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Oktay Duman, Mehmet Ali Özarslan and Biancamaria Della Vecchia

Abstract

In this paper, we introduce a modification of the Szász-Mirakjan-Kantorovich operators, which preserve

the linear functions. This type of operator modification enables better error estimation on the interval

[1/2, +∞) than the classical Szász-Mirakjan-Kantorovich operators. We also obtain a Voronovskaya-type

theorem for these operators.
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1. Introduction

Previous studies demonstrate that providing a better error estimation for positive linear operators plays
an important role in approximation theory, which allows us to approximate much faster to the function being
approximated. In [1, 6, 11], various approximation properties of the classical Szász-Mirakjan operators and

Szász-Mirakjan-Kantorovich operators were investigated. Recently, in [3], by modifying the Szász-Mirakjan
operators, we have showed that our modified operators have better error estimation than the classical ones. We
should recall that such investigations were accomplished for Bernstein polynomials by King [7], for Meyer-König

and Zeller operators by Özarslan and Duman [9] and for Szász-Mirakjan-Beta operators by Duman, Özarslan

and Aktuğlu [4]. In this paper, we apply our method to the classical Szász-Mirakjan-Kantorovich operators.

Consider the Banach lattice

Cγ [0, +∞) := {f ∈ C[0, +∞) : |f(t)| ≤ M(1 + t)γ for some M > 0, γ > 0} .

Then, the classical Szász-Mirakjan operators are defined by

Sn(f ; x) := e−nx
∞∑

k=1

(nx)k

k!
f

(
k

n

)
,
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where f ∈ Cγ [0, +∞), x ≥ 0 and n ∈ N . Various approximation properties of the Szász-Mirakjan operators

and their iterates may be found in [1, 3, 4, 5, 6, 8, 10, 11, 12] and the references cited therein.

The Kantorovich version of the Szász-Mirakjan operators are defined by

Kn(f ; x) := ne−nx
∞∑

k=0

(nx)k

k!

∫
In,k

f(t)dt, (1.1)

where In,k =
[
k

n
,
k + 1

n

]
and f ∈ Cγ [0, +∞).

Now, for the Szász-Mirakjan-Kantorovich operators Kn given by (1.1), the following lemma follows from

[6] immediately.

Lemma A [6]. Let ei(x) = xi, i = 0, 1, 2, 3, 4. Then, for each x ≥ 0, and n > 1, we have

(a) Kn(e0; x) = 1,

(b) Kn(e1; x) = x +
1
2n

,

(c) Kn(e2; x) = x2 +
2x

n
+

1
3n2

,

(d) Kn(e3; x) = x3 +
9x2

2n
+

7x

2n2
+

1
4n3

,

(e) Kn(e4; x) = x4 +
8x3

n
+

15x2

n2
+

6x

n3
+

1
5n4

.

2. Construction of the Operators

The set {e0, e1, e2} is a K+−subset of Cγ [0, +∞) for γ ≥ 2; also the space Cγ [0, +∞) is isomorphic

to C[0, 1]. Recall that a subset H of Cγ [0, +∞) is called a Korovkin subset with respect to positive linear

operators or, briefly, a K+−subset of Cγ [0, +∞) if it satisfies the following property:

if {Ln} is an arbitrary sequence of positive linear operators
from Cγ [0, +∞) into itself such that limn→∞ Ln(h) = h for all h ∈ H,

then limn→∞ Ln(f) = f for every f ∈ Cγ [0, +∞)

(see [2] for details).

Let {rn(x)} be a sequence of real-valued continuous functions defined on [0, +∞) with 0 ≤ rn(x) < +∞ .
Then we have

Kn(f ; rn(x)) := ne−nrn(x)
∞∑

k=0

(nrn(x))k

k!

∫
In,k

f(t)dt.
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Now, if we replace rn(x) by r∗n(x) defined as

r∗n(x) := x − 1
2n

, x ≥ 1
2

and n ∈ N, (2.2)

then we get the following positive linear operators:

K∗
n(f ; x) := ne

1−2nx
2

∞∑
k=0

(2nx − 1)k

2kk!

∫
In,k

f(t)dt, (2.3)

where f ∈ Cγ [0, +∞), γ > 0 and x ≥ 1/2. Observe that if x ∈ [1/2, +∞), then r∗n(x) given by (2.2) belongs

to the interval [0, +∞).

On the other hand, from Lemma A we obtain the following result at once.

Lemma 2.1 For each x ≥ 1/2, we have

(a) K∗
n(e0; x) = 1,

(b) K∗
n(e1; x) = x,

(c) K∗
n(e2; x) = x2 +

x

n
− 5

12n2
,

(d) K∗
n(e3; x) = x3 +

3x2

n
− x

4n2
− 1

2n3
,

(e) K∗
n(e4; x) = x4 +

6x3

n
+

9x2

2n2
− 7x

2n3
− 1

80n4
.

By Lemma 2.1, it is clear that the positive linear operators K∗
n given by (2.3) preserve the linear functions,

that is, for h(t) = ct + b (c and d are any real numbers), K∗
n(h; x) = h(x) for all x ≥ 1/2 and n ∈ N .

Now, fix b > 1/2 and consider the lattice homomorphism Tb : C[0, +∞) → C[0, b] defined by Tb(f) :=

f |[0,b] for every f ∈ C[0, +∞), where f |[0,b] denotes the restriction of the domain of f to the interval [0, b]. In

this case, we see that, for each i = 0, 1, 2,

lim
n→∞

Tb (K∗
n(ei)) = Tb(ei) uniformly on [1/2, b] . (2.4)

Thus, by using (2.4) and with the universal Korovkin-type property with respect to monotone operators

(see Theorem 4.1.4 (vi) of [2, p. 199]) we have the following Korovkin-type approximation result.

Theorem 2.2 limn→∞ K∗
n(f ; x) = f(x) uniformly with respect to x ∈ [1/2, b] provided f ∈ Cγ [0, +∞), γ ≥ 2

and b > 1/2.

In order to get uniform convergence on [1/2, +∞) of the sequence {K∗
n(f)} we consider the following

subspace E of Cγ [0, +∞):

E :=
{

f ∈ C[0, +∞) : lim
t→+∞

f(t) is finite
}

153
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endowed with the sup-norm.

For a given λ > 0, consider the function fλ(t) := e−λt, (t ≥ 0). Then, for every x ≥ 1/2 and n ∈ N , we
have

K∗
n(fλ; x) = ne

1−2nx
2

∞∑
k=0

(2nx − 1)k

2kk!

∫
In,k

e−λtdt

=
n (1 − exp(−λ/n))

λ
× exp (−n(x − 1/2n))

∞∑
k=0

(
n(x − 1/2n)e−λ/n

)k

k!

=
n (1 − exp(−λ/n))

λ
× exp

{
−n

(
x − 1

2n

)
(1 − exp (−λ/n))

}
.

Since limn→∞ n (1 − exp(−λ/n)) = λ, we conclude that

lim
n→∞

K∗
n(fλ) = fλ uniformly on [1/2, +∞).

Hence using this limit and applying Proposition 4.2.5-(7) of [2, p. 215] one can obtain the next result at
once.

Theorem 2.3 limn→∞ K∗
n(f) = f uniformly on [1/2, +∞) provided f ∈ E.

We can also give an Lp -approximation for the operators K∗
n(f ; x) by using Proposition 4.2.5-(2) of [2,

p. 215] as follows.

Corollary 2.4 Let 1 ≤ p < +∞ . Then, for all f ∈ Lp [0, +∞), limn→∞ K∗
n(f ; x) = f(x) uniformly with

respect to x ∈ [1/2, +∞) .

3. Better Error Estimation

In this section we compute the rate of convergence of the operators K∗
n defined by (2.3). Then, we will

show that our operators have a better error estimation on the interval [1/2, +∞) than the Szász-Mirakjan-

Kantorovich operators Kn given by (1.1). To achieve this we use the modulus of continuity and the elements
of Lipschitz class functionals.

If we define the function ψx, (x ≥ 0), by ψx(t) = t − x, then by Lemma 2.1 one can get the following
result, immediately.

Lemma 3.1 For every x ≥ 1/2, we have

(a) K∗
n(ψx; x) = 0,

(b) K∗
n(ψ2

x; x) =
x

n
− 5

12n2
,

(c) K∗
n(ψ3

x; x) =
x

n2
− 1

2n3
,
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(d) K∗
n(ψ4

x; x) =
3x2

n2
− 3x

2n3
− 1

80n4
.

Let f ∈ CB[0, +∞), the space of all bounded functions on [0, +∞), and x ≥ 1/2. Then, for δx > 0, the

modulus of continuity of f denoted by ω(f, δx), is defined to be

ω(f, δx) = sup
x−δx≤t≤x+δx; t∈[0,+∞)

|f(t) − f(x)| .

Then we have the following theorem.

Theorem 3.2 For every f ∈ CB [0, +∞) , x ≥ 1/2 and n ∈ N , we have

|K∗
n(f ; x) − f(x)| ≤ 2ω(f, δn,x),

where δn,x :=
√

x

n
− 5

12n2
.

Proof. Now, let f ∈ CB[0, +∞) and x ≥ 0. Using linearity and monotonicity of K∗
n we easily get, for

δx > 0 and n ∈ N , that

|K∗
n(f ; x) − f(x)| ≤ ω(f, δ)

{
1 +

1
δ

√
K∗

n (ψ2
x; x)

}
.

Now applying Lemma 3.1 (b) and choosing δ = δn,x , the proof is complete. �

Remark. For the Szász-Mirakjan-Kantorovich operators given by (1.1) we may write that, for every f ∈
CB[0, +∞), x ≥ 0 and n ∈ N,

|Kn(f ; x) − f(x)| ≤ 2ω(f, αn,x), (3.5)

where αn,x :=
√

x

n
+

1
3n2

(see [5, 6]).

Now we claim that the error estimation in Theorem 3.2 is better than that of (3.5) provided f ∈
CB[0, +∞) and x ≥ 1/2. Indeed, for x ≥ 1/2 and n ∈ N , it is clear that

x

n
− 5

12n2
≤ x

n
+

1
3n2

. (3.6)

This guarantees that δn,x ≤ αn,x for x ≥ 1/2 and n ∈ N .

Now we can also compute the rate of convergence of the operators K∗
n by means of the elements of the

Lipschitz class LipM (α), (α ∈ (0, 1]). As usual, we say that a function f ∈ CB[0, +∞) belongs to LipM (α) if
the inequality

|f(t) − f(x)| ≤ M |t − x|α (3.7)

holds for all t ∈ [0, +∞) and x ∈ [1/2, +∞).

Theorem 3.3 For every f ∈ LipM (α) , x ≥ 1/2 and n ∈ N, we have

|K∗
n(f ; x) − f(x)| ≤ M

{
x

n
− 5

12n2

}α
2

.
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Proof. Since f ∈ LipM (α) and x ≥ 0, using inequality (3.7) and then applying the Hölder inequality with

p = 2
α , q = 2

2−α we get

|K∗
n(f ; x) − f(x)| ≤ K∗

n (|f(t) − f(x)| ; x) ≤ M K∗
n (|t − x|α ; x) ≤ M

{
K∗

n

(
ψ2

x; x
)}α

2 ≤ M

{
x

n
− 5

12n2

}α
2

,

whence the result. �

Notice that as in the proof of Theorem 3.2, since Kn(ψ2
x; x) =

x

n
+

1
3n2

, the Szász-Mirakjan-Kantorovich

operators defined by (1.1) satisfy

|Kn(f ; x) − f(x)| ≤ M

{
x

n
+

1
3n2

}α
2

(3.8)

for every f ∈ LipM (α), x ≥ 1/2 and n ∈ N. So, it follows from (3.6) that the above claim also holds for
Theorem 3.2, i.e., the rate of convergence of the operators K∗

n by means of the elements of the Lipschitz class

functionals is better than the ordinary error estimation given by (3.8) whenever x ≥ 1/2 and n ∈ N.

4. A Voronovskaya-Type Theorem

In this section, we prove a Voronovskaya-type theorem for the operators K∗
n given by (2.3).

We first need the following lemma.

Lemma 4.1 limn→∞ n2K∗
n

(
ψ4

x; x
)

= 3x2 uniformly with respect to x ∈ [1/2, b] (b > 1/2).

Proof. Then, by Lemma 3.1 (d), we may write that

n2K∗
n

(
ψ4

x; x
)

= 3x2 − 3x

2n
− 1

80n2
.

Now taking limit as n → ∞ on the both sides of the above equality the proof is complete. �

Theorem 4.2 For every f ∈ Cγ [0, +∞) such that f ′, f ′′ ∈ Cγ [0, +∞), γ ≥ 4, we have

lim
n→∞

n {K∗
n(f ; x) − f(x)} =

1
2

x f ′′(x)

uniformly with respect to x ∈ [1/2, b] (b > 1/2).

Proof. Let f, f ′, f ′′ ∈ Cγ [0, +∞) and x ≥ 1/2. Define

Ψ(t, x) =

⎧⎪⎨
⎪⎩

f(t) − f(x) − (t − x)f ′(x) − 1
2
(t − x)2f ′′(x)

(t − x)2
, if t �= x

0, if t = x.
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Then by assumption we have Ψ(x, x) = 0 and the function Ψ(·, x) belongs to Cγ [0, +∞). Hence, by Taylor’s
theorem we get

f(t) = f(x) + (t − x)f ′(x) +
(t − x)2

2
f ′′(x) + (t − x)2Ψ(t, x).

Now from Lemma 3.1 (a) − (b)

n {K∗
n(f ; x) − f(x)} =

n

2

(
x

n
− 5

12n2

)
f ′′(x) + n K∗

n

(
ψ2

x(t)Ψ(t, x); x
)
. (4.9)

If we apply the Cauchy-Schwarz inequality for the second term on the right-hand side of (4.9), then we conclude
that

n
∣∣K∗

n

(
ψ2

x(t)Ψ(t, x); x
)∣∣ ≤ (

n2K∗
n(ψ4

x(t); x)
) 1

2
(
K∗

n(Ψ2(t, x); x)
)1

2 . (4.10)

Let η(t, x) := Ψ2(t, x). In this case, observe that η(x, x) = 0 and η(·, x) ∈ Cγ [0, +∞). Then it follows from

Theorem 2.2 that
lim

n→∞
K∗

n

(
Ψ2(t, x); x

)
= lim

n→∞
K∗

n (η(t, x); x) = η(x, x) = 0 (4.11)

uniformly with respect to x ∈ [1/2, b] (b > 1/2). Now considering (4.10) and (4.11), and also using Lemma 4.1,
we immediately see that

lim
n→∞

n K∗
n

(
ψ2

x(t)Ψ(t, x); x
)

= 0 (4.12)

uniformly with respect to x ∈ [1/2, b]. On the other hand, observe now that, by (3.6),

lim
n→∞

n

2

(
x

n
− 5

12n2

)
=

1
2
x. (4.13)

Then, taking limit as n → ∞ in (4.9) and using (4.12) and (4.13) we have

lim
n→∞

n {K∗
n(f ; x) − f(x)} =

1
2
xf ′′(x)

uniformly with respect to x ∈ [1/2, b] with b > 1/2. So, the proof is completed. �
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