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Approximation by certain linear operators preserving x2

Lucyna Rempulska, Karolina Tomczak

Abstract

We investigate certain positive linear operators Ln preserving the functions ek(x) = xk , k = 0, 1, and

modified operators L∗
n which preserve e0 and e2 . We show that the error of approximation of f by L∗

n(f)

is smaller than for Ln(f) .
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1. Introduction

1.1. Let as usual N = {1, 2, . . .} , N0 = N ∪ {0} , and let I be the interval [0,∞) or (0,∞).

Similar to [5], let p ∈ N0 ,

w0(x) := 1, wp(x) := (1 + xp)−1 if p ≥ 1, (1.1)

for x ∈ I , and let Bp ≡ Bp(I) be the set of all functions f : I → R for which fwp is bounded on I and the
norm is given by the formula

‖f‖p ≡ ‖f(·)‖p := sup
x∈I

wp(x)|f(x)|. (1.2)

Moreover, let Cp ≡ Cp(I) with p ∈ N0 be the set of all f ∈ Bp for which fwp is a uniformly continuous
function on I . The norm in Cp is defined by (2).

The spaces Bp and Cp are called polynomial weighted spaces.

We see that if p, q ∈ N0 and p < q , then Bp ⊂ Bq , Cp ⊂ Cq and ‖f‖q ≤ ‖f‖p for every f ∈ Bp .

1.2. It is known ([1–7, 14, 15]) that several classical positive linear operators, e.g. the Szász-Mirakyan, Baskakov,
Post-Widder and Stancu operators, act from the space Cp to Cp for every p ∈ N0 and preserve the functions

e0(x) = 1 and e1(x) = x but does not preserve e2(x) = x2 .

Recently O. Duman and M. A. Özarslan in papers [8, 9] have introduced modified Szász-Mirakyan
operators S∗

n which preserve the functions e0 and e2 . They have shown that the error of approximation of f ,
with the certain function space, by S∗

n(f) is smaller than for the classical Szász-Mirakyan operators Sn(f).
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The similar problems were considered for the Bernstein polynomials and the MKZ type operators in [10]
and [11].

1.3. The purpose of this paper is to extend the Duman-Özarslan idea ([8]) to certain sequences of linear positive
operators Ln acting from the space Cp to Bp . In Section 2 we shall give definition of operators and their basic
properties. The main theorems will be given in Section 3.

2. Definition and lemmas

2.1. Let x ∈ I be a fixed point and let

ϕx(t) := |t − x| for t ∈ I. (2.3)

We consider a sequence (Ln)∞n0
, n0 ∈ N , of positive linear operators satisfying the following conditions:

(i) Ln : Cp(I) → Bp(I) for every p ∈ N0 , n ≥ n0 , and Ln(f ; 0) = f(0) for every f ∈ Cp([0,∞));

(ii) For every ek(x) = xk , k ∈ N0 , and n ≥ n0 there exists an algebraic polynomial Pn,k of the order k such
that Ln(ek; x) = Pn,k(x) and

Ln(e0; x) = 1, Ln(e1; x) = x for x ∈ I, n ≥ n0; (2.4)

(iii) There exist numbers a, b ≥ 0, a2 + b2 > 0, and a numerical increasing and unbounded sequence (λn)∞n0

such that λn0 > 0 and

Ln(e2; x) = x2 +
ax2 + bx

λn
for x ∈ I, n ≥ n0; (2.5)

(iv) For functions

Tn;p(x) := Ln (ϕp
x(t); x) , x ∈ I, n ≥ n0, p ∈ N0. (2.6)

there holds

lim
n→∞

‖Tn;p‖p = 0. (2.7)

Now, using Ln we define for f ∈ Cp , p ∈ N0 , the following operators:

L∗
n(f ; x) := Ln (f ; un(x)) , x ∈ I, n ≥ n0, (2.8)

with

un(x) :=
−b +

√
b2 + 4λn(a + λn)x2

2(a + λn)
. (2.9)

From (8), (9) and properties (i)–(iv) of Ln we deduce that L∗
n , n ≥ n0 , is a positive linear operator well

defined on every space Cp , p ∈ N0 .
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From (8), (9) and (3)–(5) we deduce that

L∗
n(e0; x) = 1, L∗

n(e1; x) = un(x), L∗
n(e2; x) = x2, (2.10)

and

Ln

(
ϕ2

x(t); x
)

=
ax2 + bx

λn
, L∗

n(ϕ2
x(t); x) = 2x(x − un(x)), (2.11)

for every x ∈ I and n ≥ n0 .

In this paper we shall denote by Mk(p), k ∈ N , suitable positive constants depending only on indicated
parameter p .

2.2. Here we shall give some auxiliary results.

Lemma 1 Let un and wp be functions defined by (9) and (1). Then we have

0 ≤ un(x) ≤ x, 0 ≤ 2x (x − un(x)) ≤
(
ax2 + bx

) /
λn, (2.12)√

ax2 + bx

λn
−

√
2x(x− un(x)) ≥

√
ax2 + bx

λn

2ax + b

4[2ax + b + 2λnx]
, (2.13)

0 <
wp(x)

wp(un(x))
≤ 1, (2.14)

(wp(x))2 ≤ w2p(x), (wp(x))−2 ≤ 2/w2p(x), (2.15)

for all x ∈ I , n ≥ n0 and p ∈ N0 .

Proof. From (9) we deduce that un(0) = 0 for n ≥ n0 ,

0 < un(x) =
2λnx2

b +
√

b2 + 4λn(a + λn)x2
<

2λnx2√
4λ2

nx2
= x,

0 < x − un(x) =
1

2(a + λn)
[2(a + λn)x + b]2 − b2 − 4λn(a + λn)x2

2(a + λn)x + b +
√

b2 + 4λn(a + λn)x2

=
2(ax2 + bx)

2(a + λn)x + b +
√

b2 + 4λn(a + λn)x2
<

ax + b

2λn
,

and

√
(ax2 + bx)/λn −

√
2x(x − un(x)) =

(ax2 + bx)/λn − 2x(x− un(x))√
(ax2 + bx)/λn +

√
2x(x − un(x))

≥ 1
2
√

(ax2 + bx)/λn

(
ax2 + bx

λn
− 4x(ax2 + bx)

2(a + λn)x + b +
√

b2 + 4λn(a + λn)x2

)

=

√
ax2 + bx

λn

2ax + b +
√

b2 + 4λn(a + λn)x2 − 2λnx

2
(
2ax + b + 2λnx +

√
b2 + 4λn(a + λn)x2

)

>

√
ax2 + bx

λn

2ax + b

4(2ax + b + 2λnx)
,
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for every x > 0 and n ≥ n0 .

Inequalities (14) and (15) are obvious for each p ∈ N0 by (1) and (12). �

Lemma 2 For each p ∈ N0 , there exists M1(p) = const. > 0 such that for the above operators Ln and L∗
n

there holds
‖L∗

n(1/wp)‖p ≤ ‖Ln(1/wp)‖p ≤ M1(p), n ≥ n0, (2.16)

and
‖L∗

n(f)‖p ≤ ‖Ln(f)‖p ≤ M1(p)‖f‖p, (2.17)

for every f ∈ Cp and n ≥ n0 .

Formulas (8) and (9) and inequality (17) show that L∗
n , n ≥ n0 , is linear positive operator acting from

the space Cp to Bp for every p ∈ N0 .

Proof. The inequalities (16) and (17) with M1(p) = 1 are obvious for p = 0 by (1), (2), (4) and (12).

If p ∈ N , then by (1)–(3) and properties of Ln , we have

Ln(1/wp(t); x) = 1 + Ln(ep; x) ≤ 1 + 2pxp + 2pLn (ϕp
x(t); x) for x ∈ I, n ≥ n0. (2.18)

Next from (7) it results that there exists M2(p) = const. > 0 such that ‖Tn;p‖p ≤ M2(p) for n ≥ n0 , which by
(1), (2), (6) and (18) implies that

‖Ln(1/wp)‖p ≤ 2p (1 + M2(p)) for n ≥ n0.

Thus the inequality (16) for Ln is proved.

From (8), (14) and (16) for Ln we deduce that

wp(x)L∗
n (1/wp(t); x) =

wp(x)
wp (un(x))

wp (un(x))Ln (1/wp(t); un(x))

≤ ‖Ln(1/wp)‖p ≤ M1(p) for x ∈ I, n ≥ n0.

Analogously for f ∈ Cp , p ∈ N0 , we get

wp(x) |L∗
n (f(t); x)| ≤ ‖Ln(f)‖p for x ∈ I, n ≥ n0. (2.19)

Moreover, for f ∈ Cp , p ∈ N0 , we have

|Ln(f ; x)| ≤ Ln (|f |; x) , x ∈ I, n ≥ n0,

which by (2) implies that
‖Ln(f)‖p ≤ ‖f‖p ‖Ln(1/wp)‖p, n ≥ n0. (2.20)

Now from (19), (20) and (16) immediately follows (17). �

For Ln and L∗
n there holds the following:
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Lemma 3 Let f, g ∈ Cp with a fixed p ∈ N0 . Then

|Ln(f(t)g(t); x)| ≤
(
Ln(f2(t); x)

)1/2 (
Ln(g2(t); x)

)1/2
for x ∈ I, n ≥ n0,

and
‖Ln(fg)‖2p ≤ ‖Ln(f2)‖1/2

2p ‖Ln(g2)‖1/2
2p for n ≥ n0.

Identical inequalities there hold for operators L∗
n . �

Applying (4) and (10)–(16), we can derive the following

Corollary 1 Let ϕx and wp be defined by (3) and (1). Then

Ln (ϕx(t); x) ≤
(
Ln(ϕ2

x(t); x)
)1/2

=
((

ax2 + bx
)/

λn

)1/2
,

L∗
n (ϕx(t); x) ≤

(
L∗

n(ϕ2
x(t); x)

)1/2 = (2x(x − un(x))1/2 ≤
((

ax2 + bx
) /

λn

)1/2
,

and

wp(x)Ln(ϕx(t)/wp(t); x) ≤
√

2‖Ln (1/w2p) ‖1/2
2p

(
Ln(ϕ2

x(t); x)
)1/2

,

wp(x)L∗
n(ϕx(t)/wp(t); x) ≤

√
2‖Ln (1/w2p) ‖1/2

2p

(
L∗

n(ϕ2
x(t); x)

)1/2
,

for every x ∈ I and n ≥ n0 .

3. Theorems

Here we shall prove two approximation theorems for the above operators. Let C1
p , p ∈ N0 , be the set of

all functions f ∈ Cp having first derivative f ′ ∈ Cp .

Theorem 1 For each p ∈ N0 , there exists M3(p) = const. > 0 such that for every f ∈ C1
p there holds

wp(x) |Ln(f ; x) − f(x)| ≤ M3(p) ‖f ′‖p

√
(ax2 + bx)/λn (3.21)

and
wp(x) |L∗

n(f ; x) − f(x)| ≤ M3(p) ‖f ′‖p

√
2x (x − un(x)), (3.22)

for x ∈ I and n ≥ n0 .

Proof. We shall prove only (22) because the proof of (21) is identical by the above lemmas.

For a fixed f ∈ C1
p and x ∈ I we can write

f(t) − f(x) =
∫ t

x

f ′(u) du, t ∈ I,

and ∣∣∣∣
∫ t

x

f ′(u) du

∣∣∣∣ ≤ ‖f ′‖p

∣∣∣∣
∫ t

x

du

wp(u)

∣∣∣∣ ≤ ‖f ′‖p (1/wp(t) + 1/w(x)) |t − x|.
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Using now L∗
n and (10), (3) and Corollary 1, we get

wp(x) |L∗
n (f(t); x) − f(x)| ≤ wp(x)L∗

n

(∣∣∣∣
∫ t

x

f ′(u) du

∣∣∣∣ ; x
)

≤ ‖f ′‖p (wp(x)L∗
n (ϕx(t)/wp(t); x) + L∗

n (ϕx(t); x))

≤ ‖f ′‖p

(√
2‖Ln (1/w2p) ‖1/2

2p + 1
) √

2x (x − un(x)),

which by (16) implies (22). �

Theorem 2 For each p ∈ N0 , there exists M4(p) = const. > 0 such that for every f ∈ Cp , x ∈ I and n ≥ n0 ,
we have

wp(x) |Ln(f ; x) − f(x)| ≤ M4(p)ω
(
f ;

√
(ax2 + bx)/λn

)
p

(3.23)

and

wp(x) |L∗
n(f ; x) − f(x)| ≤ M4(p)ω

(
f ;

√
2x(x− un(x))

)
p
≤ M4(p)ω

(
f ;

√
(ax2 + bx)

/
λn

)
p

(3.24)

where ω(f ; ·)p is the modulus of continuity of f ∈ Cp , i.e.

ω(f ; t)p := sup
0≤h≤t

‖Δhf(·)‖p for t ≥ 0, (3.25)

and Δhf(x) = f(x + h) − f(x) .

Proof. Similar to [5], we use the Steklov function fh of f ∈ Cp , i.e.

fh(x) :=
1
h

∫ h

0

f(x + t) dt, x ∈ I, h > 0. (3.26)

We have fh ∈ C1
p and by (26) and (25) we get

‖fh − f‖p ≤ ω(f ; h)p (3.27)

and

‖f ′
h‖p ≤ h−1ω(f ; h)p, for h > 0. (3.28)

By the above properties of fh and (10) we can write for f ∈ Cp and L∗
n :

|L∗
n(f ; x) − f(x)| ≤ |L∗

n(f(t) − fh(t); x|+ |L∗
n(fh(t); x) − fh(x)|+ |fh(x) − f(x)|, (3.29)

for x ∈ I , n ≥ n0 and h > 0. Next, by (17) and (27) we have

‖L∗
n (f − fh) ‖p ≤ M1(p)‖f − fh‖p ≤ M1(p)ω(f ; h)p. (3.30)
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Theorem 1 for fh and (28) imply that

wp(x) |L∗
n(fh(t); x) − fh(x)| ≤ M3(p)‖f ′

h‖p

√
2x(x − un(x)) ≤ M3(p)h−1

√
2x(x − un(x))ω(f ; h)p. (3.31)

Combining (29)-(31) and (27), we get

wp(x) |L∗
n(f ; x) − f(x)| ≤ ω(f ; h)p

(
1 + M1(p) + M3(p)h−1

√
2x(x − un(x))

)
, (3.32)

for each x ∈ I , n ≥ n0 and h > 0. Putting h =
√

2x (x − un(x)) with x > 0 to (32), we obtain the desired
estimation for x > 0.
If x = 0, then (24) follows by the property (i) of Ln and (8) and (9).

The proof of (23) is analogous. �

From (23), (24) and lim
n→∞

λn = +∞ we can derive the following two corollaries.

Corollary 2 If f ∈ Cp , p ∈ N0 , then

lim
n→∞

Ln(f ; x) = f(x) = lim
n→∞

L∗
n(f ; x)

at every x ∈ I . This convergence is uniform on every interval [x1, x2] ⊂ I .

Corollary 3 The error of approximation of a function f ∈ Cp , p ∈ N0 , (f(x) �= ek(x) for k = 0, 1) by
L∗

n(f) , n ≥ n0 , is smaller than by Ln(f) .

4. Applications

We present four examples of well-known positive linear operators satisfying the conditions (i)–(iv) given
in Section 2 for operators Ln . For these operators we can consider modified operators of the type L∗

n defined
by (8) and (9).

4.1. The Szász-Mirakyan operators ([5], [15])

Sn(f ; x) := e−nx
∞∑

k=0

(nx)k

k!
f

(
k

n

)
, x ≥ 0, n ∈ N,

satisfy conditions (i)–(iv) and Sn(e2; x) = x2 + x
n , i.e. the condition (5) there holds with a = 0, b = 1 and

λn = n for n ∈ N . From (8) and (9) there results that the modified operators S∗
n preserving e0 and e2 are

defined by the formula S∗
n(f ; x) := Sn (f ; un(x)) with

un(x) =
−1 +

√
1 + 4n2x2

2n
,

for f ∈ Cp , x ≥ 0 and n ∈ N .
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4.2. The Baskakow operators ([5])

Vn(f ; x) := (1 + x)−n
∞∑

k=0

(
n + k − 1

k

) (
x

1 + x

)k

f

(
k

n

)
, x ≥ 0, n ∈ N,

satisfy conditions (i)–(iv) and the formula (5) there holds with a = b = 1 and λn = n for n ∈ N , because

Vn(e2; x) = x2 + x(1 + x)/n . Now the modified operators V ∗
n (f ; x) := Vn (f ; un(x)) are connected with

un(x) =
−1 +

√
1 + 4n(n + 1)x2

2(n + 1)
.

4.3. The Post-Wildder operators ([7, 12])

Pn(f ; x) :=
∫ ∞

0

f(t)pn(x, t) dt, x > 0, n ∈ N, pn(x, t) =
(n/x)n tn−1

(n − 1)!
exp(−nt/x),

have properties (i)–(iv) and a = 1, b = 0 and λn = n in the formula (5), because Pn(e2; x) = x2 +x2/n . Hence
the operators P ∗

n(f ; x) := Pn (f ; un(x)) are modified by

un(x) =
√

n

n + 1
x.

4.4. The Stancu operators ([14, 13])

Ln(f ; x) :=
∫ ∞

0

f(t)sn(x, t) dt, x > 0, n ≥ 2, sn(x, t) =
tnx−1

B(nx, n + 1)(1 + t)nx+n−1
,

with the Euler beta function B , satisfy conditions (i)–(iv) and Ln(e2; x) = x2 + x(x+1)
n−1

, for n ≥ 2, i.e.

the formula (5) there holds with a = b = 1 and λn = n − 1 for n ≥ 2. Now modified Stancu operators
L∗

n(f ; x) := Ln (f ; un(x)) are conected with

un(x) =
−1 +

√
1 + 4n(n − 1)x2

2n
.

Applying Theorem 1 and Theorem 2, we can estimate the error of approximation of functions f ∈ Cp by
classical operators Sn , Vn , Pn , Ln and modified operators S∗

n , V ∗
n , P ∗

n and L∗
n .
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