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Abstract

Direct Anonymous Attestation (DAA) is an anonymous signature scheme designed for anonymous
attestation of a Trusted Platform Module (TPM) while preserving the privacy of the device owner. Since
TPM has limited bandwidth and computational capability, one interesting feature of DAA is to split
the signer role between two entities: a TPM and a host platform where the TPM is attached. Recently,
Chen proposed a new DAA scheme that is more efficient than previous DAA schemes. In this paper, we
construct a new DAA scheme requiring even fewer TPM resources. Our DAA scheme is about 5 times
more efficient than Chen’s scheme for the TPM implementation using the Barreto-Naehrig curves. In
addition, our scheme requires much smaller size of software code that needs to be implemented in the
TPM. This makes our DAA scheme ideal for the TPM implementation. Our DAA scheme is efficient
and provably secure in the random oracle model under the strong Diffie-Hellman assumption and the
decisional Diffie-Hellman assumption.

1 Introduction

The concept and a concrete scheme of Direct Anonymous Attestation (DAA) were first introduced by Brickell,
Camenisch, and Chen [5] for remote anonymous authentication of a Trusted Platform Module (TPM). The
DAA scheme was adopted by the Trusted Computing Group (TCG) [22], an industry standardization body
that aims to develop and promote an open industry standard for trusted computing hardware and software
building blocks. The DAA scheme was standardized in the TCG TPM Specification Version 1.2 [21] and has
recently been adopted by ISO/IEC as an international standard.

A DAA scheme involves three types of entities: an issuer, signers, and verifiers. The issuer is in charge of
verifying the legitimation of signers and of issuing a membership credential to each signer. A signer can prove
membership anonymously to a verifier by creating a DAA signature. The verifier can verify the membership
of the signer from the DAA signature but he cannot learn the identity of the signer. DAA scheme can be
seen as a special group signature scheme without the open feature, i.e., a DAA signature cannot be opened
by anyone including the issuer to find out the identity of the signer.

One interesting feature of DAA is that the signer role of DAA is split between two entities: a TPM and
a host where the TPM is attached. The TPM is the main signer but has limited bandwidth, computational
capability, and storage. The host is a helper with more computational power but is less trusted. The TPM
is the real signer and has the private signing key. The host helps the TPM to compute DAA signatures, but
is not allowed to learn the private signing key or forge a DAA signature without the involvement from the
TPM.

After DAA was first introduced, it has drawn a lot of attention from both industry and cryptographic
community, e.g., in [10, 18, 1, 8, 6, 12, 11], to list a few. The original DAA scheme [5] is based on the strong
RSA assumption. Recently several groups of researchers have constructed pairing-based DAA schemes to
achieve better efficiency. The first pairing-based DAA scheme was proposed by Ernie, Chen, and Li [6, 7].
Chen, Morrissey, and Smart improved the BCL-DAA scheme using asymmetric pairing [12, 13]. These DAA
schemes are based on the LRSW assumption [19].

Brickell and Li proposed an extension of DAA called Enhanced Privacy ID (EPID) [8] and presented
a concrete EPID scheme based on the q-SDH assumption [9]. The EPID schemes focus on the revocation
capabilities and treat the signer as a single entity instead of combination of a TPM and a host. Independently
Chen and Feng proposed a DAA scheme [15] using q-SDH assumption. Recently, Chen builds a new DAA
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scheme [11] on top of the EPID scheme [9] by reducing the size of the private signing key. As compared
in [11], q-SDH based DAA schemes [15, 9, 11] are more efficient than LRSW-based DAA schemes [6, 7, 12, 13],
especially in the efficiency of the signature verification algorithm.

To the best of our knowledge, Chen’s DAA scheme [11] is the most efficient DAA scheme and it requires
least amount of TPM resources1. In this paper, we give a simple improvement to Chen’s DAA scheme. Our
DAA scheme is about 5 times more efficient for the TPM implementation using the Barreto-Naehrig curves [2].
In addition, our scheme requires much smaller size of software code that needs to be implemented in the TPM.
This makes our DAA scheme ideal for the TPM implementation. More specifically, let e : G1×G2 → GT be
a bilinear map function. The DAA scheme in [11] requires two exponentiations in G1 and one exponentiation
in GT . Whereas our DAA scheme in this paper requires only three exponentiations in G1. Our improvement
seems to be small, but has significant impact to TPM for the following two reasons:

• Usually operations in G1 are more efficient than the operations in GT . According to the arguments
in [13], exponentiation in G1 is about 1/4 the cost of exponentiation in GT for symmetric pairing. For
highly efficient curve choices such as Barreto-Naehrig curves [2] with 128-bit security, G1 is an elliptic
curve group over Fq while GT is a subgroup of Fq12 . Exponentiation in G1 is about 14 times more
efficient than the one in GT . Thus the computation needed for TPM in our scheme is about 5 times
more efficient than the one in DAA scheme [11] using the Barreto-Naehrig curves.

• In our scheme TPM only requires to implement G1 while the other DAA schemes [13, 11, 15] re-
quire TPM to implement both G1 and GT . For small hardware devices such as TPM, more software
code means larger firmware image, larger flash storage needed, and more software validation required.
Note that if TPM has already implemented EC-DSA or other ECC primitives for other purposes, the
additional software code needed for implementing our DAA scheme is very minimum.

Rest of this paper is organized as follows. We first review the formal specification and security require-
ments of DAA in Section 2. We then review the definition of pairing and related security assumptions in
Section 3. We present our DAA scheme in Section 4 and give the security proof in Section 5. We compare
our scheme with the existing DAA schemes in Section 6 and conclude our paper in Section 7.

2 Review Security Model of DAA

In this section, we review the specification and security model of DAA proposed in [7]. The security model
in [7] is simpler than the original DAA definition [5] and easier to understand the security properties of DAA.
There are four types of players in a DAA scheme: an issuer I, a TPMMi, a host Hi and a verifier Vj . Mi

and Hi form a platform in the trusted computing environment and share the role of a DAA signer. A DAA
scheme has three polynomial-algorithms (Setup,Verify, Link) and two interactive protocols (Join, Sign):

Setup : On input of a security parameter 1k, I uses this randomized algorithm to produce a pair (gpk, isk),
where isk is the issuer’s secret key, and gpk is the public key including the global public parameters.

Join : This randomized algorithm consists of two sub-algorithms Joint and Joini. Mi uses Joint to produce
a pair (ski, commi), where ski is the TPM’s secret key and commi is a commitment of ski. On input of
commi and isk, I uses Joini to produce crei, which is a DAA credential associated with ski. Note that
the value crei is given to both Mi and Hi, but the value ski is known to Mi only.

Sign : On input of ski, crei, a basename bsnj (the name string of Vj or a special symbol ⊥), and a message
m that includes the data to be signed and the verifier’s nonce nV for freshness, Mi and Hi use this
randomized algorithm to produce a signature σ on m under (ski, crei) associated with bsnj . The
basename bsnj is used for controlling the linkability.

Verify : On input of m, bsnj , a candidate signature σ for m, and a set of revoked secret keys RL, Vj uses
this deterministic algorithm to return either 1 (accept) or 0 (reject). How to build the revocation list
is out the scope of the DAA scheme.

1The original CMS-DAA scheme [12] requires lesser TPM resources. However, there was a security flaw in their DAA scheme.
The patched version [13] has the same computational complexity for TPM as in Chen’s DAA scheme [11].
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Link : On input of two signatures σ0 and σ1, Vj uses this deterministic algorithm to return 1 (linked), 0
(unlinked) or ⊥ (invalid signatures). Link will output ⊥ if, by using an empty RL, either Verify(σ0) = 0
or Verify(σ1) = 0 holds. Otherwise, Link will output 1 if signatures can be linked or 0 if the signatures
cannot be linked.

A DAA scheme is secure if it is correct, user-controlled-anonymous, and user-controlled-traceable.

Correctness If both the signer and verifier are honest, that implies ski 6∈ RL, the signatures and their
links generated by the signer will be accepted by the verifier with overwhelming probability. This means
that the DAA scheme must meet the following consistency requirement.

(gpk, isk)← Setup(1k), (ski, crei)← Join(isk, gpk), (mb, σb)← Sign(mb, bsnj , ski, crei, gpk)|b={0,1},
=⇒ 1← Verify(mb, bsnj , σb, gpk, RL)|b={0,1} ∧ 1← Link(σ0, σ1, gpk)|bsnj 6=⊥.

User-Controlled-Anonymity A DAA scheme is user-controlled-anonymous if no probabilistic polynomial-
time adversary can win the following game between a challenger C and an adversary A as follows:

• Initial: C runs Setup(1k) and gives the resulting isk and gpk to A.

• Phase 1: C is probed by A who makes the following queries:

– Sign. A submits a signer’s identity S, a basename bsn (either ⊥ or a data string) and a message
m of his choice to C, who runs Sign to get a signature σ and responds with σ.

– Join. A submits a signer’s identity S of his choice to C, who runs Joint with A to create sk and
to obtain cre from A. C verifies the validation of cre and keeps sk secret.

– Corrupt. A submits a signer’s identity S of his choice to C, who responds with the value sk of
the signer.

• Challenge: At the end of Phase 1, A chooses two signers’ identities S0 and S1, a message m and a
basename bsn of his choice to C. A must not have made any Corrupt query on either S0 or S1, and not
have made the Sign query with the same bsn if bsn 6= ⊥ with either S0 or S1. To make the challenge, C
chooses a bit b uniformly at random, signs m associated with bsn under (skb, creb) to get a signature
σ and returns σ to A.

• Phase 2: A continues to probe C with the same type of queries that it made in Phase 1. Again, it is
not allowed to corrupt any signer with the identity either S0 or S1, and not allowed to make any Sign
query with bsn if bsn 6= ⊥ with either S0 or S1.

• Response: A returns a bit b′. We say that the adversary wins the game if b = b′.

Definition 1 Let A denote an adversary that plays the game above. We denote by Adv[Aanon
DAA] = |Pr[b′ =

b]− 1/2| the advantage of A in breaking the user-controlled-anonymity game. We say that a DAA scheme is

user-controlled-anonymous if for any probabilistic polynomial-time adversary A, Adv[Aanon
DAA] is negligible.

User-Controlled-Traceability A DAA scheme is user-controlled-traceable if no probabilistic polynomial-
time adversary can win the following game between a challenger C and an adversary A as follows:

• Initial: C executes Setup(1k) and gives the resulting gpk to A. It keeps isk secret.

• Probing: C is probed by A who makes the following queries:

– Sign. The same as in the game of user-controlled-anonymity.

– Semi-sign. A submits a signer’s identity S along with the data transmitted from Hi to Mi in
Sign of his choice to C, who acts asMi in Sign and responds with the data transmitted fromMi

to Hi in the Sign protocol.
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– Join. There are two cases of this query. Case 1: A submits a signer’s identity S of his choice to C,
who runs Join to create sk and cre for the signer. Case 2: A submits a signer’s identity S with a
sk value of his choice to C, who runs Joini to create cre for the signer and puts the given sk into
RL. C responds the query with cre. Suppose that A does not use a single S for both of the cases.

– Corrupt. This is the same as in the game of user-controlled-anonymity, except that at the end C
puts the revealed sk into the list of RL.

• Forge: A returns a signer’s identity S, a signature σ, its signed messagem and the associated basename
bsn. We say that the adversary wins the game if

1. Verify(m, bsn, σ, gpk, RL) = 1 (accepted), but σ is neither a response of the existing Sign queries
nor a response of the existing Semi-sign queries (partially); and/or

2. In the case of bsn 6= ⊥, there exists another signature σ′ associated with the same identity and
bsn, and the output of Link(σ, σ′) is 0 (unlinked).

Definition 2 Let A be an adversary that plays the game above. Let Adv[Atrace
DAA] = Pr[A wins] denote the

advantage that A breaks the user-controlled-traceability game. We say that a DAA scheme is user-controlled-

traceable if for any probabilistic polynomial-time adversary A, Adv[Atrace
DAA] is negligible.

3 Pairings and Complexity Assumptions

3.1 Background on Bilinear Maps

Our DAA scheme use bilinear maps as a fundamental building block. We follow the notation of Boneh,
Boyen, and Shacham [4] to review some background on pairings. Let G1 and G2 to two multiplicative cyclic
groups of prime order p. Let g1 be a generator of G1 and g2 be a generator of G2. We say e : G1×G2 → GT

is an admissible bilinear map, if it satisfies the following properties:

1. Bilinear. For all u ∈ G1, v ∈ G2, and for all a, b ∈ Z, e(ua, vb) = e(u, v)ab.

2. Non-degenerate. e(g1, g2) 6= 1 and is a generator of GT .

3. Computable. There exists an efficient algorithm for computing e(u, v) for any u ∈ G1, v ∈ G2.

We call the two groups (G1, G2) in the above a bilinear group pair. In the rest of this paper, we consider
bilinear maps e : G1 ×G2 → GT where G1, G2, and GT are multiplicative groups of prime order p.

3.2 Strong Diffie-Hellman Assumption

The security of our DAA scheme is related to the hardness of the q-SDH problem introduced by Boneh and
Boyen [3]. Let G1 and G2 be two cyclic groups of prime order p, respectively, generated by g1 and g2. The
q-Strong Diffie-Hellman (q-SDH) problem in (G1, G2) is defined as follows: Given a (q+3)-tuple of elements

(g1, g
γ
1 , . . . , g

(γq)
1 , g2, g

γ
2 ) as input, output a pair (g

1/(γ+x)
1 , x) where x ∈ Z

∗
p. An algorithm A has advantage

ǫ in solving q-SDH problem in (G1, G2) if

Pr
[

A(g1, g
γ
1 , . . . , g

(γq)
1 , g2, g

γ
2 ) = (g

1/(γ+x)
1 , x)

]

≥ ǫ

where the probability is over the random choice of γ and the random bits of A.

Definition 3 We say that the (q, t, ǫ)-SDH assumption holds in (G1, G2) if no t-time algorithm has advan-
tage at least ǫ in solving the q-SDH problem.

The q-SDH assumption was used by Boneh and Boyen [3] to construct a short signature scheme without
random oracles and was shown in the same paper that q-SDH assumption holds in the generic group in the
sense of Shoup [20]. The q-SDH assumption was later used in [4] for constructing a short group signature
scheme. The security of the SDH problem was studied by Cheon [16].
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3.3 Decisional Diffie-Hellman Assumption

Let G, generated by g, be a cyclic group of prime order p. The Decisional Diffie-Hellman (DDH) problem in
G is defined as follows: Given a tuple of elements (g, ga, gb, gc) as input, output 1 if c = ab and 0 otherwise.
An algorithm A has advantage ǫ in solving DDH problem in G if

∣

∣Pr
[

g ← G, a, b← Zp : A(g, ga, gb, gab) = 1
]

− Pr
[

g ← G, a, b, c← Zp : A(g, ga, gb, gc) = 1
]
∣

∣ ≥ ǫ

where the probability is over the random choice of the parameters to A and over the random bits of A.

Definition 4 We say that the (t, ǫ)-DDH assumption holds in G if no t-time algorithm has advantage at
least ǫ in solving the DDH problem in G.

Let (G1, G2) be a bilinear group pair. Our DAA scheme requires the DDH problem forG1 to be hard. The
DDH assumption on G1 is often known as the External Diffie-Hellman (XDH) assumption. This assumption
is also used in Chen’s DAA scheme [11].

4 The Proposed DAA Scheme

In this section, we present our construction of DAA scheme from bilinear maps. Our construction builds on
top of the recent pairing-based EPID scheme [9] and Chen’s DAA scheme [11]. The DAA scheme has three
algorithms Setup, Verify, Link and two interactive protocols Join and Sign which are defined as follows.

4.1 Setup Algorithm

The setup algorithm is exactly the same as the one in [11]. On input of the security parameters 1t, the setup
algorithm takes the following steps:

1. Choose an asymmetric bilinear group pair (G1, G2) of prime order p and a pairing function e : G1×G2 →
GT . Let g1 and g2 be the generators of G1 and G2, respectively.

2. Choose h1, h2 ← G1, γ ← Z
∗
p, and compute w := gγ

2 .

3. Select five hash functions H1 : {0, 1}∗ → Zp, H2 : {0, 1}∗ → Zp, H3 : {0, 1}∗ → G1, H4 : {0, 1}∗ → Zp,
H5 : {0, 1}∗ → Zp.

4. Compute T1 = e(g1, g2), T2 = e(h1, g2), T3 = e(h2, g2), and T4 = e(h2, w).

5. Output the DAA public key and the issuer’s private key

(gpk, isk) := ((G1, G2, GT , p, e, g1, h1, h2, g2, w,H1, H2, H3, H4, H5, T1, T2, T3, T4), γ)

Note that T1, T2, T3, and T4 are optional in gpk, as they can be computed from g1, h1, h2, g2, w by the
signers and verifiers. Also note that, in the actual implementation, we can choose the same hash function
for H1, H2, H4, and H5. We use different hash functions in order to prove the security.

4.2 Join Protocol

The join protocol is the same as in [11] as well. This protocol is performed by a TPMM, the corresponding
host H, and an issuer I. Assume M and I have already established a secure authenticated channel using
M’s endorsement key [21]. Let DAAseed be M’s internal secret seed. Let KI be I’s long term public key.
In the join protocol,M chooses a unique secret key sk = f and then obtains a credential cre = (A, x) from

I such that A = (g1 · h
f
1 )1/(x+γ). The join protocol takes the following steps.

1. I chooses a nonce nI ∈ {0, 1}
t and sends nI as a challenge to M.

2. M computes f := H1(DAAseed‖cnt‖KI), where cnt is a count value. M sets its secret key sk := f .
The purpose of using KI and cnt can be found in the original DAA scheme [5].
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3. M chooses at random rf ← Zp and computes F := hf
1 and R := h

rf

1 .

4. M computes c := H2(gpk‖nI‖F‖R) and sf := rf + c · f (mod p).

5. M sets comm := (F, c, sf , nI) and sends comm to I.

6. I verifies the value of nI and checks F against the revocation list.

7. I computes R̂ := h
sf

1 · F
−c and verifies that c = H2(gpk‖nI‖F‖R̂). If verification fails, then abort.

8. I chooses at random x← Zp and computes A := (g1 · F )1/(x+γ).

9. I sets the DAA credential cre := (A, x) and sends cre toM.

10. M forwards F and cre to H.

11. H verifies that e(A,wgx
2 ) = e(g1F, g2). If verification fails, then abort.

Note that the TPMM and the hostH have a DAA signing key (A, x, f) such that e(A,wgx
2 ) = e(g1h

f
1 , g2).

In the DAA schemes [9, 15], the signing key is (A, x, y, f) such that e(A,wgx
2 ) = e(g1h

f
1h

y
2 , g2). Therefore

our scheme has a smaller signing key.

4.3 Sign Protocol

This join protocol is performed by a TPM M and a host H, where M has the secret key f and H has the
credential (A, x). The other input of the protocol is the DAA public key gpk, a message m to be signed, and
a basename bsn and a nonce nV from the verifier. In this protocol, the signer chooses B ∈ G1 and computes
K := Bf , then uses zero-knowledge proof to prove

PK{(A, x, f) : e(A,wgx
2 ) = e(g1h

f
1 , g2) ∧ K = Bf}

As in most of DAA schemes, the (B,K) pair is used for revocation check. To prove e(A,wgx
2 ) = e(g1h

f
1 , g2)

holds, the signer first computes T = A · ha
2 where a is randomly chosen, then proves the following equation

e(T, g2)
−x · e(h1, g2)

f · e(h2, g2)
ax · e(h2, w)a = e(T,w)/e(g1, g2).

The overall approach here is the same as in [11]. The main difference between our scheme and Chen’s DAA
scheme [11] is on how we divide the computation betweenM and H in a secure way. The join protocol takes
the following steps:

1. If bsn = ⊥,M chooses B ← G1, otherwise,M computes B := H3(bsn).

2. M chooses at random rf ← Zp and computes

K := Bf , R1 := Brf , R2t := h
rf

1 .

3. M sends (B,K,R1, R2t) to H.

4. H chooses a← Zp, computes b := a · x (mod p), and T := A · ha
2 .

5. H randomly picks

rx ← Zp, ra ← Zp, rb ← Zp.

6. H computes

R2 := e(T, g2)
−rx · e(h1, g2)

rf · e(h2, g2)
rb · e(h2, w)ra ,

:= e(R2t · T
−rx · hrb

2 , g2) · T
ra

4 .
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7. H computes ch := H4(gpk‖B‖K‖T ‖R1‖R2‖nV ) and sends ch toM.

8. M chooses a random nonce nT ← {0, 1}
t and computes c := H5(ch‖nT ‖m).

9. M computes in sf := rf + c · f (mod p).

10. M sends (c, nT , sf ) to H. M erases rf after sending this message.

11. H computes

sx := rx + c · x (mod p), sa := ra + c · a (mod p), sb := rb + c · b (mod p).

12. H outputs σ := (B,K, T, c, nT , sf , sx, sa, sb).

Note that the signing protocol is a three-message protocol: In the first message,M sends (B,K,R1, R2t)
to H. In the second message, H sends ch toM. In the third message,M sends (c, nT , sf ) to H. The way we
divide the computation between the TPM and the host is similar to the one in the original DAA paper [5].

As pointed out by Chen et al. [13] recently, such signing protocols are vulnerable to “replay” attack. That
is, if a malicious host engages with a TPM on the signing protocol by submitting a ch value and obtains
(c, nT , sf ) from the TPM. The host then re-submits ch again and somehow tricks the TPM to start from
step 8 of the protocol, then the TPM will output a different set (c′, n′

T , s
′
f ). The host can figure the private

key f from (c, c′, sf , s
′
f). In fact, this type of vulnerability applies to any interactive zero-knowledge proof

protocol. If attacker can replay the challenge, then he can extract the prover’s knowledge. Such vulnerability
can be easily mitigated using stage control mechanism. For example, if the TPM receives the second message
ch from the host, it checks whether it has a pending signing protocol. If not, it simply rejects ch. In our
scheme, we use an even simpler method: the TPM deletes rf after sending sf to the host. This can prevent
the replay attack.

4.4 Verify Algorithm

On input of a message m, a basename bsn, a nonce nV , a signature (B,K, T, c, nT , sf , sx, sa, sb), the public
key gpk, and the revocation list RL (a list of revoked secret keys), the verification algorithm takes the following
steps:

1. Verify that B,K, T ∈ G3 and sf , sx, sa, sb ∈ Zp.

2. Compute R̂1 := Bsf ·K−c.

3. Compute

R̂2 := e(T, g2)
−sx · e(h1, g2)

sf · e(h2, g2)
sb · e(h2, w)sa · (e(g1, g2)/e(T,w))c.

:= e(T, g−sx

2 · w−c) · T c
1 · T

sf

2 · T
sb

3 · T
sa

4

4. Verify that

c
?
= H5(H4(gpk‖B‖K‖T ‖R̂1‖R̂2‖nV )‖nT‖m).

5. For each f ′ ∈ RL, if K = Bf ′

, output 0 (reject).

6. If any of the above verifications fails, output 0 (reject), otherwise, output 1 (accept).

4.5 Link Algorithm

On input of two message-signature pairs (m0, σ0) and (m1, σ1), a basename bsn, and the public key gpk, the
link algorithm performs the following steps:

1. For each signature σb where b ∈ {0, 1}, run the verify algorithm Verify(σb,mb, bsn, gpk). If either of
two verifications returns 0 (reject), output ⊥.

2. If (B,K) ∈ σ0 are the same as (B,K) ∈ σ1, return 1 (linked), otherwise return 0 (unlinked).
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5 Security Proof

In this section, we prove our DAA scheme is secure under the security definitions stated in Section 2. We show
that our DAA scheme is correct, user-controlled-anonymous, and user-controlled-traceable. The security of
the DAA scheme based on the q-SDH assumption and G1-DDH assumption defined in Section 3.

Theorem 1 The DAA scheme in Section 4 is correct.

Proof. To show the DAA scheme is correct, we prove that a signature created by a valid and unrevoked
signer can be successfully verified by any verifier. In order to have a success signature verification, R̂1, R̂2

in the verify algorithm must be equal to R1, R2 in the sign protocol, respectively. We prove R̂1 = R1 and
R̂2 = R2 as follows.

R̂1 = Bsf ·K−c = Brf ·Bcf · (Bf )−c = Brf = R1

R̂2 = e(T, g2)
−sx · e(h1, g2)

sf · e(h2, g2)
sb · e(h2, w)sa · (e(g1, g2)/e(T,w))c

= R2 · e(T, g2)
−cx · e(h1, g2)

cf · e(h2, g2)
cb · e(h2, w)ca · (e(g1, g2)/e(T,w))c

= R2 · (e(g1, g2) · e(h1, g2)
f · e(h2, g2)

b · e(h2, w)a · e(T, g2)
−x · e(T,w)−1)c

= R2 · (e(g1, g2) · e(h1, g2)
f · e(h2, g2)

ax · e(h2, w)a · e(T, gx
2w)−1)c

= R2 · (e(g1h
f
1 , g2) · e(h

a
2 , g

x
2w) · e(A, gx

2w)−1 · e(ha
2 , g

x
2w)−1)c = R2

The last equation holds because for a valid private key (A, x, f), e(A, gx
2w) = e(g1h

f
1 , g2) holds. We now

show that two signatures created by a single signer using a basename bsn 6= ⊥ can be linked. This is obvious
from the description of the DAA scheme, as two signatures will have the same (B,K) pair if the signatures
are created using the same private key f . 2

Theorem 2 Under the G1-DDH assumption, the DAA scheme in Section 4 is user-controlled-anonymous.

More specifically, if there is an adversary A that succeeds with a non-negligible probability to break the user-

controlled-anonymity game, then there is a polynomial-time algorithm B that solves the G1-DDH problem

with a non-negligible probability.

Proof. Suppose an algorithm A breaks the user-controlled-anonymity game of the DAA scheme with non-
negligible probability. We can build a polynomial-time simulator B that breaks the G1-DDH problem as
follows. B is given as input a tuple (u, v = ua, w = ub, z) where u← G1, a, b,← Zp, and either z = uab or z
is a random element in G1. B decides which z was given by interacting with A as follows.

We first give an overview of the proof. B first creates a special signer S∗ where its secret key f = logu v,
however B does not know the secret key. B creates rest of the signers by running the join protocol with A. To
respond to a sign query for signer S∗, B simulates the signature using the (u, v) pair. In the challenge phase,
if S∗ is selected as one of the (S0, S1) pair, B picks S∗ for creating a signature by simulating the signature
using the (w, z) pair, i.e., simulates using the secret key f = logw z. If z = uab, then logu v = logwz, A has
non-negligible advantage guessing the random bit b correctly. If z 6= uab, A does not have any advantage
guessing b or A may abort the game. B can use the output of A to decide whether z = uab.

Setup. Let (G1, G2) be a bilinear group pair of prime order p with generator g1 and g2, respectively. B
chooses a random γ ← Z

∗
p as isk and sets the public key gpk = (G1, G2, GT , p, e, g1, h1 := u, h2, g2, w :=

gγ
2 , H1, H2, H3, H4, H5, T1, T2, T3, T4) by running the setup algorithm. B sends isk and gpk to A.

Hash Queries. We model the hash functions H2, H3, and H5 as three random oracles. B responds to the
hash queries for H2, H3, and H5 as follows.

• H2(m): If m has not been queried before, B chooses H2(m) uniformly at random from Z
∗
p and

returns it to A, otherwise B returns the previously queried result on m to ensure consistency.
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• H3(m): Let qh be the expected number of unique H3 queries. B chooses a random i← {1, . . . , qh}.
If m has been queried before, B returns the previously queried result on m to ensure consistency.
Otherwise, if m is the i-th unique query on H3, B chooses chooses a random r ← Z

∗
p and sets

H3(m) := wr. For rest of the queries, B chooses a random r ← Z
∗
p and sets H3(m) := ur. We use

bsn∗ to denote the i-th unique query.

• H5(m): B chooses H5(m) uniformly at random from Z
∗
p while ensuring consistency.

Join Queries. A requests for creating a new signer S. Let qj be the expected number of join requests from
A. B chooses a random i← {1, . . . , qj}. There are two cases for B to respond:

• If the query is the i-th join query: B sets F := v without knowing the secret key f = logu v,
and then forges rest of the join protocol as follows: it chooses randomly c, sf ← Zp and computes
R = h

sf

1 · F
−c. It then patches the oracle by setting H2(gpk‖nI‖F‖R) := c. If H2(gpk‖nI‖F‖R)

has been queried before, B quites and outputs “abortion 0”. B receives a credential from A. We
use S∗ to denote the identity of this signer.

• If the query is not the i-th join query: B chooses a random f ← Z
∗
p, computes F := hf

1 . If F = v,
B quites and outputs “abortion 0”. B runs the rest of the join protocol as the signer with A as
the issuer, and obtains a credential cre = (A, x). B verifies cre and stores (S, f,A, x) in its log.

Sign Queries. Given a signer’s identity S, a message m to be signed, a nonce nV from A, a basename bsn,
B responds with a signature σ as follows: Assuming the signer S has already joined, if S is not S∗, B
finds the corresponding secret key and credential (f,A, x) associated with S, runs the sign protocol,
and outputs σ to A. If S = S∗, B needs to forge a signature as follows:

1. If bsn = ⊥, B chooses a random r← Zp and sets B := ur and K := vr.

2. If bsn = bsn∗, B quits and outputs “abortion 1”.

3. If bsn 6= {⊥, bsn∗}, B searches the log of H3 queries and retrieves r where H3(bsn) = ur. B sets
B := ur and computes K := vr.

4. B chooses T ← G1, nT ← {0, 1}
t, and c, sf , sx, sa, sb ← Zp.

5. B computes R1 := Bsf ·K−c.

6. B computes R2 := e(T, g2)
−sx · e(h1, g2)

sf · e(h2, g2)
sb · e(h2, w)sa · (e(g1, g2)/e(T,w))c.

7. B patches the oracle H5 by setting H5(H4(gpk‖B‖K‖T ‖R1‖R2‖nV )‖nT ‖m) := c. If H5(H4(gpk‖
B‖K‖T ‖R1‖R2‖nV )‖nT ‖m) has been queried before, B quites and outputs “abortion 0”.

8. B outputs the signature σ := (B,K, T, c, nT , sf , sx, sa, sb).

Corrupt Queries. If a corrupt query is for a signer S 6= S∗, then B responds with the secret key corre-
sponding to S. Otherwise, B quits and outputs “abortion 2”.

Challenge. In the challenge, A outputs a message m, a basename bsn, and two signer’s identity S0 and
S1. If S∗ 6∈ {S0, S1} or bsn 6∈ {⊥, bsn∗}, then B quits and outputs “abortion 3”. Otherwise, B picks
b ∈ {0, 1} such that Sb = S∗, and generates a signature σ∗ for m by performing the following steps:

1. If bsn = ⊥, B chooses a random r← Zp and sets B := wr and K := zr.

2. If bsn = bsn∗, B searches the log of H3 queries and retrieves r where H3(bsn
∗) = wr . B sets

B := wr and computes K := zr.

3. The rest of the sign algorithm follows the sign queries above.

B sends the resulting σ∗ to A.

Output. In the end, A outputs b′ ∈ {0, 1} as the guess for b or aborts without any output. If b = b′, then B
outputs 1, which means that z = uab. Otherwise B outputs 0, which means that z is a random element
in G1.
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We now discuss the probability that algorithm B does not abort in the above game. There are four cases
where B can abort. We study each case as follows:

1. Abortion 0. The chance of this type of abortion is O(1/p). Since p is a large prime, the probability of
this abortion is negligible.

2. Abortion 1. Recall that A cannot use the same non-empty bsn in the sign query and challenge query
for signers S0 and S1. In other words, A cannot query all possible bsn for S∗ in the sign queries. The
probability that B does not abort in this case is at least 1/qh.

3. Abortion 2. As A cannot corrupt all the signers, the probability that B does not abort is at least 1/qj.

4. Abortion 3. B does not abort in this case if A selects S∗ and bsn∗ in the challenge query. Thus the
probability that B does not abort in this case is 1/(qh · qj).

B does not abort if (1) bsn∗ was not chosen in the sign queries for S∗, (2) S∗ was not chosen in the
corrupt queries, and (3) S∗ and bsn∗ were chosen in the challenge query. The probability that B does not
abort the above game is roughly 1/(qh · qj).

Let ǫ be the probability that A succeeds in breaking the user-controlled-anonymity game. Suppose B
does not abort during the above simulation. If z = uab, then logu v = logw z, B simulates the game perfectly,
i.e., Pr [b = b′] > 1

2 + ǫ. If z is a random element in G1, then σ∗ in the challenge query is simulated using
the (w, z) pair. In other words, the secret key used in generated σ∗ is different from either secret key of S0

or S1. Observe that B in this case does not simulate the game perfectly, especially in the challenge query. A
could abort the game. If A does not abort the game, A does not have any advantage guessing b. It follows
that Pr [b = b′] = 1

2 . Therefore, assuming B does not abort, it has probability at least ǫ/2 in solving the
DDH problem in G1. 2

Theorem 3 Under the q-SDH assumption, the DAA scheme in Section 4 is user-controlled-traceable. More

specifically, if there is an adversary A that succeeds with a non-negligible probability to break the user-

controlled-traceability game, then there is a polynomial-time algorithm B that solves the q-SDH problem with

a non-negligible probability.

Proof. The proof of this theorem derives from the user-controlled-traceability proof in Chen DAA scheme [11].
We show how to construct an algorithm B that solves the q-SDH problem by interacting with A that suc-
ceeds with a non-negligible probability to break the user-controlled-traceability game. We use a technique
from Boneh and Boyen [3] that, given g1 ∈ G1, g2 ∈ G2, w = gγ

2 , and q − 1 SDH pairs (Bi, xi) such that
e(Bi, wg

xi

2 ) = e(g1, g2), one more SDH pair (B, x) can be transformed into a solution to the q-SDH problem.
We now describe how B interacts with A as follows:

Setup. B runs the setup algorithm as follows: Let e : G1×G2 → GT be a bilinear map function. B is given

(g1, g2, w) and q − 1 SDH pairs (Bi, xi) as input, where g1 = ψ(g2), w = gγ
2 , and Bi = g

1/(γ+xi)
1 . B

chooses a, b, x← Z
∗
p and computes

h1 := ψ(((w · gx
2 )b · g−1

2 )1/a) = g
((γ+x)b−1)/a
1 .

B sets the public key gpk = (G1, G2, GT , p, e, g1, h1, h2, g2, w,H1, H2, H3, H4, H5, T1, T2, T3, T4). Note
that B does not know the value of isk = γ. B sends gpk to A.

Hash Queries. We model the hash functions H2, H3, and H5 as three random oracles. B responds to the
hash queries for H2, H3, and H5 as follows.

• H2(m): B chooses H2(m) uniformly at random from Z
∗
p while ensuring consistency.

• H3(m): If m has not been queried before, B chooses H2(m) uniformly at random from G1 and
returns it to A, otherwise B returns the previously queried result on m to ensure consistency.

• H5(m): B chooses H5(m) uniformly at random from Z
∗
p while ensuring consistency.
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Join Queries. A requests for creating a new signer S. There are two cases of the join queries as defined
by the user-controlled-traceability game in Section 2:

1. Given a new signer S, B has freedom to choose sk of its choice and then creates cre.

2. Given a new signer S and a secret key sk chosen by the A, B creates a credential cre for sk. B
sends cre to A and put sk in the revocation list RL.

For case 1, B selects one query randomly and sets f := a and cre := (A, x) where A := gb
1. For rest of

the queries, either B chooses fi at random (case 1) or receives fi from A, B uses one SDH pair (Bi, xi)
to computes crei := (Ai, xi) for fi as follows:

Ai = (g1 · h
fi

1 )1/(γ+xi) = B
1−fi/a+fib(x+γ)/a
i := B

1−fi/a+fib(x−xi)/a
i · g

fib/a
1 .

Corrupt Queries. A requests to corrupt a signer S. We assume that the signer S has been joined before, B
responds with the secret key sk and credential cre corresponding to S. B inserts sk to the revocation
list RL.

Sign Queries. Given a signer’s identity S, a message m to be signed, a nonce nV from A, a basename bsn,
B computes the signature σ by invoking the sign protocol. B returns σ to A.

Semi-sign Queries. Given a signer’s identity S, a message m to be signed, a nonce nV from A, a basename
bsn, B runs the sign protocol as a TPM by interacting with A as a host. B computes B, chooses rf at
random, computes K,R1, R2t, and sends (B,K,R1, R2t) to A. On receiving ch from A, B chooses nT

at random and computes c and sf .

Output. In the end, A outputs a signer S, a message m, a basename bsn, and a signature σ. There are
two cases to consider:

1. If σ can be successfully verified, i.e., Verify(m, bsn, σ, gpk, RL) = 1, B can rewind A to extract

the underlying the signing key (f∗, A∗, x∗) such that e(A∗, wgx∗

2 ) = e(g1h
f∗

1 , g2). To rewind A, B
controls the result of H5 by choosing two different c values c′ and c′′ to the same B,K, T,R1, R2.
A responds with s′f , s

′
x, s

′
a, s

′
b and s′′f , s

′′
x, s

′′
a, s

′′
b . B computes ∆ = c′ − c′′ and extracts

f∗ := (s′f − s
′′
f )/∆, x∗ := (s′x − s

′′
x)/∆, a∗ := (s′a − s

′′
a)/∆, A∗ := T/(ha∗

2 ).

Also note that f∗ 6∈ RL, otherwise, signature verification would fail. There are two possible results

(a) If x∗ 6∈ {xi, x} for any i, B can compute

B∗ := (A∗ · g
−bf∗/a
1 )a/(a−f∗+bf∗(x−x∗)).

(b) If x∗ ∈ {xi, x} and A∗ 6∈ {Ai, A} for any i. If e∗ 6= e, B aborts and outputs failure. With the
probability of 1/q, e∗ = e, B computes

B∗ := (A∗ · g
−bf∗/a
1 )a/(a−f∗).

In either of the above two cases, B obtains (B∗, x∗) as the extra SDH pair so that it can solve the
given q-SDH problem.

2. If bsn 6= ⊥, A wins in this case if there exists another signature σ′ by the signer S using the same
basename bsn from the sign queries, such that Link(σ, σ′, gpk) = 0. Let σ = (B,K, T, c, nT , sf , sx,
sa, sb) and σ′ = (B′,K ′, T ′, c′, n′

T , s
′
f , s

′
x, s

′
a, s

′
b). Since the same bsn is used, B = B′. Because

two signatures are unlinkable, thus K 6= K ′. This means A managed to create a different sk for
the signer S. B can use the same method as case (1) to extract a different (f,A, x) tuple as a
valid secret key and credential pair, thus obtain an extra SDH pair. B can also solve the q-SDH
problem in this case.

In either of the above two cases, B can solve the q-SDH problem with a non-negligible probability if A can
wins the game with a non-negligible probability. 2
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6 Comparisons with Existing DAA Schemes

In this section, we compare our DAA scheme with several existing pairing-based DAA schemes [6, 13, 15, 11].
Note that we do not include the original CMS-DAA scheme [12] in the comparisons, as it is not secure, instead
we compare ours with the patched version [13]. We also do not include the pairing-based EPID scheme [9]
in the comparison, because EPID does not have the feature of splitting computation between a TPM and a
host.

We compare the credential and signature sizes of our scheme with other DAA schemes in Table 1. We
use Zq to denote the size of an element in Zq, h to denote the size of a hash result, G1 to denote the size of
an element in G1, and GT to denote the size of an element in GT . For bilinear maps with 128-bit security,
GT needs to be around 3072 bits [17]. Our DAA scheme has the same credential and signature sizes as in
Chen’s DAA scheme [11]. The credential and signature sizes in our scheme are smaller than other DAA
schemes [6, 13, 15].

DAA Scheme Credential Size Signature Size
Scheme of [6] 3G1 2Zq + 3G1 + 2GT + 1h
Scheme of [13] 3G1 1Zq + 5G1 + 1h
Scheme of [15] 2Zq + 1G1 6Zq + 2G1 + 2GT + 1h
Scheme of [11] 1Zq + 1G1 4Zq + 3G1 + 1h
Our Scheme 1Zq + 1G1 4Zq + 3G1 + 1h

Table 1: A comparison between our DAA scheme and other DAA schemes in credential and signature sizes

We compare the efficiency of signing and verification algorithms of our scheme with other DAA schemes
in Table 2. We use P to denote a pairing operation, G1 to denote an exponentiation operation in G1, G

2
1

to denote a multi-exponentiation operation, and so on. A multi-exponentiation is slightly more expensive
than an exponentiation. As we mentioned earlier in Section 1, operations in G1 are much more efficient than
ones in GT . Therefore, our DAA scheme has significant advantage for computationally weak device such as
TPM. The efficiency of the sign protocol for our scheme is approximately 5 times more efficient than the
rest of pairing-based DAA schemes [6, 13, 15, 11] using Barreto-Naehrig curves.

DAA Scheme TPM Sign Host Sign Verify
Scheme of [7] 3GT 3G1 + 1GT + 3P 1G2

T + 1G3
T + 5P + (n+ 1)GT

Scheme of [13] 2G1 + 1GT 3G1 + 1P 1G2
T + 1G2

T + 5P + nG1

Scheme of [15] 2G1 + 1G2
T 1G1 + 2G2

1 + 1G3
1 + 1G3

T 1G2
1 + 2G3

1 + 1G5
T + 3P + nGT

Scheme of [11] 2G1 + 1GT 1G1 + 1G3
T 1G2

1 + 1G2
2 + 1G4

T + 1P + nG1

Our Scheme 3G1 1G1 + 1G2
1 + 1GT + 1P 1G2

1 + 1G2
2 + 1G4

T + 1P + nG1

Table 2: A comparison between our DAA scheme and other DAA schemes in the efficiency of sign and verify
algorithms

Observe that the efficiency we gain in TPM comes with a price – the host needs to perform an additional
pairing. The total efficiency of the sign protocol is 4G1 + 1G2

1 + 1GT + 1P in our scheme, whereas it is
3G1 + 1GT + 3G3

T in Chen’s DAA scheme [11]. Note that TPM is much slower than the host platform, e.g.,
probably 100 times slower or more. Based on the performance simulation by Chen, Page, and Smart [14],
a pairing operation on a host takes less than 15 millie-seconds for a 64-bit 2.4 GHz Intel Core 2 processor,
while 2G1 + 1GT operation takes more than 3 seconds for a 32-bit 33 MHz simulated TPM. Base on these
performance data, we estimate that the overall sign protocol will take less than 1 second in our scheme,
whereas the sign protocol in [11, 13] will take more than 3 seconds.

We did not compare the efficiency of the join protocol because the join protocol is executed much less
frequently than the sign protocol or the verification algorithm. Besides the join protocol in our DAA scheme
is the same as the one in Chen’s DAA scheme [11], thus has the same efficiency.
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7 Conclusions

In this paper, we proposed an efficient DAA scheme from bilinear maps. Our new DAA scheme takes much
less resources for TPM implementation (both computation and software code size) compared to the existing
DAA schemes. We believe our DAA scheme is a good candidate for the next generation of TPM initiated
by the TCG TPM working group, assuming that a TPM can support multiple DAA algorithms.
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