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Abstract

The object of this paper is to study ¢-recurrent Kenmotsu manifolds. Also three-dimensional locally ¢-
recurrent Kenmotsu manifolds have been considered. Among others it is proved that a locally ¢-recurrent
Kenmotsu spacetime is the Robertson-Walker spacetime. Finally we give a concrete example of a three-

dimensional Kenmotsu manifold.
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1. Introduction

The notion of local symmetry of a Riemannian manifold has been weakend by many authors in several
ways to a different extent. As a weaker version of local symmetry, T. Takahashi [16] introduced the notion of
locally ¢-symmetry on a Sasakian manifold. Generalizing the notion of ¢-symmetry, one of the authors, De,
[7] introduced the notion of ¢-recurrent Sasakian manifold. In the context of contact geometry the notion of

¢-symmetry is introduced and studied by Boeckx, Buecken and Vanhecke [3] with several examples.

On the other hand Kenmotsu [11] defined a type of contact metric manifold which is nowadays called
Kenmotsu manifold. It may be mentioned that a Kenmotsu manifold is not a Sasakian manifold. Also, a

Kenmotsu manifold is not compact because of divé = 2n. In [11], Kenmotsu showed that locally a Kenmotsu

manifold is a warped product Ix ¢ N of an interval I and a Kahler manifold N with warping function f(t) = se’,

where s is a nonzero constant.

The present paper is organized as follows: Section 2 is devoted to preliminaries. In section 3, we prove
that a ¢-recurrent Kenmotsu manifold is an Einstein manifold and a locally ¢-recurrent Kenmotsu manifold
is locally a hyperbolic space. In the next section, it is proved that a three-dimensional locally ¢-recurrent
Kenmotsu manifold is a manifold of constant curvature. In section 5, we prove that a locally ¢-recurrent
Kenmotsu spacetime is the Robertson-Walker spacetime. In the last section, we construct an example of a

three-dimensional Kenmotsu manifold.
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2. Preliminaries

Let M?"*1(¢,€&,n,9) be an almost contact Riemannian manifold, where ¢ is a (1,1) tensor field, ¢ is

the structure vector field, n is a 1-form and g is the Riemannian metric. It is well known that (¢, &, n, g) satisfy

=0, n(¢X)=0, n()=1, (2.1)
P*X = =X +n(X)E, (2.2)

9(X, &) = n(X), (2.3)

96X, 9Y) = g(X,Y) = n(X)n(Y), (2.4)

for any vector fields X and Y on M [1], [2].
If, moreover,
(Vx@)Y = —n(Y)pX —g(X,¢Y)E, X, Y € x(M), (2.5)

Vx& =X —n(X)§, (2.6)

where V denotes the Riemannian connection of g, then (M, ¢,&, 1, g) is called an almost Kenmotsu manifold
[11].
Kenmotsu manifolds have been studied by many authors such as Binh, Tamassy, De and Tarafdar [4]

Pitig [15], De and Pathak [5], Jun, De and Pathak [10], Ozgiir [13], Ozgiir and De [14], Dileo and Pastore [§]
and many others.

In a Kenmotsu manifold the following relations hold: [11] .

(Vxn)(Y) = g(X,Y) = n(X)n(Y), (2.7)
N(R(X,Y)Z) = g(X, Z)n(Y) — g(Y, Z)n(X), (2.8)
R(X,Y)§ =n(X)Y —n(Y)X, (2.9)

R(§, X)Y =n(Y)X — g(X,Y)g, (2.10)

S(X, ) = —2nn(X), (2.11)

(VZR)(X,Y)¢ = g(X, Z2)Y —g(Z,Y)X — R(X,Y)Z, (2.12)

for any vector fields X,Y, Z, where R is the Riemannian curvature tensor and S is the Ricci tensor.

Definition 1 A Kenmotsu manifold is said to be a locally ¢-symmetric manifold if
P*(VwR)(X,Y)Z) =0, (2.13)
for all vector fields X,Y, Z,W orthogonal to &.

This notion was introduced for Sasakian manifolds by Takahashi [16].
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Definition 2 A Kenmotsu manifold is said to be a ¢-recurrent manifold if there exists a non-zero 1-form A
such that
*(VwR)(X,Y)Z) = AW)R(X,Y)Z, (2.14)

for arbitrary vector fields X,Y, Z, W.

If X,Y,Z W are orthogonal to £, then the manifold is called locally ¢-recurrent manifold.
If the 1-form A vanishes, then the manifold reduces to a ¢-symmetric manifold.
3. ¢-Recurrent Kenmotsu Manifolds

To prove the main theorem of the paper we first prove the following lemma.

Lemma 1 In a ¢-recurrent Kenmotsu manifold (M*"*t1 g), n > 1, the characteristic vector field & and the
vector field p associated to the 1-form A are co-directional and the 1-form A is given by

AW) = n(p)n(W).
Proof. Two vector fields P and @ are said to be co-directional if P = f@Q) where f is a non-zero scalar.
That is,
g(P,X) = fg(Q,X) forall X. (3.15)

Let us consider a ¢-recurrent Kenmotsu manifold. Then by virtue of (2.2) and (2.14), we have
(VwR)(X,Y)Z =n((VwR)(X,Y)Z)¢ — AW)R(X,Y)Z. (3.16)
From (3.16) and the Bianchi identity, we get
AWMR(X,Y)Z)+ AX)n(RY,W)Z) + AY )n(R(W,X)Z) = 0. (3.17)

Let {e;}, ¢ = 1,2,3,...,2n+ 1, be an orthonormal basis of the tangent space at any point of the manifold.
Putting Y = Z = ¢; in (3.17) and taking summation over i, 1 < i <2n+ 1, we get by virtue of (2.8)

AW)n(X) = AX)n(W), (3.18)

AW) =n(p)n(W), (3.19)

where A(X) = g(X, p) and p is the vector field associated to the 1-form A. From (3.15) and (3.19) it is clear
that ¢ and p are co-directional. a

Theorem 1 A ¢-recurrent Kenmotsu manifold is an Einstein manifold.

Proof. From (3.16), we have

—9(VwR)(X,Y)Z,U) + n((Vw R)(X,Y)Z)n(U) = AW)g(R(X,Y)Z,U). (3.20)
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Putting X = U = e; in (3.20) and taking summation over ¢, 1 < ¢ <2n+ 1, we get

2n+1
—(VwS)(Y,Z)+ Y n((VwR)(es, Y)Z)n(es) = AW)S(Y, Z).
=1

The second term of (3.21) by putting Z = £ takes the form
n((VWR) (eiu Y)f)n(ez) = g((vWR) (eiu Y)§7 g)g(eiu 5)7
which is denoted by E. In this case FE vanishes. Namely, we have
g((VWR)(GZ,Y)§7§) = g(VWR(eZ,Y)f,ﬁ) _g(R(vWeuY)é-?g)
_g(R(ezu VWY)é-? 6) - g(R(elu Y)VW§7 6)

(3.21)

(3.22)

(3.23)

at p € M. In local coordinates Vxe; = X7 I‘?ieh, where l"?i are the Christoffel symbols. Since {e;} is an

orthonormal basis, the metric tensor g;; = d;;, where J;; is the Kronecker delta and hence the Christoffel

symbols are zero. Therefore, Vxe; = 0. Also we have
g(R(eiu VWY)é-? 6) = 07

since R is skew-symmetric. Using (3.24) and Vxe; =0 in (3.23), we obtain

g((vWR)(ezu Y)§7 6) = Q(VWR(GZ, Y)§7 6) - g(R(elu Y)VW§7 6)
By virtue of g(R(eiu Y)§7§) = _g(R(é-u g)YVu ei) =0, we have

g(vWR(eiu Y)§7 6) + g(R(eiu Y)§7 VWf) = 07

which implies

g((vWR)(ezu Y)§7 6) = _g(R(elu Y)§7 vWé-) - g(R(elu Y)VW§7 6)
Since R is skew-symmetric
Using (3.26) from (3.21), we get

(VwS)(Y,§) = —AW)S(Y,¢€).
We know that
(VwS)(Y,§) = VwS(Y,§) = S(VwY, &) — S(Y, Vwé).

Again using (2.6), (2.7) and (2.11), we get
(Vi S)(Y,€) = —2ng(Y, W) — S(Y, W).
Now using (3.28) in (3.27), we obtain
SY, W) ==2nAW)n(Y) — 2ng(Y, W).
Applying Lemma 1, equation (3.29) reduces to
SY, W) = =2ng(Y, W) = 2nn(p)n(¥Y )n(W),

which implies that the manifold is an 7-Einstein manifold.
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In Corollary 9 of Proposition 8 of [11], it is proved that if a Kenmotsu manifold is an 7-Einstein manifold

of type S = ag+ bnp®n and if b =constant (or a =constant) then M is an Einstein manifold. Hence by the
above result a ¢-recurrent Kenmotsu manifold is an Einstein manifold.

Theorem 2 A locally ¢-recurrent Kenmotsu manifold (M*"1 g), n > 1, is a manifold of constant curvature
—1, i.e., it is locally a hyperbolic space.

Proof. From (2.12), we have

(VwR) (X, Y), =g(W, X)Y —g(W,Y)X — R(X,Y)W. (3.30)
By virtue of (2.8), it follows from (3.30) that
n((VwR)(X,Y)¢) =0. (3.31)
In view of (3.30) and (3.31), we obtain from (3.16)
—(VwR)(X,Y)§ = AW)R(X,Y)¢, (3.32)
from which by using (2.12), it follows that
—g(X, W)Y +g(Y, W)X + R(X, Y)W =AW)R(X,Y )¢
Hence if X and Y are orthogonal to &, then we get from (2.9)
R(X,Y) =0.

Thus, we obtain
for all X,Y,W. o

Remark. It may be mentioned that a semi-symmetric (R(X,Y).R = 0) Kenmotsu manifold and a conformally
flat Kenmotsu manifold of dimension > 3 are of constant sectional curvature [11]. Also De and Pathak [5]

proved that three dimensional Ricci semi-symmetric (R(X,Y) -.S = 0) Kenmotsu manifold is of constant
sectional curvature.

4. Three-Dimensional Kenmotsu Manifolds

It is known that in a three-dimensional Kenmotsu manifold the curvature tensor has the following form

[5]
RX.Y)Z = (- ;r 4)[9(K 2)X - 9(X, 2)Y]
—(£ ;r 5\ lg (v, Zn(X)¢ — g(X, ZIn(Y)e + (¥ I(Z)X — n(X)n(2)Y). (4.33)
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Taking the covariant differentiation of the equation (4.33), we have

dr(W) dr(W)
2 2

(VwR)(X,Y)Z = 9(Y,2)X —g(X,2)Y] [9(Y, Z)n(X)¢ — g(X, Z)n(Y )¢

r+6

+n(Y)n(2)X —n(X)n(2)Y] - ( Na(Y, Z2)(Vwn)(X)E + g(Y, Z)n(X)Vw  (4.34)

—9(X, Z)(Vwn)(Y)§ = g(X, Z)n(Y)VwE + (Vwn)(Y)n(Z2)X +n(Y)(Vwn)(2)X
—(Vwn)(X)n(2)Y = n(X)(Vwn)(2)Y]

Now applying ¢ to the both sides of (4.34), we obtain

¢*(VwR)(X,Y)Z = _dTT(W)[g(Y, 2)X —g(X, 2)Y — g(Y, Z)n(X)€ + 9(X, Z)n(Y)§ + n(X)n(2)Y
—n(V)n(2)X] + (- ;r 6)[(an)(Y)77(Z)X +0(Y)(Vwn)(Z2)X — (Vwn)(X)n(2)Y
—n(X)(Vwn)(2)Y = (Vwn)(Y)n(Z)n(X)E + (Vwn)(X)n(Z)n(Y )E]. (4.35)

Taking X,Y, Z, W orthogonal to & and using (2.14), we finally get from (4.35)

—dr(W)

AW)R(X,Y)Z = [9(Y, 2)X — g(X, Z)Y). (4.36)

Putting W = {e;} in (4.36), where {e;}, i =1,2,3, is an orthonormal basis of the tangent space at any point
of the manifold and taking summation over i, 1 <7 < 3, we obtain

R(X,Y)Z = Ng(Y, )X — g(X, Z)Y],

where \ = _2%((::)) is a scalar, since A is a non-zero 1-form. Then by Schur’s theorem A\ will be a constant on

the manifold. Therefore, M? is of constant curvature A. Thus we get the following theorem.

Theorem 3 A three-dimensional locally ¢ -recurrent Kenmotsu manifold is of constant curvature.

5. Locally ¢-Recurrent Kenmotsu Spacetime

In this section we consider locally ¢-recurrent Kenmotsu spacetime. By a spacetime, we mean a 4-
dimensional semi-Riemannian manifold endowed with Lorentzain metric of signature (— + ++). In a recent
paper one of the authors De and Pathak [6] prove that the characteristic vector field £ in a Kenmotsu manifold is
a concircular vector field [18]. Also from Theorem 2, we can easily prove that a locally ¢-recurrent Kenmotsu
manifold is conformally flat. Hence divC = 0, where C denotes the conformal curvature tensor and “div”
denotes divergence.

Hence, we have

1

(VxS)(Y.2Z2) = (VyS)(X, Z) = 2m=1)

[9(Y; Z)dr(X) — g(X, Z)dr(Y)]. (5.37)
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Yano [17], prove that, in order that a Riemannian space admits a concircular vector field, it is necessary and
sufficient that there exists a coordinate system with respect to which the fundamental quadratic differential
form may be written in the form

ds* = (dz')* + elgns dz®dx”,
where g7, 5 = g,5(z") are the functions of 2" only (o, 3,7 =2,3,...,n) and ¢ = q(z') # constant is a function

of ' only. In the semi-Riemannian space, we can prove that
ds* = —(dz')* + el9ns dz®da”.

Thus a Kenmotsu spacetime can be expressed as a warped product —I X.¢ M*, where M* is a three-dimensional
Riemannian manifold. But Gebarowski [9] prove that warped product —I X, M* satisfies (5.37) if and only
if M* is an Einstein manifold. Thus a locally ¢-recurrent Kenmotsu spacetime must be warped product
—1I Xoa M*, where M* is an Einstein manifold. Since we consider a 4-dimensional manifold, M™ is a three-
dimensional Einstein manifold. It is known that a three— dimensional Einstein manifold is a manifold of constant
curvature. Hence a locally ¢-recurrent Kenmotsu spacetime is the warped product —I X.« M™*, where M* is
a manifold of constant curvature. But such a warped product is the Robertson-Walker spacetime [12].

Thus we have the following theorem.

Theorem 4 A locally ¢-recurrent Kenmotsu spacetime is the Robertson- Walker spacetime.

6. Example of a Three-Dimensional Kenmotsu Manifold

We consider the three-dimensional manifold M = {(z,y, 2) € R3}, z # 0 where (z,y, z) are the standard

coordinates of R3. The vector fields

_,9 -8 .__,9
el_zaxu 62_26y7 €3 = 2627

are linearly indepent at each point of M. Let g be the Riemannian metric defined by
gler,es) = gler, e2) = glea,e3) =0,
gler,en) = glea,e2) = g(es,e3) = 1.

That is, the form of the metric becomes

(dz? + dy? + dz?)
2

Let n be the 1-form defined by n(Z) = ¢g(Z,e3) for any Z € x(M). Let ¢ be the (1,1)-tensor field
defined by

d(e1) = —e2, Ple2) =e1, P(es) =0.
Then using the linearity of ¢ and g, we have
nles) = 1,
$*Z = —Z+n(2)es,
9(@Z,oW) = g(Z,W) —n(Z)n(W),
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for any Z,W € x(M). Then for e3 = &, the structure (¢,&,n,¢g) defines an almost contact metric structure on

M.

Let V be the Levi-Civita connection with respect to the metric g. Then we have

[617 62] = 07 [617 63] = €1, [627 63] = €2.

The Riemannian connection V of the metric g is given by

29(VxY,2)=Xg(Y,Z) +Yg(Z,X) — Zg(X,Y) — g(X,[Y, Z]) — g(Y, [X, Z]) + 9(Z, [X,Y]),

which is known as Koszul’s formula. Using this formula we obtain

Ve ez = e, Ve,€3 = €2,
Veleg = O, v6262 = —€s3,
Ve,e2 = —es, Ve,e2 = —e3,
Veer = —es, Ve,e1 =0,
VeSel = O, ve?’ez = O,
v6363 = 0.

Thus (2.6) is satisfied. It is straightforward computation to verify that the manifold under consideration is a

three-dimensional Kenmotsu manifold.
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