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Abstract

In this paper we characterize @-modules and almost @Q-modules. Next we estblish some equivalent
conditions for an almost Q-module to be a Q-module. Using these results, some characterizations are given

for Noetherian @-modules.
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1. Introduction

Throughout this paper R denotes a commutative ring with identity and all modules are unital R-modules.
L(R) denotes the lattice of all ideals of R. Throughout this paper M denotes a unital R-module. In this
paper we introduce and study the concepts of @-modules and almost Q-modules which are generalizations of
Q-rings [4] and almost Q-rings [14]. We prove that a faithful R-module M is a @Q-module if and only if R
is a Q-ring and M is a multiplication module (see Theorem 1). It is shown that a faithful R-module M is a
@Q-module if and only if M is a Laskerian multiplication module in which every non maximal prime submodule
is a finitely generated multiplication submodule (see Theorem 2). Next we establish several characterizations
for almost @-modules (see Theorem 3, Theorem 4, Theorem 5, Theorem 6 and Theorem 7). Using these results,
some equivalent conditions are established for an almost @)-module to be a Q-module (see Theorem 8). Finally

Noetherian @-modules are characterized (see Theorem 9).

2. Basic notions

For any = € R, the principal ideal generated by z is denoted by (z). For any ideal I of R, VT denotes
the radical of I. Recall that an ideal I of R is called a multiplication ideal if for every ideal J C I, there
exists an ideal K with J = KTI. Multiplication ideals have been extensively studied; for example, see [1], [2]
and [11]. If I is a multiplication ideal, then I is locally principal [1, Theorem 1 and Page 761]. An ideal I of
R is called a quasi-principal ideal [15, Exercise 10, Page 147] (or a principal element of L(R) [19]) if it satisfies
the identities (i) (AN(B : 1)) = AINB and (ii) (A+ BI) : I =(A: 1)+ B, for all A, B € L(R). Obviously,
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every quasi-principal ideal is a multiplication ideal. It should be mentioned that every quasi-principal ideal is
finitely generated and also a finite product of quasi-principal ideals of R is again a quasi-principal ideal [15,

Exercise 10, Page 147]. In fact, an ideal I of R is quasi-principal if and only if it is finitely generated and locally
principal (see [7, Theorem 4]) or [19, Theorem 2]). R is a 7 -ring if every principal ideal is a finite product of
prime ideals of R. m-rings have been extensively studied; for example, see [16]. R is said to be a Q-ring [4] if
every ideal is a finite product of primary ideals. R is said to be an almost Q -ring if Rj; is a Q-ring for every
maximal ideal M of R. For more informations on @Q-rings and almost @Q-rings, the reader is referred to [4],
[5], [13] and [14]. R is said to be a Laskerian ring [10] if every proper ideal is a finite intersection of primary
ideals. We say that R has Noetherian spectrum if R satisfies the ascending chain condition for radical ideals
[20]. Tt is well known that R has Noetherian spectrum if and only if every prime ideal is the radical of a finitely
generated ideal [20, Corollary 2.4]. Also it is well known that if R has Noetherian spectrum, then every ideal
has only finitely many minimal primes.

A submodule N of M is proper if N # M. For any two submodules N and K of M, the ideal
{a € R | aK C N} will be denoted by (N : K). Thus (O : M) is the annihilator of M. M is said to be a
faithful module if (O : M) is the zero ideal of R. M is said to be a multiplication module [6] if every submodule
of M is of the form IM , for some ideal I of R. A submodule N of M is said to be a multiplication submodule
if for every submodule N; C N, there exists an ideal J of R such that Ny = JN. An R-module M is said to
be locally cyclic if Mp is a cyclic Rp-module for all maximal ideals P of R.

A proper submodule N of M is said to be a maximal submodule, if it is not properly contained in
any other proper submodule of M. A proper submodule N of M is a prime submodule, if for any r € R
and m € M, rm € N implies either m € N or r € (N : M). A proper submodule N of M is a primary
submodule if for any » € R and m € M, rm € N implies either m € N or r™ € (N : M) for some positive
integer n. By a minimal prime submodule over a submodule N of M (or a prime submodule minimal over
N), we mean a prime submodule which is minimal in the collection of all prime submodules containing N .
Minimal prime submodules over the zero submodule are simply called the minimal prime submodules. Let N
be a proper submodule of M. Then M -radical of N, denoted by v/ N, is defined as the intersection of all
prime submodules of M containg N. It is well known that maximal submodules and prime submodules exist
in multiplication modules (for details, see [9]). Also if M is a multiplication module, then for every proper

submodule N of M, VN = /(N : M)M (see [9, Theorem 2.12]).

For general background and terminology, the reader is referred to [15].

3. (@-modules and almost @-modules

In this section we obtain several characterizations for @Q-modules and almost @-modules. Using these
results, Noetherian )-modules are characterized.

We shall begin with the following definitions.

Definition 1 An R-module M is said to be a Q-module if every proper submodule N of M 1is of the form
IM , where I is a finite product of primary ideals of R.
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Definition 2 An R-module M is said to be an almost Q-module if for any mazximal ideal P of R, the Rp-
module Mp is a Q-module.

Note that by definition, every @Q-module is a multiplication module. Also a faithful R-module M is
a @-module if and only if M is a multiplication module and M is a @-module in the sense of [21]. Again
note that every Q-module is an almost @Q-module, but the converse need not be true. Observe that @-rings
are (Q-modules and almost @Q-rings are almost Q-modules. Also cyclic modules over Dedekind domains are
examples of Q-modules.

We now prove some useful lemmas.

Lemma 1 Suppose M is a faithful multiplication R-module. If R contains only a finite number of minimal

prime ideals, then M is finitely generated.

Proof. First observe from Corollary 2.11 of [9], that the minimal prime submodules of M will be of the form
PM where P is a minimal prime ideal of R and hence the set of minimal prime submodules of M is finite.

Now the proof of Lemma 1 follows on applying Theorem 3.7 of [9]. O

Lemma 2 Suppose M is a faithful multiplication R-module. If R is a Q-ring or M is a Q-module, then M

is finitely generated.

Proof. If R is a @Q-ring, then R contains only a finite number of minimal prime ideals. Suppose M is a
@-module. Then the zero submodule is of the form (0) = IM, where I is a finite product of primary ideals
of R. As M is faithful, it follows that I is the zero ideal of R and hence R contains only a finite number of

minimal prime ideals, so by Lemma 1, M is finitely generated. O

The following theorem gives a characterization for Q-modules.

Theorem 1 Suppose M is a faithful R-module. Then R is a Q-ring and M is a multiplication R-module if
and only if M is a @Q-module.

Proof. The proof of the theorem follows from Lemma 2 and [21, Theorem 3 and Theorem 4]. It should be

mentioned that the proof of Theorem 1 also follows from Lemma 2 and Theorem 3.1 of [9]. O

An R-module M is said to be a Laskerian module [10], if every proper submodule is a finite intersection

of primary submodules.

Lemma 3 Suppose M is a faithful multiplication R-module. If R is a Laskerian ring or M is a Laskerian

module, then M 1is finitely generated.

Proof. If R is a Laskerian ring or M is a Laskerian module, then the zero ideal of R is a finite intersection
of primary ideals and hence R contains only a finite number of minimal prime ideals. So by Lemma 1, M is
finitely generated. O
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Lemma 4 Suppose M is a faithful multiplication R-module. Then R is a Laskerian ring if and only if M is
a Laskerian module.

Proof. Assume R is Laskerian and M is a faithful multiplication module. Now by Lemma 3, M is finitely
generated. It is well known that any finitely generated module over a Laskerian ring is Laskerian. Hence we
obtain M is Laskerian. Conversely, assume that M is a faithful multiplication module and is Laskerian. Again
by Lemma 3, M is finitely generated. Thus the ring R admits a finitely generated, faithful Laskerian module
and hence R is isomorphic to a submodule of a Laskerian module and so R is Laskerian as an R-module. Thus

R is a Laskerian ring. O

It is well known that R is a @Q-ring if and only if R is a Laskerian ring in which every non maximal
prime ideal is a finitely generated multiplication ideal [4, Theorem 10 and Theorem 13]. We extend this result

to multiplication modules.

Theorem 2 Suppose M is a faithful R-module. Then M is a Q-module if and only if M is a multiplication
module and M is a Laskerian module in which every non mazimal prime submodule is a finitely generated
multiplication submodule.

Proof. Suppose M is a @Q-module. Then by Theorem 1, R is a Q-ring, so R is a Laskerian ring in which
every non maximal prime ideal is a finitely generated multiplication ideal. By Lemma 4, M is a Laskerian
module. Note that by Lemma 3, M is finitely generated. Let N be a non maximal prime submodule. Then
(N : M) is a non maximal prime ideal, so (N : M) is a finitely generated multiplication ideal. Again by
[17, Lemma 1.4] (or [9, Corollary 1.4]), N is a finitely generated multiplication submodule. The converse part
follows from Theorem 1, Lemma 4 and [17, Lemma 1.4]. We also remark that the converse part can be easily
verified with the help of Theorem 1, Lemma 4, [9, Corollary 2.11] and [9, Theorem 3.1]. O

Lemma 5 Suppose M is a faithful and finitely generated multiplication R-module. Then R is an almost
Q -ring if and only if M is an almost Q-module.

Proof. Let P be a maximal ideal of R. Consider the Rp-module Mp. As M is a finitely generated
faithful multiplication R-module, it follows that Mp is a faithful cyclic Rp-module. So by Theorem 1, Mp
is a @-module if and only if Rp is a @Q-ring. Therefore R is an almost Q-ring if and only if M is an almost
@ -module. O

Lemma 6 Suppose M is a cyclic R-module. Then a submodule N of M is cyclic if and only if N =rM for
some r € R.
Proof. Let M = Rz for some x € M. Suppose N = rM for some r € R. Let m = rz. Then Rm C N.
If m" € N, then m’ = ry for some y € M. But y = r’x for some ' € R. So m' = ry = rr’z = r'm € Rm.
Therefore N = Rm.

Conversely, assume that N = Rm for some m € M. Then m = rz for some r € R. So N = Rm =
R(rz) = r(Rz) = rM . This completes the proof of the lemma. O
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Lemma 7 Let M be an R-module. Suppose every cyclic submodule of M is a finite intersection of primary
submodules. Then for any submodule N of M , the following statements are equivalent:

(i) N is finitely generated and locally cyclic.

(ii) N is a multiplication module.

(iii) N s locally cyclic.
Proof. Tt should be mentioned that Lemma 7 is Theorem 12 of [4] stated for modules. The proof of Lemma
7 is similar to the proof of [4, Theorem 12] except that (i)=>(ii) follows from [9, Corollary 1.5] and (ii)=>(iii)

follows from [9, Theorem 1.2]. It is useful to remark that (i)=(ii) and (ii) = (iii) are true without the assump-

tion that proper cyclic submodules of M admit primary decomposition. O

Lemma 8 Let R be an almost Q-ring. Let P be a non maximal prime ideal and let Q C P be a primary ideal
of R. Then Q is a multiple of P.

Proof. Note that P(Q :r P) C Q. We prove @Q = P(Q :r P), by proving that for each maximal ideal
M of R, (P(Q:g P)),, = Qun. First observe by [4, Lemma 11], that for any multiplicatively closed subset
S of R, (S7'Q :g-1g S7'P) = S7Y(Q :g P). Let M be a maximal ideal of R. If P is not a subset of M,
then (P(Q :r P))y = Pu(Qm Ry Pu) = Qu, since Py = Ryr. Let P C M. We have Ry is a Q-ring
and P is a non-maximal prime ideal of Rp;. Hence by [4, Lemma 5], Py, is a principal ideal of Rp;. So
Qum = Pu(Qu :ry Pu) = (P(Q :r P))yy =

We now establish several characterizations for almost @-modules.

Theorem 3 Suppose M is a faithful and finitely generated multiplication R-module. Then M is an almost
Q@ -module if and only if every non mazximal prime submodule is locally cyclic.
Proof. Let M be an almost Q-module. Then by Lemma 5, R is an almost Q-ring. So by [4, Lemma 5],
every non maximal prime ideal is locally principal. Let N be a non maximal prime submodule. As M is a
faithful and finitely generated multiplication R-module, it follows that (N : M) is a non maximal prime ideal,
so (N : M) is locally principal. Let P be a maximal ideal of R. Then Np = (N : M)M)p, = (N : M),Mp,
so by Lemma 6, Np is a cyclic submodule of Mp. Therefore N is locally cyclic.

Conversely, assume that every non maximal prime submodule is locally cyclic. Let Q be a non maximal
prime ideal of R. Then QM is a non maximal prime submodule of M. Let P be a maximal ideal of R.
Suppose @ € P. Then by Lemma 6, (QM), = QpMp = IpMp for some principal ideal Ip of Rp. As Mp
is a faithful cyclic Rp-module, by [9, Theorem 3.1], Qp = Ip, so @ is locally principal and hence by [14,

Theorem 1], R is an almost Q-ring. Consequently, M is an almost @-module. O

Theorem 4 Suppose M 1is a faithful multiplication R-module in which every cyclic submodule of M is a finite
intersection of primary submodules. Then M is an almost Q-module if and only if every non mazimal prime

submodule is a finitely generated multiplication submodule.
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Proof. Note that by hypothesis, the zero submodule is a finite intersection of primary submodules. So M
contains only a finite number of minimal prime submodules and so by [9, Theorem 3.7], M is finitely generated.
Now the result follows from Lemma 7 and Theorem 3. a

Theorem 5 Suppose M is a faithful multiplication R-module. Suppose every principal ideal of R is a finite
intersection of primary ideals. Then M is an almost @Q-module if and only if every non mazimal prime
submodule is a finitely generated multiplication submodule.

Proof. (=) We have by hypothesis and Lemma 1, M is finitely generated. Now by Lemma 5, R is an almost
Q-ring. Let N be a non-maximal prime submodule of M. Then by [9, Corollary 2.11] and [9, Theorem 3.1],
N = PM for some non-maximal prime ideal P of R. It now follows from [4, Lemma 5] and [4, Theorem 12],
that P is a finitely generated multiplication ideal and hence from [9, Corollary 1.4], we obtain that N = PM
is a multiplication submodule. It is clear that PM is finitely generated.

Let us prove the converse. As it is well known that any multiplication module is locally cyclic [9, Theorem

1.2], it follows from Theorem 3 that M is an almost @Q-module. O

Theorem 6 Suppose M is a faithful multiplication R-module. Suppose every principal ideal of R is a finite
product of primary ideals. Then M is an almost Q-module if and only if every non mazximal prime submodule
is a multiplication submodule.

Proof. Note that by hypothesis, M is finitely generated. Therefore every non maximal prime submodule
is a multiplication submodule if and only if every non maximal prime ideal is a multiplication ideal. Now the
result follows from [14, Corollary 1]. O

Theorem 7 Suppose M is a faithful R-module in which every cyclic submodule is of the form IM , where I
is a finite product of primary ideals. Then M is an almost Q-module if and only if every non mazimal prime
submodule is a multiplication submodule.

Proof. Note that by hypothesis and by [9, Proposition 1.1], M is a finitely generated multiplication module.
Suppose M is an almost Q-module. Then R is an almost Q-ring. Let N be a non maximal prime submodule.
Then N = PM for some non maximal prime ideal P of R. Let x € N. By hypothesis, Rx = IM, where
I =Q1Q2--Qy for some primary ideals Q1,Q2, - ,Q, of R. As Re = IM C N = PM, it follows that
I C P,so Q; C P for some primary ideal @; of R. Then by Lemma 8, @; is a multiple of P, so I is a multiple
of P and hence Rx = J,N for some ideal J, of R. Consequently, every submodule contained in N is of the
form JN for some ideal J of R and hence N is a multiplication submodule. The converse part follows from
Theorem 3. a

Lemma 9 Suppose M is a faithful multiplication R-module. Suppose dim M < 2 and every submodule

generated by two elements has only finitely many minimal primes. Then R has Noetherian spectrum.
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Proof. First we show that every minimal prime submodule is the radical of a finitely generated submodule.
By hypothesis, M has only finitely many minimal primes. Let Ni, No, ..., N,, be the distinct minimal prime
submodules. If n = 1, then Nj is the radical of the zero submodule. Suppose n > 1. Then by [8, Theorem

10], N, £ igzNi' Choose any = € Ny such that x ¢ igzNi' Let L1, Lo, ..., L, be the distinct primes minimal
over Rz. Then Ny = L; for some j, say Ny = L;. If m =1, then N; is the radical of Rx. Suppose m > 1.
Then N7 € igzLi' Choose any y € Ny such that y ¢ i§2Li' By hypothesis, Rz + Ry has only finitely many
minimal primes. Let L}, L5, ..., Lj, be the distinct primes minimal over Rz + Ry. Note that N; = L’ for some
j,say Ny = L. If k=1, then Ny is the radical of Rx 4+ Ry. Suppose k > 1. Observe that any L; different
from N contains L; properly, for some i # 1, and each L; different from N7, is non-minimal. So each L} is
maximal, for j =2,3,..., k. Choose any element z € N7 such that z ¢ z'L:kJ2L;' Now it can be easily shown that

Ni is the radical of Rx + Ry + Rz. Thus we have shown that every minimal prime submodule is the radical of
a finitely generated submodule.

Next we show that every non-minimal prime submodule is the radical of a finitely generated submodule.

Let N be a non-minimal prime submodule. Then N 'GlNi' Choose any = € N such that z ¢ 'GlNi' Let
1= i=

Li, Lo, ..., Ly, be the distinct primes minimal over Rz. Then N D L; for some j,say N D L;. If m =1 and

N = Ly, then N is the radical of Rz and so we are through. Suppose m > 1 and Ly C N. Then N ¢ -QLZ"

Choose any y € N such that y ¢ GlLi' Then Rz + Ry has only finitely many minimal primes and every prime
i=
minimal over Rz + Ry is a maximal submodule. Therefore there exists a finitely generated submodule K such

that N is the radical of K. Finally assume that m > 1 and N = L;. Then N ¢ .7L_TJL2LZ-. Choose any y € N

such that y & 1LTJL L;. Let Ly, Ly, ..., L} be the distinct primes minimal over Rz + Ry. Note that N 2 L’ for
=2
some j,say N D L}. Since z € L} and Ly = N D L}, it follows that N = L; = L} . If k=1, then N is the

k
radical of Rx + Ry. Suppose k> 1. Then N £ .L_J2L§ and each L} different from N, is maximal. Choose any

k
element z € N such that z ¢ .L_JzL;. Then N is the radical of Rx 4+ Ry + Rz. Thus every prime submodule is

the radical of a finitely generated submodule.

Now we show that R has Noetherian spectrum. Since M has only finitely many minimal prime sub-
modules; it follows that M is finitely generated. Let P be a prime ideal of R. Then by [9, Corollary 2.11 and

Theorem 3.1], PM is a proper prime submodule of M. So PM = +/N for some finitely generated submodule
N of M. As M is a multiplication module, by [9, Theorem 2.12], it follows that PM = v/N = /(N : MM,

so by [9, Theorem 3.1], P = /(N : M). Also by [17, Lemma 1.4], (N : M) is a finitely generated ideal and

hence R has Noetherian spectrum. O

The following theorem gives some equivalent conditions for an almost Q-module to be a Q-module.
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Theorem 8 Let M be a faithful R-module. Then the following statements are equivalent:

(i) M is a Q-module.
(ii) M is a finitely generated almost @Q-module in which every submodule generated by two elements is a
finite intersection of primary submodules.

(iii) M is an almost Q-module in which every submodule generated by two elements is of the form IM ,
where I is a finite product of primary ideals of R.

(iv) M is a multiplication module in which every submodule generated by two elements has only finitely
many minimal primes and every non mazximal prime submodule is a multiplication submodule.

Proof. (i)=(ii). Suppose (i) holds. By Lemma 2 and Theorem 1, M is a finitely generated multiplication
module. Clearly, M is an almost @-module. By Theorem 2, M is a Laskerian module. Therefore (ii) holds.

(ii)= (iii). Suppose (ii) holds. As M is an almost @)-module and every @-module is a multiplication
module, it follows that M is locally cyclic. As M is finitely generated, by [6, Lemma 2], M is a multiplication
module. Let z,y € M. Then Rx+ Ry = Ny N NaN---N N, where each N; is a primary submodule of M. As
M is a multiplication module, it follows that Rz + Ry = (N1 : MM N (Ny : M)M N ---N (N, : M)M = [(Ny :
MYN(Ng: M)YN---N(Ng: M)IM. Let I =(Ny: M)N(Na: M)N---N (N : M). Note that each (N; : M)
is a primary ideal, so (N7 : M)N(No: M)N---N(Ng : M) is a primary decomposition of I. Without loss of
generality, assume that (N1 : M)N(Ny: M)N---N(Ng : M) is a normal primary decomposition of I. As M
is a faithful finitely generated multiplication module, by Theorem 4, every non maximal prime ideal is a finitely
generated multiplication ideal. So by [3, Lemma 2], I is a finite product of primary ideals. So Rz + Ry = IM,
where I is a finite product of primary ideals and hence (iii) holds.

(iii)= (iv). By (iii) and [9, Proposition 1.1], M is a multiplication module. By (iii) and Theorem 7,
every non maximal prime submodule is a multiplication submodule. Note that by (iii), M contains only finitely
many minimal prime submodules, so M is finitely generated. Let z,y € M. Then Rz + Ry = Q1Q2 - Q.M ,
where each @; is a primary ideal of R. Let N be a prime submodule minimal over Rx 4+ Ry. Then N = PM
for some prime ideal P of R. As Q1Q2---Q.,M C PM, by [9, Theorm 3.1], Q; € P for some i. So
Rx+ Ry C \/Q;M C PM . Therefore \/Q;M = PM and hence Rz -+ Ry has only finitely many minimal prime
submodules. Hence (iv) holds.

(iv)=(i). Suppose (iv) holds. By (iv), M is a finitely generated multiplication module. Also by Lemma
5 and Theorem 3, R is an almost Q-ring. So dimR < 2 and so dimM < 2. Again by Lemma 9, R has
Noetherian spectrum and hence every ideal has only finitely many minimal primes. Therefore by [14, Theorem

2(v)], R is a Q-ring and hence M is a -module. This completes the proof of the theorem. O

For any I € L(R) and for any prime ideal P minimal over I, we denote Py = N{Q € L(R) | Q is a
P-primary ideal containing I'}. It can be easily seen that P; is the smallest P-primary ideal containing I. For

any I € L(R), we denote I* = N{P; | P is a prime ideal minimal over I }.
Lemma 10 Suppose every non-mazximal prime ideal of R is a multiplication ideal and the maximal ideals of
R are finitely generated. Let I be a quasi-principal ideal which has only finitely many minimal primes. Then I

is a finite intersection of primary ideals.
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Proof. Observe that by hypothesis, [9, Theorem 1.2] and by Cohen’s theorem, R is a locally Noetherian ring.
Note that by hypothesis and by [14, Theorem 1], R is an almost @Q-ring. So by [4, Corollary 6], dimR < 2.
By hypothesis, I* is a finite intersection of primary ideals. Suppose [ is not contained in any minimal prime.
We show that [ = I*. Let M be a maximal ideal. If I is not contained in M, then Ip; = I*);. Suppose
I C M. If M is minimal over I, then Ip; = I*p;. Suppose M is not minimal over I. Then rank M = 2,
so by [4, Corollary 6], Ry is a w-domain. As [ is locally principal and Rjs is a w-domain, it follows that
Ing = I* 5 (see the proof of [16, Theorem 1.2] or [5, Theorem 3]). This shows that Ip; = I*; for all maximal
ideals containing I and hence I = I*.

Now assume that Pi, P, ..., Py, be the primes minimal over I. Let P, Ps, ..., P; be the non-maximal
minimal primes and let Pyyi, Pito, ..., Py, be the primes which are either maximal or rank one non-maximal
primes. We show that, for each i € {1,2,...,t}, the ideal ((I + P;(P;);) : (P;);) has only finitely many minimal
primes. Let ¢ € {1,2,...,¢}. Since P; is a multiplication ideal, by Lemma 9(i) of [14], P; is properly contained in
the ideal ((I+P;(P;);) : (P;);). Since dim R < 2, it follows that every prime minimal over ((I+P;(P;);) : (P;);)
is either a non-minimal maximal ideal or a rank one non-maximal prime. As every non-maximal prime is a
multiplication ideal, by [2, Theorem 3], the rank one non-maximal primes are quasi-principal ideals. By hy-
pothesis, the minimal primes over ((I 4+ P;(FP;);) : (P;);) are finitely generated and so by [14, Lemma 5], the
ideal ((I + P;(P;);) : (P;);) has only finitely many minimal primes. Thus the ideals ((I + P;(FP;);) : (Pi);)
for i =1,2,...,t have only finitely many minimal primes, say My, Mo, ..., M,,. Again note that these are either
non-minimal maximal ideals or rank one non-maximal prime ideals. Without loss of generality, assume that
My, My, ..., M}, are rank one maximal prime ideals and M1, M2, ..., M,, are either rank two maximal ideals
or rank one non-maximal prime ideals. Let M be any maximal ideal different from My, Mo, ..., M. We claim
that Ip; = I*p;. Obviously, if I is not contained in M, then Ip; = I*j;. Suppose I C M. If either M is
minimal over I or rank M = 2, then Ij; = I*);. Suppose M is not minimal over I and rank M = 1. Then
M is different from M, Mo, ..., M, , so (I + Pi(P;);) : (P;);) € M for i =1,2,...,t and hence by Nakayama’s
lemma ((P;);),, = In for all P; C M (see also the proof of [14, Lemma 10(i)]). Therefore ((P;);),, = Ia or
((Pi);)py = R for i=1,2,...,t. Consequently, Iny = I*pr. If Ipng, =I5y, for i =1,2,...,k, then Iy = I"
for all maximal ideals, so I = I*. Suppose Ip;, # I*p, for i =1,2,...,01 (1 <1< k). As Ry, is a Laskerian
ring, it follows that there exist M;-primary Q; such that Ip;, = (I*)am, N (Q:i)m; for i = 1,2,...,1. Then
I =(I"NQ1NQ2N...NEQ:)» for all maximal ideals M of R. Therefore I = I*NQ1 N Q2N ...NE; and

hence I is a finite intersection of primary ideals. This completes the proof of the lemma. O

Lemma 11 Suppose M is a faithful cyclic R-module. Let I be an ideal of R and N = IM be a submodule of
M. Then N = Rz + Ry for some x,y € M if and only if I = (a)+ (b) for some a,b € R.

Proof. The proof of the lemma follows from Lemma 6 and [9, Theorem 3.1]. O

We now establish some equivalent conditions for Noetherian @-modules.

Theorem 9 Let M be a faithful R-module. Then the following statements are equivalent:

(i) M is a Noetherian @ -module.
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(ii) M is a locally Noetherian Q-module.

(iii) The mazimal submodules are locally finitely generated and every submodule generated by two elements
is of the form IM , where I is a finite product of primary ideals of R.

(iv) M is an almost Q-module in which the maximal submodules are finitely generated and every cyclic
submodule is of the form IM , where I is a finite product of primary ideals of R.

Proof. (i)=-(ii)=-(iii) is obvious.

(iii) = (iv). Suppose (iii) holds. By (iii), M is a finitely generated multiplication module. Let P be a
maximal ideal of R. Consider the Rp-module Mp. Then PM is a maximal submodule of M. By (iii), (PM)p
is finitely generated in Mp, so by [17, Lemma 1.4], ((PM)p : Mp) = (PM : M)p = Pp is finitely generated in
Rp. Therefore P is a locally finitely generated ideal of R. Let I’ be an ideal of Rp generated by two elements
of Rp. Then I’ is of the form (x)p+ (y)p for some z,y € R. Let I = (x)+ (y). Then by Lemma 11, (IM)p, is
of the form Np, where N is a submodule generated by two elements of M. So by hypothesis, N = JM , where
J is a finite product of primary ideals of R. Therefore (IM), = (JM), = JpMp, so Ip = Jp and hence
Ip is a finite product of primary ideals of Rp. So by [14, Lemma 13], Rp is a Noetherian Q-ring and hence
by Theorem 8, M is a @-module and so R is a @Q-ring. As the maximal ideals are locally finitely generated,
by [14, Lemma 14], the maximal ideals are finitely generated and hence the maximal submodules are finitely
generated. Therefore (iv) holds.

(iv)=(i). Suppose (iv) holds. By (iv), M is a finitely generated multiplication module. Also by hy-
pothesis, the maximal ideals are finitely generated. Again by Theorem 7, non maximal prime submodules are
multiplication submodules, so non maximal prime ideals are multiplication ideals. Let = € M. Then by (iv)
and [9, Theorem 3.1], (Rz : M) is a finite product of primary ideals, so (Rz : M) has only finitely many
minimal primes. Note that it follows from [9, Theorem 3.1] that the ideal (Rxz : M) is finitely generated.
As M is a faithful locally cyclic module, we have from Lemma 6 and [9, Theorem 3.1], that (Rz : M) is
locally cyclic. Thus (Rzx : M) is a quasi-principal ideal. So by Lemma 10, (Rx : M) is a finite intersec-
tion of primary ideals and hence Rx = (Rz : M)M is a finite intersection of primary submodules. Now
by Theorem 4, non maximal prime submodules are finitely generated and so every non-maximal prime ideal
of R is finitely generated. Therefore every prime ideal is finitely generated and hence by Cohen’s Theorem,
R is Noetherian. As any finitely generated module over any Noetherian ring is Noetherian, it follows that M

is Noetherian. Hence by Theorem 8, M is a Noetherian Q-module. This completes the proof of the theorem. O

The authors wish to thank the referee for his helpful comments and suggestions.
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