node updates are completely independent, the cost of
the predictor calculations becomes large. The solution is the
hierarchical timestep; the timesteps are quantized so that nodes
are hierarchically structured which lowers the cost calculating
the predictors. Moreover, it enables the use of parallel process-
ing. We will discuss parallel processing on a special purpose
computer in §III-D. The next section examines the Hierarchical
Individual timestep method in detail.

A. Hierarchical Individual timestep method

t=0 t=1
k=0

k=-1

k=-2

k=-3

k=-4

-1
t=2

-2
t=2

-3

time evolution

t=2

Fig. 2. Schematic view of time evolution for hierarchical individual timestep
method. All nodes have individual time on • of this figure, and update when
they quantize with global time t. Here, the condition for the change of Δti
is defined by Eq.(7)-Eq.(10). Thus, node states can move only on the dotted
lines.

In the FR-HI method, each node i has its own (individual)
time ti and timestep Δti, which is rounded to an integer.
Its coordinates are updated when t = ti (i.e., when ti is
“synchronized” with the global time t), as follows:

xi(ti + Δti) = xi(ti) + Δti × ai(ti). (6)

We would like to make Δti inversely proportional to the force.
However, it is not computationally efficient if each node has
completely different timestep size. Therefore, the essential idea
of the proposed scheme is to adjust the timestep of each node
so that it satisfies

Δti = 2k if 2k ≤ η

|ai(ti)| < 2k+1, (7)

where k is an integer, and η is a dimensionless constant
that controls the computational accuracy. In the experiments
described in this paper, we always use η = 1.0. By this
adjustment, the timestep size of each node is “quantized” so

that nodes with similar force strength share the same time and
are updated simultaneously. As a result, we update the position
of node i at time t, such that

t mod 2k = 0 , (8)

where “mod” is the modulo operator.
When we update the position of node i at time t, we may

also need to update the timestep itself. We first calculate Δt̃ =
η/|ai(ti)|, the non-quantized version of the new timestep. The
new timestep Δ ti,new = 2knew is calculated as

knew =

⎧⎨
⎩

k − 1 if Δt̃i < 2k

k + 1 if Δt̃i > 2k+1 and t mod 2k+1 = 0
k otherwise .

(9)

Note that even when the non-quantized version of the timestep
is increased as Δt̃i > 2k+1, the timestep is not updated
from 2k to Δ ti,new = 2knew = 2k+1 if t does not satisfy
t mod 2k+1 = 0.

Figure 2 shows schematic view of the time evolution for
the hierarchical individual timestep method. All nodes have
individual time on “•” in this figure, and are updated when
global time t is divisible by Δti. Here, Δti is updated when
the conditions defined as Eq.(7)-Eq.(9) are satisfied. Thus,
node states can move along the dotted lines.

In addition, we set upper limit Δtmax and lower limit Δtmin

to the update timestep size. We force node synchronization by
setting the lower limit of the timestep. The role of the lower
limit is similar to that of the maximum temperature in the FR
method. It prevents divergence of coordinate values using a
force given from initial random placement. If this lower limit
is not used, the progress of the calculation dramatically slows.
Thus, when Δti = Δtmin, the dynamic formula is replaced
by

xi(ti + Δtmin) = xi(ti) +
η

|ai(ti)| × ai(ti) (10)

In this paper, we set Δtmax = 1, Δtmin = 2−10.

B. Updating method

In the FR-HI method, only the nodes whose time ti + Δ ti
is synchronized with global time, t, are updated. Where, the
global time is selected as

t = min (ti + Δti). (11)

We set the number of synchronized nodes as

ns(t) =
N∑
i

{
1 if t = ti + Δ ti
0 otherwise .

(12)

Thus, the computational cost for each node interaction is
reduced from O(N2) to O(ns(t) × N).

The force on a node is calculated based on the predicted
position (predictor) of other nodes. The predicted position is
updated from tj to t as

x̃j(t) = xj(tj) + (t − tj) × aj(tj). (13)

where j runs through all nodes. The predictor of our scheme
requires no memory of the previous timesteps.

International Journal of Electronics, Circuits and Systems Volume 1 Number 2

118

Using the force yielded by equations (2) and (3), we
evaluate the force at t for the synchronized nodes as follows:

ai(t) =
1

k

Ei∑
j �=i

|xij |xij − k2

N∑
j �=i

xij

(x2
ij + ε2)

, (14)

where

xij = x̃j − x̃i, (15)

and we apply the softening parameter ε to teat repulsive forces
between nodes so that the calculation does not diverge. In this
paper, we set ε = 0.01.

The updating process proceeds according to the following
steps:

(a) Set initial position randomly, with ti = 0 for all
nodes.

(b) Calculate force ai for all nodes.
(c) Calculate Δti for all nodes.
(d) Set the global time t to be minimum ti + Δti.
(e) Select the synchronized nodes with t = ti +Δti, and

set ns(t).
(f) Predict position x̃i of all nodes at time t.
(g) Calculate force ai for the synchronized nodes.
(h) Update position xi for the synchronized nodes.
(i) Update time ti = ti+Δti of the synchronized nodes.
(j) Calculate timestep Δti of the synchronized nodes.
(k) Go back to step (d), until t ≥ TEND.

C. Evaluation method

1) System Energy Ψ: In this paper, we use the scalar
potential energy of the system to evaluate the accuracy of
the algorithms. The Force-directed methods are equivalent to
determining the crystallized state of network data. Since the
nodes will be always updated in the accelerated directions,
the ideal final states correspond to the lowest potential energy
states. Thus we define the scalar potential energy function to
satisfy the following gradient relationship equation

a = ∇Ψ . (16)

Using equation (14), the total energy Ψ is given by

Ψ =
1

3k

E∑
i,j

|xij |3 − k2

2

N∑
i

N∑
i�=j

log
∣∣x2

ij + ε2
∣∣1/2

. (17)

Hereafter, we use energy Ψ as the objective function.
2) Averaged Steps nave: Next, to compare the FR-HI

method to the FR method, we use the averaged number of
steps, nave, defined as

nave =
1

N

T∑
t=0

ns(t) . (18)

Actually, it is difficult to accurately evaluate the computational
complexity to compare our method to the FR method. How-
ever, it is useful to use nave because over 99.9% of the time
is spent calculating the part of O(N2).

xj y j

x i

y i

2

2x2 y2+ +

^2

^2

x-2

log |x |
ij

ij

memory

MDGRAPE3 PCI-X board

force

energy

ai,x

ai,y

i

Fig. 3. The pipeline image of the architecture of MDGRAPE-3.

D. Special Purpose Computer: MDGRAPE-3

The primary advantage of parallel algorithms like the FR-HI
method (also FR method) is that they allow vector pipelined
machines to be used more efficiently. The total cost calculating
the repulsive force, equations (2), (3), (14), and (17), is
O(N2). Therefore, in a large scale network, this calcula-
tion takes more than 99% of the total time. Thus we use
MDGRAPE-3 PCI-X 1to determine the repulsive force and
the energy calculation, and the other calculations are done on
a host computer. Figure 3 shows the pipeline image of the
architecture of the MDGRAPE-3 chip.

As an example, to calculate model D (see table I) by the
FR-HI method, the user CPU time is about 70000 minutes if
we use only the host machine (Intel Xeon 3.2GHz). On the
other hand, it takes only 348 minutes by using MDGRAPE-
3. Actually, over 99.9% of the time is spent calculating the
acceleration and energy in the host machine. We implemented
the FR-HI method on MDGRAPE-3, and realized a speedup
of several hundred times. Thus, to calculate the interactions,
the use of parallel processing and a special purpose computer
is very effective and efficient.

IV. RESULTS

We examined the IP network data obtained from the Opte
Project, which was discussed in §II-D, in experiments. The
nodes in these data are Class-C network addresses, and the
edges represent the connections based on the routing infor-
mation of the network obtained by the traceroute command.
The four network data sets shown in Table I were used in this
paper.

A. Effect of TEND

One of differences of the FR-HI method from the FR
method is that we do not need to set TEND explicitly. In the

1MDGRAPE-3 won the Honorable Mention of the IEEE Gordon Bell Prize
(2006)[11]. MDGRAPE-3 (Molecular Dynamics GRAPE) is a specialized
computer that was designed for the scalar and vector calculations involving
the summation of a function of particle distances. It can also handle three
dimensions. The MDGRAPE-3 PCI-X processor board is a general purpose
version; it operates at 250 MHz and its performance reaches 330 Gflops with
2chips.

International Journal of Electronics, Circuits and Systems Volume 1 Number 2

119

TABLE I

INTERNET DATA

model number of nodes (N) number of edges (E)

A 35638 42827
B 35836 42387
C 40027 47215
D 134023 161283

FR method, it is necessary to set TEND to control the energy
to ensure convergence into the lower state. However, it is
difficult to know an appropriate TEND beforehand, especially
when dealing with a large-scale network. When energy Ψ
doesn’t converge well enough, it is necessary to restart the
long calculation.

108

109

100 101 102 103 104

T , nave

model A

FR-HI method
TEND= 100

 1000
5000

10000 108

109

100 101 102 103 104

T , nave

model B

FR-HI method
 FR method

108

109

100 101 102 103 104

T , nave

model C

FR-HI method
 FR method 109

1010

100 101 102 103 104

T , nave

model D

FR-HI method
 FR method

Fig. 4. Simulation results for models A-C with FR and FR-HI methods.
The left top shows the parameter effect on the results of the FR method,
TEND = 100, 1000, 5000, 10000.

The left top of Figure 4 shows the parameter effect on the
results in the FR method. The lines plot the FR-HI and the
FR method responses with TEND = 100, 1000, and 10000.
From the figure, it is clear that the energy converges to a
low enough value only when TEND ≥ 10000. The results of
the FR-HI method, shown by the solid lines, indicate that the
FR-HI method offers faster convergence than the original FR
method. The calculation results for models B-D are also shown
in Figure 4; the results are similar to those of model A, where
we set TEND = 10000 for all models in the FR method.

Figures 5 and 6 show the graph layout results for model
A obtained by the FR method, and the FR-HI method re-
spectively. The overall structural characteristics are not clearly
seen with the FR method until TEND � 10000, while it can
be seen from a very early stage with the FR-HI method.
This is because the hierarchical time step calculation assigns
higher updating frequency to more dense subnetworks in the
FR-HI method. Thus, we can see that the overall structural
characteristics of the network emerge faster with the FR-HI
method than with the FR method.

Fig. 5. Graph layout results of FR method. From left to right TEND =

100, 1000, 10000.

Fig. 6. Graph layout results of proposed method. From left to right TEND =

100, 1000, 10000.

B. LGL method

As explained in the former paragraph, the force-directed
formulation used in the FR and the FR-HI methods is suitable
for parallelization. By implementing the proposed method on
a parallel computer, it is now possible, for the first time to the
best of our knowledge, to obtain a highly accurate graph-layout
of very large-scale networks such as the ones given in Table I.
We have implemented the proposed method on MDGAPE-
3, a special purpose parallel computer. In the LGL method
used in OpteProject, a large number of edges of the network
are removed in the initial operation to construct a minimum
spanning-tree for efficient calculation. However, this results in
a poor quality graph layout in that some related nodes that
should be put closely together tend to be widely separated.

Fig. 7. Left and Right are the layout results of model D with the LGL
method and FR-HI method, respectively. The color classification of the edges
are according to the domain region as “Asia Pacific - Red”, “Europe/Middle
East/Central Asia/Africa - Green”, “North America - Blue”, “Latin American
and Caribbean - Yellow”, “RFC1918 IP Addresses - Cyan”, and “Unknown
- gray”.

Figure7 shows the layout results of model D obtained by
the LGL method and FR-HI method. The total user CPU time
taken for the calculation was 400 minutes and 300 minutes for
the LGL method and the FR-HI method, respectively. Different
colors were assigned to the edges according to the domain

International Journal of Electronics, Circuits and Systems Volume 1 Number 2

120

region of the nodes. It can be seen from this figure that, with
the LGL method, although the edges of the same color that
are from the same region should be placed close together, they
are spread all over, which may be due to the initial truncation
operation. On the other hand, it is clear that the FR-HI method
places these classified edges in the same neighborhood.

TABLE II

AVERAGED LENGTH AND DISPERSION OF THE NODES

method Lbox 〈xij〉 /Lbox σ/ 〈xij〉
LGL 188.64 0.0103 1.551

FR-HI 340.48 0.0120 0.575

Next, we evaluated the quality of the graph layout results
by the histogram of the edge length. The second column of
Table II shows the maximum width of the coordinate Lbox

(corresponds to the vertical or horizontal size of Figure7).
The third column of Table II shows the averaged length of
all edges normalized by Lbox. The fourth column of the table,
σ, indicates the dispersion of |xij |. From this table, it is clear
that the LGL method has larger normalized dispersion than
the FR-HI method.

 1

 10

 100

 1000

 10000

 100000

 0 0.05 0.1 0.15 0.2 0.25 0.3

nu
m

be
r

of
 e

dg
ed

s

|xij| / Lbox

FR-HI method
LGL method

Fig. 8. Histogram of the edge lengths of the LGL method and FR-HI method.
Horizontal axis indicates edge length |xij | in which Lbox is delimited by 250
classes, and the length of each edge is normalized by Lbox. The vertical axis
indicates the number of edges in each class.

Figure 8 shows the histograms of the normalized edge
length |xij |/Lbox for the LGL method and FR-HI method. It
can be seen that the LGL method yields more long edges than
the FR-HI method, which indicates that the layout yielded by
the LGL method does not respect the adjacent nodes present
in the original data. With the FR-HI method, the longest edge
is less than 10% of Lbox. On the other hand, with the LGL
method, the longest edge is about 30% of Lbox, and the
number of edges that are over 10% length of Lbox is about
1% of the total number of edges.

Therefore, methods that consider the effect of all node
relations like the FR method or FR-HI method place con-
nected nodes together while the LGL method separates them.
This problem indicates that scheme based on the minimum

spanning-tree have limited ability in creating accurate graph
layouts.

V. SUMMARY

The FR-HI method and the FR method have two main
differences. The first is the node updating process. In the FR-
HI method, each node has an individual time and timestep
and updating is hierarchical, while the updating process in
the FR method is always simultaneously. Therefore, the FR-
HI method offers much higher speeds and a more efficient
updating process. The second is the setting of TEND. In the
FR-method, the graph layout result depends on TEND as shown
in Figure 5. However, in the FR-HI method, there is no
necessity for setting TEND beforehand and then re-performing
the calculations.

The LGL method is widely used to create large-scale graph
layouts, and it is an efficient and fast method. However,
its weakness is that connected nodes can become separated.
Therefore, we conclude that a faster and more efficient method
like the FR-HI method on a parallel processing machine like
MDGRAPE-3 is necessary.

In this research, to evaluate the efficiency of selecting the
update nodes, we calculate the acceleration from all nodes.
However, the FR-HI method can support the approximation
method like Tree-code which is used in the FADE method. to
make the calculations even faster. As future work, we will
examine the combination of the FR-HI method with other
approximation techniques.

REFERENCES

[1] Eades, P.: A heuristic for graph drawing, Congresses Numerantium, 42,
149-160 (1984)

[2] Kamada, T., and Kawai, S.: An algorithm for drawing general undirected
graphs, Information Processing Letters, 12, 31, 7-15 (1989)

[3] Fruchterman, T. M. J., and Reingold, E. M.: Graph Drawing by Force-
directed Placement, Software - Practice and Experience, 11, 21, 1129-
1164 (1991)

[4] Quigley, A., and Eades, P.: FADE:Graph Drawing, Clustering, and Visual
Abstraction, Proceedings of Graph Drawing 2000, Lecture Notes in
computer Science, 1984, 183-196 (2001)

[5] Barnes, J., and Hut, P.: A hierarchical O(N log N) force-calculation
algorithm, Nature, 04, 324, 446-449 (1986)

[6] Adai, A. T., Date, S. V., Wieland, S., and Marcotte, E. M.: LGL: Creating
a map of protein function with an algorithm for visualizing very large
biological networks. Journal of Molecular Biology, 340(1):179?190,
June 2004.

[7] Lyon, B.: The Opte Project(2005) http://www.opte.org/
[8] Ahmad, A., and Cohen, L.: A numerical integration scheme for the N-

body gravitational problem, Journal of Computational Physics, 12, 389
(1973)

[9] McMillan, S. L. W.: The Vectorization of Small-N Integrators, Lecture
Notes in Physics, 267, 156 (1986)

[10] Makino, J.: A Modified Aarseth Code for GRAPE and Vector Proces-
sors, Publications of the Astronomical Society of Japan, 43, 859-876
(1991)

[11] Narumi, T., Ohno, Y., Okimoto, N., Koishi, T., Suenaga, A., Futatsugi,
N., Yanai, R., Himeno, R., Fujikawa, S., Ikei, M., and Taiji, M.,:
A 55 TFLOPS Simulation of Amyloid-forming Peptides from Yeast
Prion Sup35 with the Specialpurpose Computer System MDGRAPE-3,
Proceedings of the SC06 (High Performance Computing, Networking,
Storage and Analysis), CDROM, Tampa, USA, Nov. (2006)

International Journal of Electronics, Circuits and Systems Volume 1 Number 2

121

