[Article]

88

www.whxb.pku.edu.cn

利用 SnO2:Sb 干凝胶部分升华产物处理 ZnS:Mn 荧光粉

周宏伟 李怀祥* 姜正伟 左相青

(山东师范大学化学化工与材料科学学院,济南 250014)

摘要: 以 SnCl₂·2H₂O、SbCl₃为原料, 通过溶胶-凝胶法制备 SnO₂:Sb 干凝胶.利用干凝胶氧化过程中的部分升 华产物对新制的 ZnS:Mn 荧光粉进行了表面处理. 在固定氧气流量和氧化时间的条件下, 考察了 SnO₂:Sb 干凝胶 与 ZnS:Mn 荧光粉的质量比和氧化温度对处理后荧光粉电阻率的影响. 当干凝胶粉与荧光粉的质量比为 3.0, 氧 化温度为 500 ℃处理后荧光粉的电阻率明显下降. 对处理后的荧光粉进行了室温光致荧光(PL)光谱、X 射线衍射 (XRD)以及透射电镜(TEM)分析. 结果表明对荧光粉进行表面处理没有改变荧光粉的光致发光性质和晶体结构.

关键词: 溶胶-凝胶; 荧光粉; 二氧化锡; 升华 中图分类号: O649

Treatment of ZnS:Mn Phosphors by Partial Sublimation of SnO₂:Sb Xerogel

ZHOU Hong-Wei LI Huai-Xiang* JIANG Zheng-Wei ZUO Xiang-Qing (College of Chemistry, Chemical Engineering and Material Science, Shandong Normal University, Jinan 250014, P. R. China)

Abstract: SnO_2 :Sb xerogel was prepared using the sol-gel technique with $SnCl_2 \cdot 2H_2O$ and $SbCl_3$ as the starting materials. Partial sublimation of SnO_2 :Sb xerogel during oxidation was utilized to treat the as-prepared ZnS:Mn phosphor. The mass ratio of SnO_2 :Sb xerogel to ZnS:Mn phosphors changed from 0.5 to 4.0 and the range of the oxidation temperature was 300–600 °C under the given oxygen flux (0.2 L·min⁻¹) and oxidation duration (30 min). The treated phosphors were characterized by X-ray diffraction (XRD), photoluminescence (PL), transmittance electron microscopy (TEM), and electrical resistance measurements. The results showed that the conductivity of the treated ZnS:Mn phosphors was obviously improved when the mass ratio of SnO_2 :Sb xerogel to ZnS:Mn phosphors and the oxidation temperature were 3.0 and 500 °C, respectively. The photoluminescence characteristics and crystal structure of the treated ZnS:Mn phosphors remained the same as the as-prepared phosphors.

Key Words: Sol-gel; Phosphor; SnO₂; Sublimation

二氧化锡(SnO₂)是一种宽禁带 n 型半导体材料, 通过掺杂 F、Sb^[1,2]等不同元素,可获得透明导电性薄 膜. SnO₂ 薄膜的制备通常采用化学气相沉积^[3]、物理 气相沉积^[4]、激光脉冲沉积^[5]、磁控溅射^[6,7]等方法.近 年来发展起来的溶胶-凝胶技术用于制备 SnO₂ 薄膜 获得巨大成功,该技术有以下优点^[8]: (1)反应温度低, 反应过程易于控制; (2)制品的均匀度、纯度高(均匀 性可达分子或原子水平); (3)化学计量准确,易于改性,掺杂的范围宽(包括掺杂的量和种类); (4)工艺简单,不需要昂贵的设备.另外通过溶胶-凝胶技术还可以制备 SnO₂纳米粉体,但以往的研究都围绕产品的结构、性质和应用方面.我们在制备SnO₂:Sb 导电粉末过程中发现,由干凝胶转化成粉体的氧化过程中出现部分升化现象,并且升化部分很容易成膜,该

 ${\rm (}{\rm C}{\rm)}$ Editorial office of Acta Physico-Chimica Sinica

Received: July 17, 2006; Revised: September 13, 2006. English edition available online at www.sciencedirect.com

^{*}Corresponding author. Email: lihuaixiang@sdnu.edu.cn; Tel: +86531-86271517.

国家自然科学基金(60671010)和山东省自然科学基金(Y2002G11)资助项目

89

薄膜在可见光范围具有良好的透光性.

硫化物场致发射显示(FED)用荧光粉,在电子 激发下表面会发生化学反应产生SO₂、H₂S等气体,这 些气体可能会使发光器件中毒而降低荧光^{10]}.为了使 荧光粉避免由于表面反应而降解,通常在其表面包 覆TaSi₂、MgO、ITO、磷酸盐、SiO₂、ZnO¹⁰等物质.

本研究利用 SnO₂:Sb 干凝胶氧化升华现象对 ZnS:Mn 荧光粉进行表面处理, 与传统的化学气相 沉积或磁控溅射等方法相比, 具有设备简单, 温度温 和以及不破坏被处理样品的内部结构的特点.

1 实 验

1.1 样品的制备

参照文献[11]的方法,用分析纯的 SnCl₂·2H₂O、SbCl₃(n₅n:n₅b=10:1)和无水乙醇合成 SnO₂:Sb 溶胶,然 后把得到的澄清透明溶胶在室温下陈放一定时间, 接着把陈放后的溶胶在120 ℃烘干,得到SnO₂:Sb干 凝胶.

ZnS 粉(荧光纯)和 MnCl₂·4H₂O(分析纯)按照摩 尔比 100:1.5 在研钵中研磨混匀, 然后加水调成糊 状, 烘干后再研磨, 最后在 860 ℃氮气气氛下热处理 2 h, 经过选粉即可得到 ZnS:Mn 黄色荧光粉.

将 SnO₂:Sb 干凝胶研磨后放入管式石英炉作为 升华源,以石英片和实验室新制备的黄色荧光粉 ZnS:Mn 为沉积目标,通高纯氧气(0.2 L·min⁻¹)氧化 30 min,必要时旋转样品以使涂层均匀.

1.2 样品的表征

用北京普析通用仪器公司TU-1901双光束紫外 可见分光光度计测量石英衬底上升华薄膜的透光率, 相同厚度的石英片作参比,测量范围200-800 nm.

将 0.1 g 不同包覆条件和热处理温度下所得到 的包覆荧光粉装入电阻率测量盒中,在一定的压力 下压块,室温下用数字万用表(深圳市胜利高电子科 技有限公司 VC9800 系列数字万用表)测其电阻值, 再按下式来计算粉体的电阻率: ρ_s=R_s×A/L,式中 ρ_s (Ω·cm)是荧光粉的电阻率, R_s(Ω)是荧光粉电阻的测 量值, A(cm²)、L(cm)分别是测量盒中荧光粉压块后 的横截面积和厚度.

用德国产 Bruker-X8 型 X 射线粉末衍射仪 (XRD)对样品进行结构分析, Cu靶, K_α为射线源, 入射 射线波长 λ=0.15406 nm, 管电压 40 kV, 管电流 40 mA. 用英国爱丁堡稳态/瞬态荧光仪 (仪器型号: FLS 920) 测试沉积前后荧光粉的室温激发和发射 光谱.

2 结果与讨论

2.1 SnO2:Sb 干凝胶升华沉积薄膜的透光性质

将 SnO₂:Sb 干凝胶放入通有氧气的管式石英炉 中氧化时,随着温度的升高会观察到明显的凝胶的 部分升华现象.如果把升华产物沉积到透明底片上, 会得到一种透明薄膜.图 1 是石英基片距升华源 (0.8 g 干凝胶)10 cm, 500 ℃ 沉积 1 h 得到的薄膜的 透射光谱.从图中可以清楚地看到,薄膜在可见光区 (400-800 nm)的平均透过率大于 80%,在 ZnS:Mn 荧 光粉的发光位置(583 nm)透过率更是高达 90%,因 此选定上述工艺处理 ZnS:Mn 荧光粉,不会导致其 发光强度显著下降.

2.2 包覆前后 ZnS:Mn 荧光粉的荧光性质

图 2 曲线 A 是新制备的 ZnS:Mn 荧光粉室温 激发光谱,其激发峰位在 343 nm,并以此选为发射 光谱测量的激发波长.曲线B是相应荧光粉的室温光 致发射光谱,主峰在583 nm,黄色荧光.曲线C是经 过SnO₂:Sb干凝胶500 ℃升华处理 30 min后 ZnS:Mn 荧光粉的室温光致发射光谱.从图中可以看出,经过 处理后的荧光粉发光位置基本没有改变,只是发光 强度略微减弱,可能是由于沉积层对光线的反射、散 射和吸收等作用,影响入射线紫外光(343 nm)的强 度.总起来看,上述处理后的荧光粉仍然具有良好的 光致荧光性能.

2.3 荧光粉的电阻率

图 3 是改变 SnO₂:Sb 干凝胶粉与 ZnS:Mn 的质量比值, 然后在氧气气氛 500 ℃下进行升华沉积 30 min, 所得到的荧光粉电阻率. 随着干凝胶质量比的

图 1 升华沉积在石英基底上薄膜的紫外可见透射光谱 Fig.1 UV-Vis transmittance spectrum of the film deposited on quartz substrate

(C) emission spectra of SnO₂:Sb-coated phosphors

增大 ZnS:Mn 荧光粉的电阻率下降,当溶胶粉与荧 光粉的质量比值超过 2.0 时,相应荧光粉的电阻率 变化趋于平缓,基本趋于一个稳定值.在考察温度对 荧光粉电阻率的影响时,固定溶胶粉与 ZnS:Mn 的 质量比值为 3.0.

把溶胶粉和荧光粉的比值固定为 3.0, 氧化时间 30 min, 不同温度进行处理, 荧光粉的室温电阻率变 化结果如图 4 所示. 300 ℃时荧光粉的电阻率较大, 300-400 ℃电阻率逐渐降低, 并且在 450 ℃时荧光 粉的电阻率到达最小值, 然后随着温度的进一步升 高, 电阻率又逐渐变大. 经测试表明新制备的 ZnS: Mn 荧光粉本身的电阻率大于 2000 MΩ·cm, 热沉积 处理后荧光粉的电阻率下降的原因是其表面上沉积 了 SnO₂:Sb 的导电薄膜. 而 SnO₂:Sb 的导电薄膜材 料的电导率主要是由载流子浓度和迁移率决定的. SnO₂:Sb 薄膜的载流子(电子)浓度主要由掺杂的施

主提供. 替位式杂质元素 Sb 在 SnO₂ 中可以有 Sb³⁺, Sb⁵⁺两种价态形式存在^[11,12]. 当温度≤ 300 ℃时, 干凝 胶的升华量达不到形成连续 SnO₂:Sb 薄膜的程度, 表观上所得荧光粉的电阻率较高. 当氧化温度在 400 ℃左右时, 掺杂元素主要以 Sb³⁺形式固溶于 SnO₂中,取代 Sn⁴⁺的格位生成受主缺陷,该受主在 SnO₂的禁带中引入的局域能级在价带顶附近,室温 下就能发生受主电离而在价带中留下可以导电的空 穴¹³. 随着氧化温度的升高, Sb³⁺取代 Sn⁴⁺格位的反应 更容易进行,即施主掺杂的有效性增大.另外,随着 温度的升高, Sb3+部分被氧化为Sb5+, 由于Sb5+半径 (62 pm)小于Sn⁴⁺的半径(71 pm),取代反应更容易¹⁴. 当一个Sb5*取代一个Sn4*时,因Sb5*比Sn4*多一个正电 荷,生成的缺陷相当于一个正一价离子上松弛地束 缚着一个电子(Sbsn+e-),其有效电荷符号写作 Sbsn, 它可按式 Sb_{a}^{*} → Sb_{a}^{*} +e'电离给出电子, 同样表现为

图 3 干凝胶质量(*m*_{sn02}sb)/荧光粉质量(*m*_{ZnSMn})比值对 荧光粉电阻率的影响

Fig.3 Effect of the mass ratio (m_{Sn0_2Sb}/m_{ZnSMn}) on the resistivity of ZnS phosphors

Fig.5 XRD patterns of the ZnS:Mn phosphors (A) as prepared; (B) only annealed at 500 °C in O₂ atmosphere;

(C) treated by sublimating at 500 °C in O_2 atmosphere

图6 SnO₂:Sb干凝胶处理后ZnS:Mn荧光粉的TEM照片 Fig.6 TEM image of ZnS:Mn phosphors coated by SnO₂:Sb films

的禁带中,当该电子接受大于或者等于 *E*_D的能量 时,就可激发至导带中形成载流子.因此在 400–500 ℃,随着氧化温度的升高被处理荧光粉的电阻率下 降.当氧化温度高于 500 ℃时,一方面是当温度较高 时,ZnS:Mn和SnO₂:Sb薄膜膨胀系数不一致,导致膜 层晶格破损;另一方面,高温时ZnS:Mn被部分氧化, 这两方面的因素都会降低被处理粉体的导电性,表 现为电阻率随氧温度的升高又增大.虽然氧化温度 对样品的电阻率有如此影响,但是对相应样品的荧 光特性(发射光谱的峰位和强度)影响不大.

2.4 处理前后荧光粉的 XRD、TEM 分析结果

图 5 为 SnO₂:Sb 干凝胶处理前后 ZnS:Mn 荧光 粉的 XRD 图谱. 可以看出新制备的荧光粉(图 5A), 500 ℃升华SnO2:Sb干凝胶处理的荧光粉(图5 C) 和只 进行同条件热处理的荧光粉(图5 B), 它们的衍射峰 谱基本相似,对照标准JCPDS卡片,均为六方相的 ZnS结构. 说明SnO2:Sb干凝胶处理后, 荧光粉的晶体 结构并没有发生变化. 但在图5C 中20=27.0°、33.7°处 有两个新的衍射峰,与标准JCPDS卡片对照,分别对 应SnO₂的 (110)、(101) 晶面, 说明样品中部分存在 SnO₂. 另外, 从图5(B) 中还可以看出, 经过500 ℃、氧 气氛热处理30 min, ZnS的晶体结构没有变化,说明 在上述温度和氧气氛条件下ZnS基本没有被氧化. 图6为SnO₂:Sb干凝胶500 ℃升华处理30 min后ZnS: Mn荧光粉的透射电子显微照片.虽然包覆不十分均 匀,但在ZnS:Mn荧光粉体的表面基本上附着一层 SnO₂:Sb膜.

3 结 论

以 SnCl₂·2H₂O、SbCl₃和无水乙醇为原料,通过 溶胶凝-胶法制备 SnO₂:Sb 干凝胶.利用干凝胶氧化 过程中的部分升华产物对新制的 ZnS:Mn 荧光粉进 行了表面处理.在固定氧气流量 0.2 L·min⁻¹和 30 min 氧化时间条件下,考察了 SnO₂:Sb 干凝胶与 ZnS:Mn 荧光粉的质量比从 0.5 到 4.0,氧化温度范 围从 300 ℃到 600 ℃处理后荧光粉的电阻率变化情 况.结果显示,当干凝胶粉与荧光粉的质量比为 3.0, 氧化温度和时间分别为 500 ℃和 30 min 时, ZnS:Mn 荧光粉体的表面基本上附着一层 SnO₂:Sb 膜,处理 后荧光粉的导电性得到了显著的提高.室温光致荧 光以及 X 射线衍射结果表明,处理后荧光粉的荧光 特性和晶体结构没有发生变化.通过 SnO₂:Sb 干凝 胶氧化升华现象对 ZnS:Mn 荧光粉进行表面处理, 具有简单、温和以及不破坏样品内部结构的优点.

References

- Goyal, D. J.; Agashe, C.; Marathe, B. R.; Takwale, M. G.; Bhide,
 V. G. J. Appl. Phys., **1993**, **73**(11): 7520
- 2 Abass, A. K.; Mohammad, M. T. J. Appl. Phys., 1986, 59(5): 1641
- Mo, J. L.; Chen, H.; Cao, Y. Y.; Liu, Q. Y.; Wang, J. X.; Weng, W. J.; Han, G. R. Acta Energiae Solaris Sinica, 2004, 25(2): 152
 [莫建良,陈 华,曹涯燕,刘起英,汪建勋,翁文剑,韩高荣.太阳 能学报, 2004, 25(2): 152]
- 4 Park, S. H.; Son, Y. C.; Willis, W. S.; Suib, S. L.; Creasy, K. E. Chem. Mater., 1998, 10(9): 2389
- 5 Prins, M. W. J.; Grosse-Holz, K. O.; Cillessen, J. F. M.; Feiner, L. F. J. Appl. Phys., 1998, 83(2): 888
- 6 Goodchild, R. G.; Webb, J. B.; Williams, D. F. J. Appl. Phys., 1985, 57(6): 2308
- 7 Wang, Y. H.; Ma, J.; Ji, F.; Yu, X. H.; Ma, H. L. Rare Metal Materials and Engineering, 2005, 34(11): 1747 [王玉恒, 马 瑾, 计 峰, 余旭浒, 马洪磊. 稀有金属材料与工程, 2005, 34(11): 1747]
- 8 Huang, J. F. Principle and technology of sol-gel. Beijing:
 Chemical Industry Press, 2005: 13 [黄剑锋. 溶胶-凝胶原理与技术. 北京: 化学工业出版社, 2005: 13]
- 9 Park, W.; Yasuda, K.; Wagner, B. K.; Summers, C. J.; Do, Y. R.;
 Yang, H. G. *Mater. Sci. Eng. B.*, 2000, 76: 122
- Zhao, J.; Li, H. X.; Wang, A. H.; Zhou, H. W.; Zuo, X. Q. Acta Phys. -Chim. Sin., 2006, 22(3): 286 [赵 婧, 李怀祥, 王安河, 周宏伟, 左相青. 物理化学学报, 2006, 22(3): 286]
- Terrier, C.; Chatelona, J. P.; Berjoanb, R.; Rogera, J. A. *Thin Solid Films*, **1995**, **263**: 37
- 12 Ovenston, A.; Sprinceana, D.; Walls, J. R.; Caldararu, M. J. Mat. Sci., 1994, 29: 4946
- Bo, Z. M. J. Inorg. Mater., 1990, 5(4): 324 [薄占满. 无机材料 学报, 1990, 5(4): 324]
- 14 Tan, J. R.; Shen, L. Z.; Fu, X. S.; Hou, W. X.; Chen, X. Z. Journal of the Chinese Ceramic Society, 2003, 31(9): 892 [谭俊茹, 沈 腊珍, 付贤松, 侯文祥, 陈秀增. 硅酸盐学报, 2003, 31(9): 892]