[Article]

July

www.whxb.pku.edu.cn

$Mn/Ba/Al_2O_3$ 催化剂的 NO_x 氧化-储存和耐硫性能

肖建华 李雪辉* 邓 莎 徐建昌 王乐夫

(华南理工大学化工与能源学院,广东省绿色化学产品技术重点实验室,广州 510640)

摘要 采用分步等体积浸渍法制备了 Mn/Ba/Al₂O₃ 催化剂, 并用 XRD 和 TPD 等方法进行表征. 考察了催化剂在 不同温度下 NO_x 氧化-储存特性和 NO_x 脱附行为. 结果表明, Mn/Ba/Al₂O₃ 催化剂具有较高的催化 NO 氧化活性 和较大的NO_x 储存容量. BaMnO₃ 是主要的活性组分; Mn 能够催化 NO 的氧化反应, 且具有一定的 NO_x 储存能 力; Ba 是主要的储存组分, 将 NO_x 以硝酸盐的形式储存; 硝酸盐在 300~600 ℃分解, 释放出 NO_x. Mn/Ba/Al₂O₃ 催 化剂在 800 ℃老化 6 h 后, NO 氧化活性和 NO_x 储存能力稍有下降. 低含量的SO₂ 对催化剂的 NO 氧化活性和 NO_x储存能力没有明显影响; 高含量的 SO₂ 使催化剂的 NO 氧化活性降低, NO_x 储存量减小, 最终导致催化剂失活.

关键词: 氮氧化物,氧化-储存,热稳定性,耐硫性能, Mn/Ba/Al₂O₃ 中图分类号: O643

The NO_x Oxidation-Storage and Tolerance of SO₂ Poison of Mn/Ba/Al₂O₃ Catalyst

XIAO, Jian-Hua LI, Xue-Hui^{*} DENG, Sha XU, Jian-Chang WANG, Le-Fu (*The Guangdong Provincial Laboratory of Green Chemical Technology, School of Chemical and Energy Engineering,* South China University of Technology, Guangzhou 510640, P. R. China)

Abstract The performance of NO_x oxidation-storage and desorption over Mn/Ba/Al₂O₃ catalyst were investigated at different temperatures. The catalysts were prepared by equal volume impregnation method and characterized by XRD and TPD. The results showed that Mn/Ba/Al₂O₃ catalyst had high catalytic activity for NO oxidation and large NO_x storage capacity. BaMnO₃ was the major active component. Mn could catalyze the oxidation of NO, having certain NO_x storage capacity. Ba was the major storage component, NO_x were stored with the formation of the nitrate that can be decomposed between 300~600 °C to release NO_x. When Mn/Ba/Al₂O₃ was aged at 800 °C for 6 h, both the catalylic activity for NO oxidation and the NO_x storage capacity were slightly decreased. The catalylic activity for NO oxidation and the NO_x storage capacity for NO oxidation and the NO_x storage capacity.

Keywords: Nitrogen oxide, Oxidation-storage, Thermal stability, Sulfur tolerance, Mn/Ba/Al₂O₃

随着能源资源日益减少,人们环保意识增强, 贫燃发动机(柴油机和贫燃汽油机)因其较高的燃油 经济性和较少的污染排放,逐渐得到推广应用.但 是,传统的三效催化剂对贫燃条件下的 NO_x 脱除效 率低,根本无法满足严格的排放标准.NO_x 储存-还 原(NO_x storage-reduction, NSR)催化净化技术是有效 解决贫燃条件下机动车尾气污染的新方法,受到国内外研究工作者极大关注^[1-2].在贫燃(富氧)条件下, 催化剂中的活性组分先将 NO 捕获并将其氧化成 NO₂,然后转移到碱性的储存组分中以硝酸盐的形 式储存起来.此硝酸盐在化学计量气氛或富燃(贫氧) 气氛下是热力学不稳定的,容易分解并释放出NO₃,

© Editorial office of Acta Physico-Chimica Sinica

Received:December 29, 2005;Revised:March 3, 2006. ^{*}Correspondent, E-mail:cexhli@scut.edu.cn;Tel:020-87114707. 国家自然科学基金(20476032)及广东省自然科学基金(030951)资助项目

在此气氛下, CO、HC 和 NO_x 可以在催化剂上被催 化转化, 同时, 催化剂得到再生^[36].

当前, NSR 催化剂主要以贵金属 Pt、Rh 为 NO_x 的氧化和还原活性组分^[7-10], 以碱土或碱金属氧化物 为储存组分. NO 氧化和 NO_x 储存是 NSR 催化反应 的关键步骤, 催化剂的 NO 氧化活性和 NO_x 储存能 力是影响 NO_x 去除效率的重要因素^[2]. *p* 型半导体过 渡金属氧化物对 NO 完全氧化反应有催化作用, 其 中 Mn、Cr、Co 活性较强^[11]. 如利用这些过渡金属氧 化物替代贵金属, 在贫燃条件下将 NO 氧化成 NO₂ 并储存于储存组分上, 然后在富燃条件下释放并被 贵金属还原, 将大幅度降低贵金属用量, 对降低 NSR 催化剂的制备成本具有重要意义. 关于取代贵 金属 NSR 催化剂的研究尚未见报道. 本文研制出 Mn/Ba/Al₂O₃ 催化剂, 系统考察了催化剂的 NO_x 氧 化-储存活性, NO_x 释放特性, 热稳定性和耐硫性能.

1 实验部分

1.1 催化剂制备

采用分步等体积浸渍法制备催化剂. 载体为 γ-Al₂O₃(60~80 目, 比表面积 191 m²·g⁻¹, 大连艺秀分子 筛催化剂有限公司).

5Mn/15Ba/Al₂O₃催化剂(5、15分别表示 Mn 和 Ba 的质量分数(%),下同)按以下方法制备.先将载体浸 渍一定含量的乙酸钡溶液,静置 24 h, 120℃恒温干 燥 4 h, 600℃下焙烧 5 h, 然后浸渍于一定含量的硝 酸锰溶液中,相同条件下静置、干燥、焙烧.同样方法 制得 5Mn/Al₂O₃催化剂.5Mn/15Ba/Al₂O₃在800℃下 焙烧 6 h,得到老化样品,记作 5Mn/15Ba/Al₂O₃(800).

将载体浸渍一定含量的乙酸钡溶液,静置 24 h, 120℃恒温干燥 4 h,600℃下焙烧 5 h,然后浸渍于 一定含量的氯铂酸溶液中,经相同条件下静置、干 燥、焙烧制得 1Pt/15Ba/Al₂O₃催化剂.

1.2 NO_x 的氧化-储存性能测试

测试在常压固定床流动反应器中进行.反应器 材质为石英玻璃,内径 φ=12 mm×300 mm,催化剂 用量1.0 g,空速 45000 h⁻¹.催化剂床层温度由 AI-708PB 型温度控制器程序控制.1Pt/15Ba/Al₂O₃催化 剂在 6%H₂/N₂(6%H₂ 表示 H₂的体积分数为 6%,下 同)气氛中 500 ℃下预还原 1 h,然后在 8.5%O₂/N₂气 氛中预氧化 1 h.催化剂在 500 ℃用 300 mL·min⁻¹ 高 纯 N₂ 吹扫 0.5 h 后,降温至反应温度,通入反应气 体.反应气体组成:0.051%NO/8.5%O₂/N₂ 平衡气和 不同含量的 SO₂, 总流量 900 mL·min⁻¹.

使用德国 MRU 公司的 SWG 300 烟气分析仪 在线记录出口 NO、NO₂、NO₄和 SO₂含量.用积分法 计算 NO₄储存量,如式(1).式中 NSC 表示 NO₄储存 量,[NO₄]_{in}、[NO₄]_{out}分别表示进口和出口 NO₄体积, *t*₁、*t*₂分别表示储存开始和结束时间,V表示气体总 流量,*m*_{cut}为催化剂质量.

NSC=
$$\frac{[NO_{x}]_{in} \times (t_{2} - t_{1}) - \int_{t_{1}}^{t_{2}} [NO_{x}]_{out} dt) \times V}{22.4 \times m_{cat}}$$
(1)

1.3 程序升温脱附(NO_x-TPD)

将 1.2 节中储存 NO_x 的催化剂在 50 ℃下, 以 300 mL·min⁻¹ N₂ 吹扫 0.5 h. 以 10 ℃·min⁻¹ 的升温速 率程序升温至 800 ℃, 高纯 N₂ 850 mL·min⁻¹ 吹扫. 用 式(2)计算 NO_x 脱附量 D, t'₁、t'₂ 分别表示脱附开始和 结束时间, 其它参数同式(1).

$$D = \frac{\int_{t_1}^{t_2} [\mathrm{NO}_x]_{\mathrm{out}} \mathrm{d}t \times V}{22.4 \times m_{\mathrm{cat}}}$$
(2)

1.4 催化剂表征

XRD 测试采用日本理学 D/MAX-3A 型 X 射线 衍射仪. 测试条件为, Cu K_{α} 射线, Ni 滤波, 射线波长 0.15418 nm, 电压 30 kV, 管电流 30 mA, 步长 0.02°, 扫描范围为 2θ =5°~80°.

2 结果与讨论

2.1 XRD 测试结果

图 1(a)为 5Mn/Al₂O₃ 600 ℃焙烧样品的 XRD图 谱. 23°、32.9°、55°、66°为 Mn₂O₃ 的特征衍射峰, 无其 它晶态锰的衍射峰; 37.2°、45.8°、67.2°为 γ-Al₂O₃ 的 特征衍射峰. 图 1(b)为 5Mn/15Ba/Al₂O₃ 的 XRD 图 谱. 19.5°、37.5°、46.2°、66.7°出现 γ-Al₂O₃ 的衍射峰; 只在 25.8°、31.4°、41.2°出现 BaMnO₃ 的特征衍射峰, 无其它晶态锰的衍射峰, 表明 Mn₂O₃ 与 BaO 作用形 成了 BaMnO₃;没有发现 BaO、BaCO₃ 晶态衍射峰. 图 1(c)为 5Mn/15Ba/Al₂O₃(800)的 XRD 图谱. 36.8°、 45.9°、66.8°归属于 γ-Al₂O₃ 的特征衍射峰; 26.1°、 31.6°、41.2°为 BaMnO₃ 的特征衍射峰; 19.7°、28.5°、 34.2°归属于 BaAl₂O₄ 的特征衍射峰,表明高温作用 下形成了尖晶石型 BaAl₂O₄.

2.2 NO_x 的氧化-储存性能

350 ℃下不同催化剂的 NO_x 储存量、穿透时间 (出口 NO_x 含量为进口 NO_x 含量的 10%的时间)、出

图1 催化剂的 XRD 谱

Fig.1 XRD patterns of catalysts

1: γ -Al₂O₃, 2: Mn₂O₃, 3: BaMnO₃, 4: BaAl₂O₄; (a) 5Mn/Al₂O₃, (b) 5Mn/15Ba/Al₂O₃, (c) 5Mn15Ba/Al₂O₃(800); 5Mn and 15Ba represent the mass ratios of Mn and Ba in the catalysts are 5% and 15%, respectively; 800 means the aged temperature(°C)

口 NO₂/NO_x 摩尔比, 如表 1 所示. 5Mn/Al₂O₃ 的 NO_x 储存量小, 穿透时间短; 添加 Ba 后, 储存量显著增 加, 穿透时间明显延长, 出口 NO₂/NO_x 摩尔比增加. 因此, 可以认为 Ba 起着主要的储存作用. 结合 XRD 测试结果可知: Ba 与 Mn 在高温下相互作用, 形成 的 BaMnO₃ 是主要的活性组分, 使 Mn 氧化 NO 的 能力显著增强. 与 1Pt/15Ba/Al₂O₃ 比较可以看出, 5Mn/15Ba/Al₂O₃ 的 NO_x 储存量大, 穿透时间长, 氧 化 NO 的能力强.

图 2 为不同温度下 5Mn/15Ba/Al₂O₃ 氧化-储存 尾气中 NO₄ 含量随时间的变化曲线,表 2 为 5Mn/ 15Ba/Al₂O₃ 在不同温度下的 NO₄ 储存量、穿透时间、 出口NO₂/NO₄ 摩尔比和 NO₄ 脱附量. 10 min 之前, 300 ℃和 350 ℃下,出口没有检测到 NO₄. 在250 ℃ 下,5 min 后就有大量的 NO₄ 穿透催化剂, 80 min 出 口NO₂/NO₄ 摩尔比仅为 29%,可见该温度下催化剂 氧化 NO 的活性低,大量的 NO 没有被氧化为 NO₂.

表 1 350 ℃下不同催化剂的 NO_x 储存量、穿透时间、出口 NO₂ 与 NO_x 摩尔比

Table 1 NO₄ storage capacity, breakthrough time, and molar ratio of NO₂ and NO₄ over different catalysts at 350 °C

Catalyst	NSC (NO _x) (μ mol·g ⁻¹)	$t_{\rm BT}$ /s	$n(NO_2)/n(NO_x)$ (%)
5Mn/Al ₂ O ₃	117.2	80	52
5Mn/15Ba/Al ₂ O ₃	397.9	651	70
5Mn/15Ba/Al ₂ O ₃ (800)	236.1	275	54
1Pt/15Ba/Al ₂ O ₃	309.3	297	32

NSC: NO_x storage capacity; t_{ET} : breakthrough time, defined as the time when $\varphi_0(\text{NO}_x)/\varphi_{\text{F}}(\text{NO}_x)=10\%$, where φ_0 and φ_{F} are volume fractions in outlet gas and in feed gas; storing for 80 min.

储存温度为400℃时,10 min 后,出口 NO₄ 含量迅速升高,储存反应达到平衡,因而 NO₄ 储存量相对较小.350℃以上,NO 氧化转化率受平衡限制而降低^[11],导致催化剂的 NO₄ 储存能力下降.350℃时,催化剂具有很好的氧化 NO 活性,将氧化生成的 NO₂ 以硝酸盐的形式储存起来;既有足够长的穿透时间,又有较大的 NO₄ 储存容量.

2.3 NO_x 脱附性能

图 3 是 5Mn/15Ba/Al₂O₃ 催化剂不同温度储存 NO₄ 后的 NO₄-TPD 谱图,可以看到随着储存温度降 低,脱附峰也相应向低温方向移动. 250 ℃和 300 ℃ 储存样品同在 415 ℃有最大 NO₄ 脱附量,脱附谱图 相似,脱附量相近. 350 ℃储存样品在 430 ℃和 503 ℃有两个脱附峰,而 400 ℃的储存样品在 520 ℃出 现脱附峰,430 ℃附近有一肩峰.从脱附行为可以推 断 5Mn/15Ba/Al₂O₃ 催化剂在 250~400 ℃储存时,可 能有两个储存活性位,低温活性位应归于 Mn 位,高 温活性位归于 Ba 位, Mn 位储存的 NO₄ 更容易脱附. 低于 350 ℃时, Mn 位的储存活性较高;高于350 ℃时, Mn 位的储存活性受到抑制,主要由 Ba 位发挥储存

表 2 5Mn/15Ba/Al₂O₃在不同温度下的 NO_x 储存量、穿透 时间、出口 NO₂ 与 NO_x 摩尔比和 NO_x 脱附量

 Table 2
 NO_x storage capacity, breakthrough time, molar ratio of NO₂ and NO_x, and desorption amount over 5Mn/ 15Ba/Al₂O₃ at different temperatures

T / ℃	$\frac{\text{NSC(NO}_{x})}{(\mu\text{mol}\cdot\text{g}^{-1})}$	<i>t</i> _{BT} / s	$n(NO_2)/$ $n(NO_x)(\%)$	$\frac{D(\mathrm{NO}_{x})}{(\mu\mathrm{mol}\cdot\mathrm{g}^{-1})}$
250	367.2	393	29	368.1
300	404.9	659	55	385.5
350	397.9	651	70	398.8
400	346.0	611	54	289.5

D: desorption amount, storing for 80 min

图 3 5Mn/15Ba/Al₂O₃的 NO_x-TPD 谱图

Fig.3 NO_x-TPD profiles of $5Mn/15Ba/Al_2O_3$ in N₂

flow rate: 850 mL·min⁻¹

作用.储存和脱附实验数据表明,5Mn/15Ba/Al₂O₃催 化剂在 350 ℃下进行 NO₄ 的氧化-储存时, Mn 既有 较高的氧化 NO 活性,又能和 Ba 共同将氧化生成 的 NO₂储存起来.

TPD 测试中检测到释放的 NO_x 大部分为 NO, 还有少量 NO₂(图 4). 随着储存温度降低, 释放的 NO₂ 增加, 400 ℃储存样品脱附尾气中 NO₂ 含量不到 NO_x 总量的 5%, 250 ℃储存样品脱附尾气中 NO₂ 含 量为 NO_x 总量的 20%. NO₂ 主要由硝酸锰分解产生. 硝酸锰和硝酸钡的分解反应式分别为

$$Mn(NO_3)_2 \rightarrow MnO_2 + 2NO_2(g) \tag{3}$$

$$Ba(NO_3)_2 \rightarrow BaO + 2NO(g) + 1.5O_2(g) \tag{4}$$

也有少量的 NO₂ 是由硝酸钡分解产生的 NO 和 O₂ 在催化剂上再次发生氧化反应生成的¹². 脱附产物也 证明 Mn 具有氧化和储存功能, 而且都受温度影响.

2.4 耐热稳定性

如前所述, 5Mn/15Ba/Al₂O₃ 催化剂在 600 ℃焙 烧活化后具有优良的 NO_x 氧化-储存性能. 800 ℃下 老化 6 h 后, 4.5 min 时出口气体中检测到 NO_x, NO_x

图 4 5Mn/15Ba/Al₂O₃的 NO₂-TPD 谱图

图 5 350 ℃下出口 NO_x(1、2)和 NO₂(3、4)含量随时间的 变化

Fig.5 Change of NO_x(1,2) and NO₂(3,4) concentration with time in outlet gas at 350 ℃ gas: 0.051% NO and 8.5% O₂ in N₂; total flow rate: 900 mL·min⁻¹

含量升高速度明显加快,80 min 时达到进口含量; 同时 NO₂ 呈相似的上升趋势.80 min 储存量为 236.1 µmol·g⁻¹, n(NO₂)/n(NO_x)为54%.老化样品较 新鲜样品的 NO_x 储存性能和 NO 氧化活性均有一 定程度下降,见图 5 和表 1. XRD 结果表明,老化后 生成了尖晶石型的 BaAl₂O₄,可能使 NO_x 储存活性 位减少;也可能高温烧结,导致催化剂 NO_x 储存能 力降低.

2.5 耐硫性能

不同含量的 SO₂ 对 5Mn15Ba/Al₂O₃ 催化剂 NO_x 储存性能的影响如图 6 所示. 低含量的 SO₂ 对催化 剂的 NO_x 储存性能没有明显影响, 而 SO₂ 的体积分 数超过 100×10⁻⁶ 时, 穿透时间缩短, 储存 15 min 后, 由于储存的 NO_x 释放出来, 导致出口 NO_x 含量超过 进口含量, NO_x 储存量降低. 进口 SO₂ 的体积分数为 0、25×10⁻⁶、50×10⁻⁶、100×10⁻⁶、200×10⁻⁶ 时, 穿透时间

图 6 含 SO₂ 时 350 ℃下出口 NO_x 含量随时间的变化 Fig.6 Change of NO_x concentration with time in outlet gas at 350 ℃

gas: 0.051% NO and 8.5% O_2 in $N_2;$ total flow rate: 900 $mL \cdot min^{-1}$

700

600

500

400 10^{6}

300

0

20

40

含 200×10⁻⁶ SO₂ 时 350 ℃下出口 NO_x 和 SO₂ 含量 图 7 随时间的变化

60

80

 t / \min

100

120

140

Fig.7 Change of NO_x and SO₂ concentration with time in outlet gas at 350 °C gas: 0.051% NO , 8.5% O2 and 200 ×10⁻⁶ SO2 in N2; total flow rate: 900 mL·min⁻¹

分别为 651 s、690 s、610 s、534 s、506 s, 30 min, NO_x 储存量分别为 332.5、320.0、268.1、224.4、191.1 µmol ·g⁻¹, NO_x 储存量分别降低 3.8%、19.4%、 32.5%、42.5%. 值得探讨的是 25×10⁻⁶ 的 SO₂ 使穿透 时间延长 40 s, 可能反应初期 SO2 将 NO 氧化为 NO₂,促进了NO_x储存^[13].

图 7 为 200×10⁻⁶ SO₂ 对 5Mn15Ba/Al₂O₃ 催化剂 NO_x储存性能的影响过程.8 min 之内出口没有 NO_x;随后 NO 和 NO₂ 含量快速升高;15 min 时 NO_x 超过进口含量, NO 和 NO。含量升高速度减慢;30 min 左右 NO。含量缓慢下降, NO 和 NO、含量缓慢 上升;60 min 时出现较宽的 NO, 脱附峰, NO 含量升 高速度加快, NO2含量快速降低;80 min 时, 出口检 测到 SO2, NOx 和 NO 均接近进口含量;随后, NO、 NO₂和 NO₂含量趋于恒定, SO₂缓慢升高;150 min 时,出口气体中 NO、NO2、NOx 和 SO2 含量分别为 478×10⁻⁶、498×10⁻⁶、20×10⁻⁶、143×10⁻⁶,催化剂失活.

反应初期,催化剂将 NO 氧化为 NO₂,以硝酸盐 形式储存起来,同时将 SO2 氧化为 SO3,以硫酸盐的 形式储存起来. NO和 SO2在 Mn 位竞争氧化反应, 最 后 SO₂ 占优势;NO₂ 和 SO₃ 在 Ba 位竞争成盐反应, SO3 的亲合势大^[14], SO3 竞争占优势, 促进硝酸盐分 解,释放出 NO₂. 最终 Mn 位和 Ba 位硫酸盐化,催化 剂失去氧化和储存活性, SO2 大部分穿透催化剂[15-17].

结 3 论

综上所述, Mn/Ba/Al₂O₃催化剂既具有优异的氧 化 NO 活性,又有较好的 NO,储存能力.BaMnO,是 主要的活性组分:Mn能够催化 NO 的氧化反应,且

有一定的 NO. 储存能力: Ba 是主要的储存组分. 将 NO_x以硝酸盐的形式储存;硝酸盐在 300~600 ℃分解, 释放出 NO_x. Mn/Ba/Al₂O₃ 催化剂在 800 ℃老化 6 h 后, NO 氧化活性和 NO, 储存能力稍有下降. 低含量 的 SO₂ 对催化剂的 NO 氧化活性和 NO₄ 储存能力 没有明显影响;高含量的 SO2 使催化剂的NO 氧化活 性降低, NO, 储存量减小, 最终导致催化剂失活.

References

- 1 Xiao, J. H.; Li, X. H.; Xu, J. C.; Zhu, P.; Deng, S.; Wang, L. F. Chinese Modern Chemical Industry, 2005, 25(8): 15 [肖建华, 李雪辉,徐建昌,朱 鹏,邓 莎,王乐夫.现代化工(Xiandai Huagong), 2005, 25(8): 15]
- 2 Epling, W. S.; Campbell, L. E.; Yezerets, A.; Currier, N. W.; Parks, J. E. Catalysis Reviews, 2004, 46(2): 163
- 3 Takahashi, N.; Shinjoh, H.; Iijima; T.; Suzuki, T.; Yamazaki, K.; Yokota, K.; Suzuki, H.; Miyoshi, N.; Matsumoto, S.; Tanizawa, T.; Tanaka, T.; Tataishi, S.; Kasahara, K. Catalysis Today, 1996, 27(1-2): 63
- 4 Su,Y.; Amiridis, M. D. Catalysis Today, 2004, 96(1-2): 31
- 5 Fridell, E.; Skoglundh, M.; Westerberg, B.; Johansson, S.; Smedler, G. Journal of Catalysis, 1999, 183(2): 196
- 6 Mahzoul, H.; Brilhac, J. F.; Gilot, P. Applied Catalysis B, 1999, 20(1): 47
- 7 Koo, K.; Andersen, P. J. Lean NO_x trap/conversion catalyst. WO Patent, 03/024571A1. 2003
- 8 Huang, H. Y.; Long, R. Q.; Yang, R. T. Energy & Fuels, 2001, 15 (1): 205
- 9 Andderson, J. A.; Bachiller-Baeza, B.; Fernández-García, M. Phys. Chem. Chem. Phys., 2003, 5(20): 4418
- 10 Amberntsson, A.; Fridell, E.; Skoglundh, M. Applied Catalysis B, 2003, 46(3): 429
- 11 Lu, W. Z.; Zhao, X. G.; Wang, H.; Xiao, W. D. Chinese Journal of Catalysis, 2000, 21(5): 423 [鲁文质, 赵秀阁, 王 辉, 肖文 德. 催化学报(Cuihua Xuebao), 2000, 21(5): 423]
- 12 Kang, S. F.; Jiang, Z.; Hao, Z. P. Acta Phys.-Chim. Sin., 2005, 21 (3): 278 [康守方, 蒋 政, 郝郑平. 物理化学学报(Wuli Huaxue Xuebao), 2005, 21(3): 278]
- 13 Gao, A. M.; Lin, P. Y.; Tu, J.; Meng, M.; Li, Q. X. Chinese Journal of Chemical Physics, 2004, 17(4): 485 [高爱梅, 林培 琰,屠 兢,孟 明,李全新.化学物理学报(Huaxue Wuli Xuebao), 2004, 17(4): 485]
- 14 Karlsen, E. J.; Nygren, M. A. Journal of Physical Chemistry B, **2003, 107**(31): 7795
- 15 Engström, P.; Amberntsson, A.; Skoglundh, M.; Fridell, E.; Smelder, G. Applied Catalysis B, 1999, 22(4): 241
- 16 Sedlmair, C.; Seshan, K.; Jentys, A.; Lercher, J. A. Catalysis Today, 2002, 75(1-4): 413
- 17 Li, L.; King, D. L. Industrial & Engineering Chemistry Research, 2005, 44(1): 168