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Abstract

To give a Cartan calculus on the extended quantum 3d space, the noncommutative differential calculus

on the extended quantum 3d space is extended by introducing inner derivations and Lie derivatives.
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1. Introduction

The noncommutative differential geometry of quantum groups was introduced by Woronowicz [11, 12]. In
this approach the differential calculus on the group is deduced from the properties of the group and it involves
functions on the group, differentials, differential forms and derivatives. The other approach, initiated by Wess
and Zumino [10], followed Manin’s emphasis [5] on the quantum spaces as the primary objects. Differential
forms are defined in terms of noncommuting coordinates, and the differential and algebraic properties of quantum
groups acting on these spaces are obtained from the properties of the spaces.

The differential calculus on the quantum 3d space similarly involves functions on the 3d space, differen-
tials, differential forms and derivatives. The exterior derivative is a linear operator d acting on k -forms and
producing (k + 1)-forms, such that for scalar functions (0-forms) f and g we have

d(1) = 0, d(fg) = (df)g + (−1)deg(f)f(dg),

where deg(f) = 0 for even variables and deg(f) = 1 for odd variables, and for a k -form ω1 and any form ω2

d(ω1 ∧ ω2) = (dω1) ∧ ω2 + (−1)kω1 ∧ (dω2).

A fundamental property of the exterior derivative d is

d ∧ d =: d2 = 0.

There is a relationship of the exterior derivative with the Lie derivative and to describe this relation, we
introduce a new operator: the inner derivation. Hence the differential calculus on the quantum 3d space can
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be extended into a large calculus. We call this new calculus the Cartan calculus. The connection of the inner
derivation denoted by i a and the Lie derivative denoted by La is given by the Cartan formula:

La = ia ◦ d + d ◦ ia.

This and other formulae are explaned in Ref. [6–8]. We now shall give a brief overview without much discussion.

Let us begin with some information about the inner derivations. Generally, for a smooth vector field X

on a manifold the inner derivation, denoted by iX , is a linear operator which maps k -forms to (k − 1)-forms.
If we define the inner derivation iX on the set of all differential forms on a manifold, we know that iX is an
antiderivation of degree −1:

iX(α ∧ β) = (iXα) ∧ β + (−1)kα ∧ (iXβ),

where α and β are both differential forms. The inner derivation iX acts on 0- and 1-forms as follows:

iX(f) = 0, iX(df) = X(f).

We know, from the classical differential geometry, that the Lie derivative L can be defined as a linear
map from the exterior algebra into itself which takes k -forms to k -forms. For a 0-form, that is, an ordinary
function f , the Lie derivative is just the contraction of the exterior derivative with the vector field X :

LXf = iXdf.

For a general differential form, the Lie derivative is likewise a contraction, taking into account the variation in
X :

LXα = iXdα + d(iXα).

The extended calculus on the quantum plane was introduced in Ref. 1 using the approach of Ref. [7]. In

this work we explicitly set up the Cartan calculus on the quantum 3d space using approach of Ref. [2].

2. Review of the Calculus on the Quantum 3d Space

In this section we give some information on the differential calculus on the quantum 3d space [3] which
we shall use in order to establish our notions.

2.1. The algebra of polynomials on the quantum 3d space

The quantum three dimensional space is defined as an associative algebra generated by three noncom-
muting coordinates x , y and z with three quadratic relations:

xy = qyx, yz = qzy, xz = qzx, (1)

where q is a non-zero complex numbers. This associative algebra over the complex number is known as the

algebra of polynomials over the quantum 3d space and we shall denote it by R3
q . We define the extended

quantum 3d space to be the algebra that contains R3
q , the unit and x−1 , the inverse of x , which obeys

xx−1 = 1 = x−1x.

We denote the extended algebra by A . We know that the algebra A is a Hopf algebra [3].
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2.2. Differential algebra

A deformed differential calculus on the quantum 3d space is as follows [3]:

• the commutation relations with the coordinates of differentials

xdx = dxx, xdy = qdyx, xdz = qdzx,

ydx = q−1dxy, ydy = dyy, ydz = qdzy,

zdx = q−1dxz, zdy = q−1dyz, zdz = dzz; (2)

• the commutation relations between the differentials

dx ∧ dy = −qdy ∧ dx, dx ∧ dx = 0,

dx ∧ dz = −qdz ∧ dx, dy ∧ dy = 0,

dy ∧ dz = −qdz ∧ dy, dz ∧ dz = 0, (3)

• the relations of the coordinates with their partial derivatives

∂xx = 1 + x∂x, ∂xy = q−1y∂x, ∂xz = q−1z∂x,

∂yx = qx∂y, ∂yy = 1 + y∂y , ∂yz = q−1z∂y,

∂zx = qx∂z, ∂zy = qy∂z , ∂zz = 1 + z∂z; (4)

• the relations of partial derivatives

∂x∂y = q∂y∂x, ∂x∂z = q∂z∂x, ∂y∂z = q∂z∂y; (5)

• the relations between partial derivatives and differentials are found as

∂xdx = dx∂x, ∂xdy = q−1dy∂x, ∂xdz = q−1dz∂x,

∂ydx = qdx∂y, ∂ydy = dy∂y , ∂ydz = q−1dz∂y ,

∂zdx = qdx∂z, ∂zdy = qdy∂z , ∂zdz = dz∂z. (6)

These relations will be used in section 5.

3. Hopf Algebra Structure of Quantum Lie Algebra

In this short section we shall give the Hopf algebra structure of the Lie algebra generators. In Ref. [3],
the commutation rules of the quantum Lie algebra generators found as

[Tx, Ty] = 0, [Tx, Tz] = 0, [Ty , Tz] = 0. (7)
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The Hopf algebra structure of the Lie algebra generators is given by

Δ(Tx) = Tx ⊗ 1 + 1⊗ Tx,

Δ(Ty) = Ty ⊗ 1 + qTx ⊗ Ty,

Δ(Tz) = Tz ⊗ 1 + qTx ⊗ Tz, (8)

ε(Tx) = 0, ε(Ty) = 0, ε(Tz) = 0,

S(Tx) = −Tx, S(Ty) = −q−TxTy, S(Tz) = −q−TxTz .

We show in the next section that this Hopf algebra structure are consistent with the dual Hopf algebra structure.

4. The Dual of the Hopf Algebra A

In this section, in order to obtain the dual of the Hopf algebra A defined in section 2, we shall use the
method of Refs. [4] and [9].

As a Hopf algebra A is generated by the elements x , x−1 , y and z , and a basis is given by all monomials
of the form

f = xkylzm

where k, l, m ∈ Z+ . Let us denote the dual algebra by Uq and its generating elements by X , Y and Z .
The pairing is defined through the tangent vectors as

< X, f > = kδl,0δm,0,

< Y, f > = δl,1δm,0,

< Z, f > = δl,0δm,1. (9)

We also have
< 1U , f >= εA(f) = δk,0.

Using relations (9), one gets

< XY, f >= δl,1δm,0 and < Y X, f >= δl,1δm,0

where differentiation is from the right as this is most suitable for differentiation in this basis. Thus we obtain
one of the commutation relations in the algebra Uq dual to A as:

XY = Y X.

Similarly, one has
XZ = ZX, Y Z = ZY.

The Hopf algebra structure of this algebra can be deduced by using the duality. The coproduct of the elements
of the dual algebra is given by

ΔU(X) = X ⊗ 1U + 1U ⊗ X,

ΔU (Y ) = Y ⊗ q−X + 1U ⊗ Y,

ΔU (Z) = Z ⊗ q−X + 1U ⊗ Z.
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The counit is given by
εU (X) = 0, εU (Y ) = 0, εU(Z) = 0.

The coinverse is given as

SU (X) = −X, SU (Y ) = −Y qX , SU (Z) = −ZqX .

We can now transform this algebra to the form obtained in section 3 (eq. 8) by making the identities

Tx ≡ X, Ty ≡ qX/2Y qX/2, Tz ≡ qX/2ZqX/2,

which are consistent with the commutation relation and the Hopf structures.

5. Extended Calculus On The Quantum 3d Space

The Lie derivative is closely related to the exterior derivative. The exterior derivative and the Lie
derivative are set to cover the idea of a derivative in different ways. These differences can be hasped together
by introducing the idea of an antiderivation which is called an inner derivation.

5.1. Inner derivations

In order to obtain the commutation rules of the coordinates with inner derivations, we shall use the
approach of Ref. [2]. Similarly other relations can also obtain.

We now wish to find the commutation relations between the coordinates x , y , z and the inner derivations
associated with them. In order to obtain the commutation rules of the coordinates with inner derivations, we
shall assume that they are of the form

ixx = A1xix + A2yiy + A3ziz,

ixy = A4yix + A5xiy,

ixz = A6zix + A7xiz,

iyx = A8xiy + A9yix,

iyy = A10yiy + A11xix + A12ziz,

iyz = A13ziy + A14yiz,

izx = A15xiz + A16zix,

izy = A17yiz + A18ziy,

izz = A19ziz + A20xix + A21yiy. (10)

The coefficients Ak (1 ≤ k ≤ 21) will be determined in terms of the deformation parameter q . But the use of

the relations (1) does not give rise any solution in terms of the parameter q . However, we have, at least, the
system

A5(A1 − qA8) = 0, A2A11 − q2A5A9 = 0, A2A14 = 0,

A2(A10 − qA4) = 0, A3A20 − q2A7A16 = 0, A3A18 = 0, etc.
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To find the coefficients, we need the commutation relations of the inner derivations with the differentials of x ,
y and z . Since

iXi(dXj ) = δij ,

we can assume that the relations between the differentials and the inner derivations are of the form

ix ∧ dx = 1 + a1dx ∧ ix + a2dy ∧ iy + a3dz ∧ iz,

ix ∧ dy = a4dy ∧ ix + a5dx ∧ iy,

ix ∧ dz = a6dz ∧ ix + a7dx ∧ iz,

iy ∧ dx = a8dx ∧ iy + a9dy ∧ ix,

iy ∧ dy = 1 + a10dy ∧ iy + a11dx ∧ ix + a12dz ∧ iz,

iy ∧ dz = a13dz ∧ iy + a14dy ∧ iz ,

iz ∧ dx = a15dx ∧ iz + a16dz ∧ ix,

iz ∧ dy = a17dy ∧ iz + a18dz ∧ iy,

iz ∧ dz = 1 + a19dz ∧ iz + a20dx ∧ ix + a21dy ∧ iy. (11)

Applying ix , iy and iz to the relations (2), one gets

A1 = 1, A2 = 0, A3 = 0, A4 = q−1,

A5 = 0, A6 = q−1, A7 = 0, A8 = q,

A9 = 0, A10 = 1, A11 = 0, A12 = 0,

A13 = q−1, A14 = 0, A15 = q, A16 = 0,

A17 = q, A18 = 0, A19 = 1, A20 = 0, A21 = 0,

and

a3(qA1 − A15) = 0, A2a9 − a2A9 = 0, A2a12 = 0,

A3(a15 − qa1) = 0, A3a16 − a3A16 = 0, A3a18 = 0, etc.

To find the coefficients ak (1 ≤ k ≤ 21), we use the expression

ia ◦ d − F1d ◦ ia = ∂a, for a ∈ {x, y, z}.

For example, using the first relation in (10) with the relations (4), we obtain

F1 = −1, a1 = −1, a2 = 0 = a3.

Other coefficients can be similarly obtained. Consequently, we have the following commutation relations.

• The commutation relations of the inner derivations with x , y and z :

ixx = xix, ixy = q−1yix, ixz = q−1zix,

iyx = qxiy, iyy = yiy, iyz = q−1ziy,

izx = qxiz, izy = qyiz , izz = ziz. (12)

80
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• The commutation relations between the differentials and the inner derivations:

ix ∧ dx = 1 − dx ∧ ix, ix ∧ dy = −q−1dy ∧ ix,

iy ∧ dx = −qdx ∧ iy, iy ∧ dy = 1 − dy ∧ iy,

iz ∧ dx = −qdx ∧ iz, iz ∧ dy = −qdy ∧ iz,

ix ∧ dz = −q−1dz ∧ ix, iy ∧ dz = −q−1dz ∧ iy,

iz ∧ dz = 1 − dz ∧ iz. (13)

• The relations of the inner derivations with the partial derivatives ∂x , ∂y , ∂z :

ix∂x = ∂xix, ix∂y = q∂yix, ix∂z = q∂zix,

iy∂x = q−1∂xiy, iy∂y = ∂yiy, iy∂z = q∂z iy,

iz∂x = q−1∂xiz, iz∂y = q−1∂yiz, iz∂z = ∂ziz. (14)

5.2. Lie derivations

In this section we find the commutation rules of the Lie derivatives with functions, i.e. the elements of
the algebra A , their differentials, etc., using the approach of Ref. [2].

For a general differential form, the Lie derivative is given by the formula

Laα = iadα + d(iaα).

For example, if we apply this formula to the first relation in (12), using the relations (13) we get

Lxx = (ixd + dix)x

= 1 + xixd + xdix

= 1 + xLx.

Other relations can be similarly obtained. Consequently, we have the following commutation relations:

• The relations between the Lie derivatives and the elements of A :

Lxx = 1 + xLx, Lxy = q−1yLx, Lxz = q−1zLx,

Lyx = qxLy, Lyy = 1 + yLy, Lyz = q−1zLy,

Lzx = qxLz, Lzy = qyLz, Lzz = 1 + zLz. (15)

• The relations of the Lie derivatives with the differentials:

Lxdx = dxLx, Lxdy = q−1dyLx, Lxdz = q−1dzLx,

Lydx = qdxLy, Lydy = dyLy, Lydz = q−1dzLy ,

Lzdx = qdxLz, Lzdy = qdyLz , Lzdz = dzLz. (16)
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Other commutation relations can be similarly obtained. To complete the description of the above scheme,
we get below the remaining commutation relations as follows:

• The Lie derivatives and partial derivatives:

Lx∂x = ∂xLx, Lx∂y = q∂yLx, Lx∂z = q∂zLx,

Ly∂x = q−1∂xLy, Ly∂y = ∂yLy, Ly∂z = q∂zLy,

Lz∂x = q−1∂xLz, Lz∂y = q−1∂yLz, Lz∂z = ∂zLz. (17)

• The inner derivations:

ix ∧ iy = −qiy ∧ ix, ix ∧ ix = 0,

ix ∧ iz = −qiz ∧ ix, iy ∧ iy = 0,

iy ∧ iz = −qiz ∧ iy, iz ∧ iz = 0. (18)

• The Lie derivatives and the inner derivations:

Lxix = ixLx, Lxiy = qiyLx, Lxiz = qizLx,

Lyix = q−1ixLy, Lyiy = iyLy, Lyiz = qizLy,

Lzix = q−1ixLz, Lziy = q−1iyLz, Lziz = izLz. (19)

• The Lie derivatives:

LxLy = qLyLx, LxLz = qLzLx, LyLz = qLzLy. (20)

These commutation relations are the same with the relations (5).
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İstanbul-TURKEY

e-mail: ergyasmat@gmail.com

Received 13.02.2008

83


