
Turk J Math

33 (2009) , 359 – 373.

c© TÜBİTAK
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Solutions for 2nth order lidstone BVP on time scales

Erbil Çetin and S. Gülşan Topal

Abstract

In this paper, we prove the existence of solutions for nonlinear Lidstone boundary value problems by

using the monotone method on time scale and also we show the existence of at least one positive solution if

f is either superlinear or sublinear by the fixed point theorem in a Banach space.

Key Words: Lidstone boundary value problem, upper and lower solutions, fixed point theorem, positive

solution.

1. Introduction

Let T be any time scale (nonempty closed subset of R) and [0, 1] is subset of T such that
[0, 1] = {t ∈ T : 0 ≤ t ≤ 1} .

In this paper, we shall consider the nonlinear Lidstone boundary value problem (LBVP),

(−1)ny�
2n

(t) = f(t, yσ(t), y��(t), ..., y�
2(n−1)

(t)), t ∈ [0, 1] (1.1)

y�
2i

(0) = y�
2i

(σ(1)) = 0, 0 ≤ i ≤ n − 1, (1.2)

where n ≥ 1 and f : [0, σ(1)]×Rn → R is continuous. We assume that σ(1) is right dense so that σj(1) = σ(1)
for j ≥ 1.

In this section we give some inequalities for certain Green’s function which are proved in the reference
[5]. In Section 2 we give the existence and uniqueness theorem for solution using the method of upper and
lower solutions when they are given in the well order. This method is generally used to obtain the existence of
solutions within specified bounds determined by the upper and lower solutions. Also we obtain a unique solution
within the appropriate bounds. Then we develop the monotone method which yields the solution of the LBVP
(1.1), (1.2). The method of upper and lower solutions have been applied by several authors in [4, 7, 10, 13] and

the references therein. In [9] Ehme, Eloe and Henderson applied this method to 2nth order problems.
Cone theory techniques have been applied by several authors for ordinary differential equations and

dynamic equations on time scales including two-point, three-point and Lidstone problems in [1, 5, 6] and the
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references therein. Lidstone boundary value problem (LBVP) has attracted considerable attention in recent
years [12] . In Section 3 we discuss the existence of a positive solution for the LBVP (1.1), (1.2) under
f0 = 0, f∞ = ∞ or f0 = ∞, f∞ = 0. Some preliminary definitions and theorems on time scales can be
found in the books [2, 3].

To obtain a solution for the LBVP (1.1), (1.2) we need the Gn(t, s) which is the Green’s function of the
boundary value problem,

y�
2n

(t) = 0, t ∈ [0, 1]

y�
2i

(0) = y�
2i

(σ(1)) = 0,

for 0 ≤ i ≤ n − 1.

The Green’s function for the problem y��(t) = 0, y(0) = y(σ(1)) = 0, is

G(t, s) =
1

σ(1)

⎧⎪⎨
⎪⎩

t(σ(s) − σ(1)), t ≤ s

σ(s)(t − σ(1)), t > σ(s).

(1.3)

If we let G1(t, s) := G(t, s), then for 2 ≤ j ≤ n we can recursively define

Gj(t, s) =
∫ σ(1)

0

Gj−1(t, r)G(r, s)�r. (1.4)

Further, it is easily seen that

(−1)nGn(t, s) ≥ 0, (t, s) ∈ [0, σ(1)]× [0, 1]. (1.5)

Lemma 1.1 [5] For (t, s) ∈ [0, σ(1)]× [0, 1] , we have

(−1)nGn(t, s) = |Gn(t, s)| ≤
(

σ(1)
4

)n−1
σ(s)(σ(1) − σ(s))

σ(1)
, (1.6)

and also

(−1)nGn(t, s) = |Gn(t, s)| ≤
(

σ(1)
4

)n

. (1.7)

Lemma 1.2 [5] Let δ ∈
(

0,
σ(1)

2

)
be given. For (t, s) ∈ [δ, σ(1) − δ] × [0, 1] , we have

(−1)nGn(t, s) = |Gn(t, s)| ≥ θn(δ)
σ(s)(σ(1) − σ(s))

σ(1)
, (1.8)

where

θn(δ) =
(

δ

σ(1)

)n

(δ2(σ(1) − 2δ))n−1.
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Using Lemma 1.1, we get

(−1)nGn(t, s) ≥ θn(δ)
σ(s)(σ(1) − σ(s))

σ(1)

≥ θn(δ)
(

4
σ(1)

)n−1

max
t∈[0,σ(1)]

|Gn(t, s)|.

For δ =
σ(1)

4
∈

(
0,

σ(1)
2

)
, we have θn

(
σ(1)

4

)(
4

σ(1)

)n−1

=
(σ(1))2n−2

25n−3
. Let

γn =
1

25n−3
, then 0 < γn < 1 and (−1)nGn(t, s) ≥ 1

25n−3
max

t∈[0,σ(1)]
|Gn(t, s)|.

Also in the reference [5], the positivity condition of the function u(t) is given.

Lemma 1.3 [5] Assume that u ∈ C�2n

[0, σ(1)]k
2n

and u(t) satisfies

(−1)nu�2n

(t) ≥ 0, t ∈ [0, 1] (1.9)

(−1)iu�2i

(0) ≥ 0, (−1)iu�2i

(σ(1)) ≥ 0, 0 ≤ i ≤ n − 1. (1.10)

Then u is nonnegative on [0, σ(1)] .

2. Existence and uniqueness

In this section, we give the existence and local uniqueness of a solution of the LBVP (1.1), (1.2)
that lies between an upper and lower solution. We will use the norm

‖y‖ := maxt∈[0,σ(1)]{|y(t)|, |y��(t)|, ..., |y�2(n−1)
(t)|}

as the norm on C�2(n−1)

[0, σ(1)]k
2(n−1)

.

We note that, for t ∈ [0, σ(1)] , |y(t)| ≤
∫ t

0
|y�(s)|�s ≤ σ(1)‖y�‖∞. Hence ‖y‖∞ ≤ σ(1)‖y�‖∞ . Similarly we

get, for t ∈ [0, σ(1)] , |y�(t)| ≤
∫ t

0
|y��(s)|�s ≤ σ(1)‖y��‖∞. By continuing this process, we get

‖y‖∞ ≤ σ(1)‖y�‖∞ ≤ (σ(1))2‖y��‖∞ ≤ ... ≤ (σ(1))2(n−1)‖y�2(n−1)
(t)‖∞.

So, ‖y�2(n−1)
(t)‖∞ ≤ ‖y‖ ≤ (σ(1))2(n−1)‖y�2(n−1)

(t)‖∞.

Definition 2.1 Letting α ∈ C�2n

[0, σ(1)]k
2n

, we say α is an upper solution for LBVP (1.1), (1.2) if α satisfies

(−1)nα�2n

(t) ≥ f(t, ασ(t), α��(t), ..., α�2(n−1)
(t)), t ∈ [0, 1],

(−1)iα�2i

(0) ≥ 0, (−1)iα�2i

(σ(1)) ≥ 0, 0 ≤ i ≤ n − 1.

361
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Definition 2.2 Letting β ∈ C�2n

[0, σ(1)]k
2n

, we say β is a lower solution for LBVP (1.1), (1.2) if β satisfies

(−1)nβ�2n

(t) ≤ f(t, βσ(t), β��(t), ..., β�2(n−1)
(t)), t ∈ [0, 1],

(−1)iβ�2i

(0) ≤ 0, (−1)iβ�2i

(σ(1)) ≤ 0, 0 ≤ i ≤ n − 1.

The function f(t, y1 , y2, ..., yn) is said to be Lip−αβ if there exist positive constants ci such that for all
(x1, x2, ..., xn) and (y1, y2, ..., yn) such that

(−1)iα�2i

(t) ≥ (−1)ixi+1(t), (−1)iyi+1(t) ≥ (−1)iβ�2i

(t), 0 ≤ i ≤ n − 1,

it follows that

|f(t, x1, x2, ..., xn) − f(t, y1, y2, ..., yn)| ≤
n∑

i=1

ci|xi − yi|.

We note that if f is continuously differentiable on a suitable region, then f will be Lip−αβ .

Theorem 2.1 Assume there exist α and β such that α and β are upper and lower solutions of the LBVP
(1.1), (1.2) , respectively, which satisfy

(−1)iβ�2i

(t) ≤ (−1)iα�2i

(t), 0 ≤ i ≤ n − 1 (2.11)

for all t ∈ [0, σ(1)] and assume

(1) f(t, y1, y2, ..., yn) : [0, σ(1)]×Rn → R is continuous;

(2) f(t, y1, y2, ..., yn) is Lip−αβ; and

(3) f(t, y1 , ..., yk, ..., yn) − f(t, y1, ..., yk
, ..., yn) ≥ (−1)k−1(yk − y

k
) (2.12)

for (−1)k−1β�2(k−1)
(t) ≤ (−1)k−1y

k
≤ (−1)k−1yk ≤ (−1)k−1α�2(k−1)

(t),

1 ≤ k ≤ n, yi ∈ R and t ∈ [0, σ(1)] .

Then, if

(
σ(1)

4

)n
(

n∑
i=1

ci + c0

)
< 1, (2.13)

there exists a unique solution y(t) of the LBVP (1.1), (1.2) such that

(−1)iβ�2i

(t) ≤ (−1)iy�
2i

(t) ≤ (−1)iα�2i

(t), 0 ≤ i ≤ n − 1

for all t ∈ [0, σ(1)] and there exist two monotone sequences {αn} and {βn} , respectively,with α0 = α and
β0 = β , which converge uniformly to the extremal solutions in [β, α] of the problem LBVP (1.1), (1.2).
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Proof. For 0 ≤ i ≤ n − 1, we define

p2i
(t, y�

2i

(t)) =

{
max{β�2i

(t), min{y�2i

(t), α�2i

(t)}}, if i is even;
max{α�2i

(t), min{y�2i

(t), β�2i

(t)}}, if i is odd,

where y is a function defined on [0, σ(1)] . If y�
2i

is continuous, then p2i is continuous. Moreover,

(−1)iβ�2i

(t) ≤ (−1)ip2i
(t, y�

2i

(t)) ≤ (−1)iα�2i

(t)

and 0 ≤ i ≤ n − 1, and each p2i
is non-expansive function.

Define F1 : [0, σ(1)]× C�2(n−1)

[0, σ(1)]k
2(n−1) → R by

F1(t, yσ(t), y��(t), ..., y�
2(n−1)

(t)) = f(t, p0 (σ(t), yσ(t)), ..., p2(n−1)(t, y�
2(n−1)

(t))).

Thus,

|F1(t, yσ(t), y��(t), ..., y�
2(n−1)

(t)) − F1(t, zσ(t), z��(t), ..., z�
2(n−1)

(t))|

≤
n∑

i=2

ci|y�
2(i−1)

(t) − z�
2(i−1)

(t)| + c1|yσ(t) − zσ(t)|.

F1 is also continuous. Choose c0 > 0 such that

(
σ(1)

4

)n
(

n∑
i=1

ci + c0

)
< 1.

Now define F2 : [0, σ(1)]× C�2(n−1)

[0, σ(1)]k
2(n−1) → R by

F2(t, y1, y2, ..., yn) =

⎧⎪⎨
⎪⎩

F1(t, y1, y2, ..., yn) − c0(−1)n−1(yn − αn), if (−1)n−1yn > (−1)n−1αn;
F1(t, y1, y2, ..., yn), if (−1)n−1βn ≤ (−1)n−1yn ≤ (−1)n−1αn;
F1(t, y1, y2, ..., yn) + c0(−1)n−1(βn − yn), if (−1)n−1yn < (−1)n−1βn,

where β1 = βσ and α1 = ασ, for n = 1 and βn = β�2(n−1)
and αn = α�2(n−1)

, for n ≥ 2.

Then F2 is continuous. By considering various cases, it can be shown that F2 satisfies

|F2(t, yσ(t), y��(t), ..., y�
2(n−1)

(t)) − F2(t, zσ(t), z��(t), ..., z�
2(n−1)

(t))|

≤ c1|yσ(t) − zσ(t)| +
n−1∑
i=2

ci|y�
2(i−1)

(t) − z�
2(i−1)

(t)|

+(cn − c0)|y�
2(n−1)

(t) − z�
2(n−1)

(t)|.

This shows F2 is also Lipschitz.
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Define T : C�2(n−1)

[0, σ(1)]k
2(n−1) → C�2(n−1)

[0, σ(1)]k
2(n−1)

by

Ty(t) :=
∫ σ(1)

0

(−1)nGn(t, s)F2(s, yσ(s), y��(s), ..., y�
2(n−1)

(s))�s.

For y, z ∈ C�2(n−1)

[0, σ(1)]k
2(n−1)

, it follows that

|Ty(t) − Tz(t)| ≤
∫ σ(1)

0

|Gn(t, s)||F2(t, yσ(t), y��(t), ..., y�
2(n−1)

(t))

−F2(t, zσ(t), z��(t), ..., z�
2(n−1)

(t))|�s

≤
(

σ(1)
4

)n
{

n∑
i=1

ci‖y − z‖ + c0‖y − z‖
}

=
(

σ(1)
4

)n
(

n∑
i=1

ci + c0

)
‖y − z‖.

This shows that T is a contraction from the choice of c0 guarantees. Hence T has a unique fixed point y(t)
which is the solution of LBVP (1.1), (1.2).

We now demonstrate p2i(t, y�
2i

(t)) = y�
2i

(t), for 0 ≤ i ≤ n − 1 on t ∈ [0, σ(1)]

Suppose that (−1)iy�
2i

(t) > (−1)iα�2i

(t), 0 ≤ i ≤ n − 1 for all t ∈ [0, σ(1)] , this implies for t ∈ [0, 1],

(−1)ny�
2n

(t) = F2(t, yσ(t), y��(t), ..., y�
2(n−1)

(t))

= F1(t, yσ(t), y��(t), ..., y�
2(n−1)

(t))

−c0(−1)n−1(y�
2(n−1) − α�2(n−1)

)(t)

≤ f(t, p0 (σ(t), yσ(t)), p2(t, y
��(t)), ..., p2(n−1)(t, y�

2(n−1)
(t)))

≤ f(t, ασ(t), α��(t), ..., α�2(n−1)
(t))

≤ (−1)nα�2n

(t).

Hence, we have (−1)n(y−α)�
2n

(t) ≤ 0 for t ∈ [0, 1] and from the boundary conditions (−1)i(y−α)�
2i

(0) ≤ 0

and (−1)i(y − α)�
2i

(σ(1)) ≤ 0, for 0 ≤ i ≤ n − 1.

Thus we get

−[(−1)n−1(y − α)�
2(n−1)

]��(t) ≤ 0, t ∈ [0, 1]

(−1)n−1(y − α)�
2(n−1)

(0) ≤ 0 and (−1)n−1(y − α)�
2(n−1)

(σ(1)) ≤ 0.

This shows, from Lemma 1.3, v(t) = (−1)n−1(y − α)�
2(n−1)

(t) ≤ 0 for t ∈ [0, σ(1)] , which is a
contradiction.
It follows that (−1)iy�

2i

(t) ≤ (−1)iα�2i

(t) on t ∈ [0, σ(1)] .

Similarly, (−1)iβ�2i

(t) ≤ (−1)iy�
2i

(t) on t ∈ [0, σ(1)] . Thus y(t) is a local unique solution of LBVP
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(1.1), (1.2) which lies between an upper and lower solution.
Consider the associated problem

(−1)ny�
2n

(t) = f(t, ησ(t), η��(t), ..., η�2(n−1)
(t)), t ∈ [0, 1] (2.14)

y�
2i

(0) = y�
2i

(σ(1)) = 0, 0 ≤ i ≤ n − 1 (2.15)

with η ∈ C�2(n−1)

[0, σ(1)]k
2(n−1)

. Since the conditions on the function f are satisfied for η�2i

(t), 0 ≤ i ≤ n−1,

the problem (2.14)–(2.15) has a unique solution y . Define T : C�2(n−1)

[0, σ(1)]k
2(n−1) → C�2(n−1)

[0, σ(1)]k
2(n−1)

by Tη = y .
Now, we divide the proof into three steps.

Step 1. We show

TD ⊆ D. (2.16)

Here, D = {η ∈ C�2(n−1)

[0, σ(1)]k
2(n−1)

: (−1)kβ�2k ≤ (−1)kη�2k ≤ (−1)kα�2k

, 0 ≤ k ≤ n − 1} is a nonempty

bounded closed subset in C�2(n−1)

[0, σ(1)]k
2(n−1)

.

In fact, for ξ ∈ D , set w = Tξ . By the definition of α, β and D , and by (2.12), we have that for t ∈ [0, 1]

(−1)n(α − ω)�
2n

(t) ≥ f(t, ασ(t), α��(t), ..., α�2(n−1)
(t))

−f(t, ξσ(t), ξ��(t), ..., ξ�
2(n−1)

(t)) ≥ 0, (2.17)

and

(−1)k(α − ω)�
2k

(0) ≥ 0, (−1)k(α − ω)�
2k

(σ(1)) ≥ 0, 0 ≤ k ≤ n − 1. (2.18)

By the technique of the proof of Lemma 1.3, combining (2.17) and (2.18), we have that

(−1)k(α − ω)�
2k

(t) ≥ 0

for t ∈ [0, σ(1)], k = 0, 1, ..., n− 1. Thus

(−1)kω�2k

(t) ≤ (−1)kα�2k

(t), for t ∈ [0, σ(1)], 0 ≤ k ≤ n − 1.

Analogously,

(−1)kω�2k

(t) ≥ (−1)kβ�2k

(t), for t ∈ [0, σ(1)], 0 ≤ k ≤ n − 1.

Thus, (2.16) holds.

Step 2. Let υ1 = Tη1, υ2 = Tη2 , where υ1, υ2 ∈ D satisfy (−1)kη1
�2k

(t) ≥ (−1)kη2
�2k

(t), 0 ≤ k ≤
n − 1. We show that

(−1)kυ1
�2k

(t) ≥ (−1)kυ2
�2k

(t), 0 ≤ k ≤ n − 1. (2.19)
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In fact, by (2.12) and the definition of υ1, υ2, for t ∈ [0, 1]

(−1)n(υ2 − υ1)�
2n

(t) ≥ f(t, ησ
2 (t), η��

2 (t), ..., η�2(n−1)

2 (t)

−f(t, ησ
1 (t), η��

1 (t), ..., η�2(n−1)

1 (t)) ≥ 0,

(−1)k(υ2 − υ1)�
2k

(0) = (−1)k(υ2 − υ1)�
2k

(σ(1)), k = 0, 1, ..., n− 1.

With the use of Lemma 1.3, similar to Step 1, for t ∈ [0, σ(1)] we can easily prove

(−1)kυ1
�2k

(t) ≥ (−1)kυ2
�2k

(t), 0 ≤ k ≤ n − 1.

Thus, (2.19) holds.
Step3. The sequences {αn} and {βn} are obtained by recurrence

α0 = α, β0 = β ,
αn = Tαn−1, βn = Tβn−1, n = 1, 2, ....

From the result of Step 1 and Step 2, we have that

β ≤ β1 ≤ ... ≤ βn ≤ ... ≤ αn ≤ ... ≤ α1 ≤ α (2.20)

(−1)kβ�2k ≤ (−1)kαn
�2k

, (−1)kβn
�2k ≤ (−1)kα�2k

(2.21)

k = 1, 2, ..., n− 1.
Moreover, from the definition of T , we get

(−1)nαn
�2n

(t) = f(t, ασ
n−1, αn−1

��, ..., αn−1
�2(n−1)

), (2.22)

(−1)kαn
�2k

(0) = (−1)kαn
�2k

(σ(1)) = 0, k = 0, 1, 2, ..., n− 1. (2.23)

Analogously,

(−1)nβn
�2n

(t) = f(t, βσ
n−1, βn−1

��, ..., βn−1
�2(n−1)

), (2.24)

(−1)kβn
�2k

(0) = (−1)kβn
�2k

(σ(1)) = 0, k = 0, 1, 2, ..., n− 1. (2.25)

From (2.20)–(2.22) and the continuity of f , we have that there exists Mα,β > 0 depending only on α and β

(but not on n or t) such that

|αn
�2n

(t)| ≤ Mα,β, for all t ∈ [0, σ(1)]. (2.26)

From the mean value theorem on Time scale, using the boundary condition (2.23), we get that for each n ∈ Nx ,
there exists ςn, ξn ∈ (0, σ(1)) such that

αn
�2n−1

(ξn) ≤ 0 ≤ αn
�2n−1

(ςn). (2.27)
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This, together with (2.26), implies

|αn
�2n−1

(t)| =
∣∣∣∣αn

�2n−1
(ξn) +

∫ t

ξn

αn
�2n

(s)�s

∣∣∣∣ ≤ σ(1)Mα,β. (2.28)

By combining (2.21) and (2.23), we can get that there is Cα,β > 0 depending only on α and β (but not on n
and t), such that for k = 1, 2, ..., n− 1

|αn
�2n−2k

(t)| ≤ Cα,β, for all t ∈ [0, σ(1)], (2.29)

|αn
�2n−2k−1

(t)| ≤ Cα,β, for all t ∈ [0, σ(1)]. (2.30)

Thus from (2.20) and (2.28)-(2.30), we know that {αn} is bounded in C�2n

[0, σ(1)]k
2n

. Similarly, βn is

bounded in C�2n

[0, σ(1)]k
2n

.

Now, by using the fact that αn and βn is bounded in C�2n

[0, σ(1)]k
2n

, we can conclude that αn , βn

converge uniformly to the extremal solutions in [0, σ(1)] of the solution (1.1), (1.2). �

3. Existence of positive solutions

We assume throughout this section that

f : [0, σ(1)]× (R+)n → R+,

and

f0 := lim
yn→0

f(t, y1 , y2, ..., yn)
yn

, f∞ := lim
yn→∞

f(t, y1 , y2, ..., yn)
yn

,

exist uniformly in the extended reals. The case

f0 = 0, f∞ = ∞

is called the superlinear case and the case
f0 = ∞, f∞ = 0

is called the sublinear case. To prove our result, we will use the following theorem which can be found in
Krasnoselskii’s book [11] and in Deimling’s book [8] .

Theorem 3.1 (Guo-Krasnosel’skii Fixed Point Theorem) Let B be a Banach space, P ⊆ B a cone, and

suppose that Ω1, Ω2 are open subsets of P with 0 ∈ Ω1 and Ω1 ⊂ Ω2. Suppose further that T : P ∩(Ω2\Ω1) → P

is a completely continuous operator such that
(i)‖Tu‖ ≤ ‖u‖, u ∈ P ∩ ∂Ω1 and ‖Tu‖ ≥ ‖u‖, u ∈ P ∩ ∂Ω2, or
(ii)‖Tu‖ ≥ ‖u‖, u ∈ P ∩ ∂Ω1 and ‖Tu‖ ≤ ‖u‖, u ∈ P ∩ ∂Ω2

holds. Then T has a fixed point in P ∩ (Ω2\Ω1) .
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Theorem 3.2 If either the superlinear case f0 = 0, f∞ = ∞ or sublinear case f0 = ∞, f∞ = 0 holds, then
the LBVP (1.1), (1.2) has a positive solution.

Proof. We consider the Banach space

B = {y : y ∈ C�2(n−1)

[0, σ(1)]k
2(n−1)}

equipped with a norm ‖.‖ defined by

‖y‖ := maxt∈[0,σ(1)]{|y(t)|, |y��(t)|, ..., |y�2(n−1)
(t)|}.

Let

γ∗
n := min

{
γn,

(
4

σ(1)

)n

min
s∈[ξ,ω]

(−1)nGn(σ(ω), s)
}

,

where γn is the constant defined in Lemma 1.2. Then define a cone P in B by

P := {y ∈ B : min
t∈[0,σ(1)]

y(t) ≥ 0 and min
t∈[ξ,σ(ω)]

y�
2(n−1)

(t) ≥ γ∗
n‖y‖}.

It is easy to check that P is a cone of nonnegative functions in C�2(n−1)

[0, σ(1)]k
2(n−1)

. Define an operator T as:

Ty(t) :=
∫ σ(1)

0

(−1)nGn(t, s)f(s, yσ(s), y��(s), ..., y�
2(n−1)

(s))�s

for t ∈ [0, σ(1)]. We now show that

T : P → P.

First note that y ∈ P implies that Ty(t) ≥ 0 on [0, σ(1)] and

min
t∈[ξ,ω]

Ty(t) =
∫ σ(1)

0

min
t∈[ξ,ω]

(−1)nGn(t, s)f(s, yσ(s), y��(s), ..., y�
2(n−1)

(s))�s

≥ γn

∫ σ(1)

0

max
t∈[0,σ(1)]

|Gn(t, s)|f(s, yσ(s), y��(s), ..., y�
2(n−1)

(s))�s

by Lemma 1.2. It follows that

min
t∈[ξ,ω]

Ty(t) ≥ γn‖Ty‖ ≥ γ∗
n‖Ty‖.

Also, using Lemma 1.1 we have

Ty(σ(ω)) =
∫ σ(1)

0

(−1)nGn(σ(ω), s)f(s, yσ (s), y��(s), ..., y�
2(n−1)

(s))�s

≥ γ∗
n

∫ σ(1)

0

(
σ(1)

4

)n

f(s, yσ(s), y��(s), ..., y�
2(n−1)

(s))�s

≥ γ∗
n‖Ty‖.
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Hence Ty ∈ P and so T : P → P which is what we want to prove. Therefore T is completely continuous.

Assume now that we are in the superlinear case

f0 = 0, f∞ = ∞.

Since

lim
y→0+

f(t, y1, y2, ..., yn)
yn

= 0

uniformly on [0, σ(1)] , we may choose an r > 0 such that

f(t, y1, y2, ..., yn) ≤ ηyn, 0 ≤ yn ≤ r, 0 ≤ t ≤ σ(1),

where

η :=
(

4
σ(1)

)n

.

Then if Ω1 is the ball in B centered at the origin with radius r and if yn ∈ P ∩ ∂Ω1 , then we have

Ty(t) =
∫ σ(1)

0

(−1)nGn(t, s)f(s, yσ(s), y��(s), ..., y�
2(n−1)

(s))�s

≤
∫ σ(1)

0

(
σ(1)

4

)n−1
σ(s)(σ(1) − σ(s))

σ(1)
f(s, yσ(s), y��(s), ..., y�

2(n−1)
(s))�s

≤ η

(
σ(1)

4

)n−1 ∫ σ(1)

0

σ(s)(σ(1) − σ(s))
σ(1)

y�
2(n−1)

(s)�s

≤ η

(
σ(1)

4

)n−1

r

∫ σ(1)

0

σ(s)(σ(1) − σ(s))
σ(1)

�s

≤ η

(
σ(1)

4

)n

r = r = ‖y�2(n−1)‖∞ ≤ ‖y‖,

and so ‖Ty‖ ≤ ‖y‖ for all y ∈ P ∩ ∂Ω1 .
Next we use the assumption

lim
y→∞

f(t, y1 , y2, ..., yn)
yn

= ∞

uniformly on [0, σ(1)] . Let t0 ∈ [ξ, ω] and let

μ :=
(

γ∗
n

∫ ω

ξ

(−1)nGn(t0, s)�s

)−1

.

Then there is an R such that
f(t, y1, y2, ..., yn) ≥ μyn, yn ≥ R.

If we define

R := max
{

2r,
R

γ∗
n

}
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and Ω2 = {y ∈ B : ‖y‖ < R} , y ∈ P ∩ ∂Ω2 , we have

min
t∈[ξ,σ(ω)]

y�
2(n−1)

(t) ≥ γ∗
n‖y‖ = γ∗

nR ≥ R.

Therefore, for all t ∈ [ξ, σ(ω)] ,

f(t, yσ(t), y��(t), ..., y�
2(n−1)

(t)) ≥ μy�
2(n−1)

(t) ≥ μγ∗
nR.

Hence,

Ty(t0) =
∫ σ(1)

0

(−1)nGn(t0, s)f(s, yσ(s), y��(s), ..., y�
2(n−1)

(s))�s

≥
∫ ω

ξ

(−1)nGn(t0, s)f(s, yσ(s), y��(s), ..., y�
2(n−1)

(s))�s

≥ μγ∗
n‖y‖

∫ ω

ξ

(−1)nGn(t0, s)�s

= ‖y‖ = R

and so ‖Ty‖ ≥ ‖y‖ for all y ∈ P ∩ ∂Ω2 . Consequently, by Part (i) of Theorem 3.1, it is follows that T has a

fixed point in P ∩ (Ω2\Ω1) and this implies that our given LBVP (1.1), (1.2) has a positive solution.

Next, assume we are in the sublinear case

f0 = ∞, f∞ = 0.

Choose r1 > 0 such that
f(t, y1 , y2, ..., yn) ≥ ηyn,

for 0 < y ≤ r1 , t ∈ [0, σ(1)] , where
η ≥ μ

where μ is given in the first part of proof. Then for y ∈ P and ‖y‖ = r1 , we have

Ty(t0) =
∫ σ(1)

0

(−1)nGn(t0, s)f(s, yσ(s), y��(s), ..., y�
2(n−1)

(s))�s

≥
∫ ω

ξ

(−1)nGn(t0, s)f(s, yσ(s), y��(s), ..., y�
2(n−1)

(s))�s

≥ η

∫ ω

ξ

(−1)nGn(t0, s)y�
2(n−1)

(s)�s

≥ ηγ∗
n

∫ ω

ξ

(−1)nGn(t0, s)‖y‖�s

= ‖y‖ηγ∗
n

1
μγ∗

n

= ‖y‖ η

μ
≥ ‖y‖ = r1.
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Therefore, if Ω1 ⊂ B is a ball of radius r1 centered at the origin, then for y ∈ P ∩ ∂Ω1 , we have

‖Ty‖ ≥ ‖y‖.

Next, since f∞ = 0, there exists r2 > 0 such that

f(t, y1 , y2, ..., yn) ≤ ηyn,

for yn ≥ r2 , t ∈ [0, σ(1)] , where η is defined by

1
η
≥

(
σ(1)

4

)n

.

We consider two cases.
Case I. Suppose f(t, y1, y2, ..., yn) is bounded on [0, σ(1)]× (0,∞). In this case, there is an N > 0 such

that
f(t, y1, y2, ..., yn) ≤ N,

for t ∈ [0, σ(1)], yn ∈ (0,∞). In this case, choose

r2 = max
{

2r1,
N

η

}
.

Then for y ∈ P with ‖y‖ = r2 , we have for all t ∈ [0, σ(1)] ,

Ty(t) =
∫ σ(1)

0

(−1)nGn(t, s)f(s, yσ(s), y��(s), ..., y�
2(n−1)

(s))�s

≤ N

∫ σ(1)

0

(−1)nGn(t, s)�s

≤ N

(
σ(1)

4

)n

≤ N

η
≤ r2,

so that ‖Ty‖ ≤ ‖y‖ .
Case II. Assume f(t, y1, y2, ..., yn) is unbounded on [0, σ(1)]× (0,∞). In this case

g(r) := max{f(t, y1, y2, ..., yn) : t ∈ [0, σ(1)], 0 ≤ yn ≤ r}

satisfies
lim

r→∞
g(r) = ∞.

We can therefore choose
r2 > max{2r, r2}

such that
g(r2) ≥ g(r)
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for 0 ≤ r ≤ r2 and hence, for y ∈ P and ‖y‖ = r2 , we have

Ty(t) =
∫ σ(1)

0

(−1)nGn(t, s)f(s, yσ(s)y��(s), ..., y�
2(n−1)

(s))�s

≤
∫ σ(1)

0

(−1)nGn(t, s)g(r2)�s

≤ ηr2

∫ σ(1)

0

(−1)nGn(t, s)�s

≤ ηr2

(
σ(1)

4

)n

≤ r2 = ‖y‖,

and again we hence ‖Ty‖ ≤ ‖y‖ for y ∈ P ∩ ∂Ω2 , where Ω2 = {y ∈ B : ‖y‖ ≤ r2} in both cases. It follows

from part (ii) of Theorem 3.1 that T has a fixed point in P ∩ (Ω2\Ω1) and this implies that our given LBVP
(1.1), (1.2) has a positive solution. �
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[4] Cabada, A.: The method of lower and upper solutions for second, third, fourth and higher order boundary value

problems, J. Math. Anal. Appl. 248, 195-202 (2000).

[5] Cetin, E. and Topal, S.G.: Higher Order Boundary Value Problems on Time Scales, J. Math. Anal. Appl., 334,

876-888 (2007).

[6] Davis, J. M., Eloe, P. W. and Henderson, J.: Triple Positive Solutions and Dependence on Higher Order Derivatives,

J. Math. Anal. Appl., 237, 710-720 (1999).

[7] Davis, J. M. and Henderson, J.: Monotone methods applied to some higher order boundary value problems,

J.Inequal. Pure Appl.Math., No:2-1, 2-9 (2001).

[8] Demling, K.: Nonlinear Functional Anaysis, Springer, New York, 1985.

372
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