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Strong Convergence Theorems by an Extragradient Method for
Solving Variational Inequalities and Equilibrium Problems in a
Hilbert Space*
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Abstract
In this paper, we introduce an iterative process for finding the common element of the set of fixed points
of a nonexpansive mapping, the set of solutions of an equilibrium problem and the set of solutions of the
variational inequality for monotone, Lipschitz-continuous mappings. The iterative process is based on the
so-called extragradient method. We show that the sequence converges strongly to a common element of the
above three sets under some parametric controlling conditions. This main theorem extends a recent result of
Yao, Liou and Yao [Y. Yao, Y. C. Liou and J.-C. Yao, “An Extragradient Method for Fixed Point Problems
and Variational Inequality Problems,” Journal of Inequalities and Applications Volume 2007, Article ID
38752, 12 pages doi:10.1155/2007/38752] and many others.
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1. Introduction

Let H be a real Hilbert space and let C' be a nonempty closed convex subset of H. Recall that a mapping

T of H into itself is called nonexpansive if ||[To — Ty|| < |z —y|| for all z,y € H. Let F be a bifunction of

C x C into R, where R is the set of real numbers. The equilibrium problem for F : C x C — R is to find
x € C such that

F(xz,y) >0 forally € C. (1.1)

The set of solutions of (1.1) is denoted by EP(F'). Given a mapping T : C — H, let F(z,y) = (Tx,y—x) for
all z,y € C'. Then z € EP(F) ifand only if (T'z,y—2z) >0 for all y € C, i.e., z is a solution of the variational

inequality. Numerous problems in physics, optimization, and economics reduce to find a solution of (1.1). In
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1997 Combettes and Hirstoaga [2] introduced an iterative scheme of finding the best approximation to initial
data when EP(F') is nonempty and proved a strong convergence theorem.

Let A: C — H be a mapping. The classical variational inequality, denoted by VI(A,C), is to find
x* € C such that (Axz*, v —2*) > 0 for all v € C. The variational inequality has been extensively studied in
the literature. See, e.g. [12, 15] and the references therein. A mapping A of C into H is called monotone if

(Au — Av,u —v) >0, (1.2)

for all u,v € C. A is called k-Lipschitz-continuous if there exists a positive constant k such that for all u,v € C
[[Au — Av|| < k|lu—1]. (1.3)

We denote by F'(S) the set of fixed points of S. For finding an element of F(S) NV I(A,C), Takahashi and

Toyoda [9] introduced the iterative scheme
Tnt1 = QnZn + (1 — an)SPo(zn — AAzy) (1.4)

forevery n =10,1,2, ..., where g = x € C, ,, is a sequence in (0, 1), and A, is a sequence in (0, 2a). Recently,
Nadezhkina and Takahashi [6] and Zeng and Yao [16] proposed some new iterative schemes for finding elements
in F(SYNVI(A,C).

The algorithm suggested by Takahashi and Toyoda [9] is based on two well-known types of methods,
namely, on the projection-type methods for solving variational inequality problems and so-called hybrid or
outer-approximation methods for solving fixed point problems. The idea of “hybrid” or “outer-approximation”
types of methods was originally introduced by Haugazeau in 1968; see [3] for more details.

In 1976, Korpelevich [4] introduced the following so-called extragradient method:
ro=z € C,
ZTn = Po(zn, — M Azxy), (1.5)

Tn+1 = Po(z, — A\ AZy)

for all n > 0, where X, € (0, %), C is a closed convex subset of R™ and A is a monotone and k-Lipschitz
continuous mapping of C in to R™ . He proved that if VI(C, A) is nonempty, then the sequences {z,} and
{Z,}, generated by (1.5), converge to the same point z € VI(C, A).

Motivated by the idea of Korpelevichs extragradient method Zeng and Yao [16] introduced a new
extragradient method for finding an element of F(S) N VI(C, A) and proved the following strong convergence

theorem.

Theorem 1.1 ([16, Theorem 3.1]) Let C' be a nonempty closed convex subset of a real Hilbert space H. Let
A be monotone and k -Lipschitz-continous mapping of C' into H. Let S be a nonexpansive mappings from C
into itself such that F(S)NVI(C, A) # 0. Let {z,} and {yn} be sequences in C defined as follows:

ro=z € C,
Yn = Po(zn — M Axy,), (1.6)

zZn = anxo + (1 — an)SPo(xn — AnAyn), Yn >0,
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where {\,} and {an} satisfy the conditions
(i) Mk C (0,1 —20) for some § € (0,1);

(ii) ay, C (0,1),5°7° ay = 00, limy o0 ay = 0,
Then the sequence {x,} and {yn} converges strongly to the same point Pps)nvi(c,a)To provied that

lim, o0 [|Tnt1 — xn|| = 0.

In 2007, Yao, Liou and Yao [14] introduced the following iterative scheme: Let C' be a closed convex subset
of real Hilbert space H. Let A be a monotone k-Lipschitz-continous mapping of C' into H and let S be a
nonexpansive mapping of C' into itself such that F(S) NVI(A,C) # 0. Suppose z1 = u € C and {z,}, {yn}

are given by

Tn+1 = QpU + ﬂnxn + 'YnSPC (xn - )\nAyn)u

where {an}, {6n}, {1} are three sequences in [0,1]. They proved that the sequence {z,} defined by (1.7)
converges strongly to common element of the set of fixed points of a nonexpansive mapping and the set of
solutions of the variational inequality for a monotone k-Lipschitz-continous mapping under some parameters

controlling conditions.

Recently, Takahashi and Takahashi [10] introduced an iterative scheme:

F(yn,u) + (U — Yn, Yn — Tp) > 0, Vu € C;

Tn

Tnt1 = anf(xn) + (1 —an)Tyn, n>1

for approximatiing a common element of the set of fixed points of a non-self nonexpansive mapping and the set

of solutions of the equilibrium problem and obtained a strong convergence theorem in a real Hilbert space.

In this paper, motivated and inspired by the above results, we introduce a new iterative scheme by the

extragradient method as follows: For 1 = u € C and {z,},{yn} and {u,} are given by

F(unuy)+%<y_unaun_xn>207 VyEC;
Tnt1 = QpU + Bnl'n + 'YnSPC(l'n - )\nAyn)u n>1,

for finding a common element of the set of fixed points of a nonexpansive mapping, the set of solutions of an
equilibrium problem, and the solution set of the variational inequality problem for a monotone k-Lipschitz-
continous mapping in a real Hilbert space. Moreover, we obtain a strong convergence theorem which is connected
with Yao, Liou and Yao’s result [14], Takahashi and Tada’s result [9] and Zeng and Yao’s result [16].
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2. Preliminaries

Let H be a real Hilbert space with norm || - || and inner product (-,-) and let C' be a closed convex
subset of H. Let H be a real Hilbert space. Then

lz =yl = llzl1* = llyll* - 2(e — y, ) (2.1)

and
Az 4+ (1= Nyll? = Mlz]|* + (1= V[lyl]> = A1 = N)[Jz — y]]? (2.2)

for all z,y € H and X € [0,1]. For every point & € H, there exists a unique nearest point in C', denoted by
Pcx, such that

|z — Pox|| < ||z —y|| forallye C.

Pc is called the metric projection of H onto C. It is well known that Pc is a nonexpansive mapping of H

onto C' and satisfies
(x —y, Pox — Pey) > ||Pox — Poyl|® (2.3)

for every z,y € H. Moreover, Pox is characterized by the following properties: Pox € C' and
(x — Pox,y — Pex) <0, (2.4)
lz = yl* = [lz — Peal* + |y — Pox|? (2.5)
for all x € H,y € C'. It is easy to see that the following is true:
ueVI(A,C) < u=Pc(u— Au), A > 0. (2.6)
We also have that, for all u,v € C and A > 0,

(I = XA)u — (I = XAl = [|(u—v) = A(Au — Av)|]?
= Jlu—2|* = 2\u — v, Au — Av) + \?|| Au — Av|?
< lu =) + A\ = 20) || Au — Av|)?. (2.7)
So, if A < 2q, then I — AA is a nonexpansive mapping from C to H.

The following lemmas will be useful for proving the convergence result of this paper.

Lemma 2.1 (See Osilike and Igbokwe [7].) Let (E,(.,.)) be an inner product space. Then for all z,y,z € E
and a, 3,7 € [0,1] with o+ S+ v =1, we have

law + By + v2ll* = alll* + Bllyl* + 2% — aplle = ylI* — arlle — 21 = Brlly — 2]1*.

Lemma 2.2 (See Suzuki [8]) Let {x,} and {y,} be bounded sequences in a Banach space X and let {5,} be
a sequence in [0,1] with 0 < liminf, . B, < limsup,,_ . Bn < 1. Suppose xp1 = (1 — Bn)yn + Bnn for

all integers n > 0 and limsup,, . (||yn+1 — Ynll = [[Zne1 — zal]) < 0. Then, lim,_.o ||yn — zn|| = 0.

88



KUMAM

Lemma 2.3 (Demiclosedness Principle; cf. Goebel and Kirk [5].) Let H be a Hilbert space, C a closed
convex subset of H, and T : C — C a nonezpansive mapping with F(T) # 0. If {x,} is a sequence in C
weakly converging to x € C and if {(I —T)xp} converges strongly to y, then (I —T)x =y.

Lemma 2.4 (See Xu [11]). Assume {a,} is a sequence of nonnegative real numbers such that
an+1 < (1 —ap)an +6,, n >0,
where {an} is a sequence in (0,1) and {6,} is a sequence in R such that:
(1) 3on=y on = 00,
(2) limsup,,__ i—z <0 or > 07 ]6n] < 0.
Then lim,, o a, = 0.

For solving the equilibrium problem for a bifunction F' : C x C' — R, let us assume that F satisfies

the following conditions:
Al) F(z,z)=0 for all z € C;
A2) F is monotone, i.e., F(z,y) + F(y,z) <0 forall z,y € C;

(A1)
(A2)
(A3) for each z,y,z € C, limy__,o F(tz+ (1 —t)z,y) < F(z,y);
(Ad)

A4) for each x € C,y— F(x,y) is convex and lower semicontinuous.
The following lemma appears implicitly in [1].

Lemma 2.5 (See Blum and Oettli [1]) Let C be a nonempty closed convex subset of H and let F' be a bifunction
of C x C into R satisfying (A1)-(A4). Let r >0 and x € H. Then, there exists z € C such that

1
Fz,y)+ -(y—z,z—z) >0 for ally € C.
T

The following lemma was also given in [2].

Lemma 2.6 (See Combettes and Hirstoaga [2].) Assume that F : C x C — R satisfies (A1)-(A4). For r >0
and x € H, define a mapping T, : H — C' as follows:

T.(x)={z€C: F(z,y)—i—%(y—z,z—x) >0,Vy e C}
for all z € H. Then, the following hold:
1. T, 1s single- valued;
2. T, is firmly nonexpansive, i.e., for any x,y € H, |Trx — Try||?> < (Trx — Ty, © — y);
3. F(T,) = EP(F);

4. EP(F) is closed and conver.
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3. Main Results

In this section, we introduce an iterative process by the extragradient method for finding a common
element of the set of fixed points of a nonexpansive mapping, the set of solutions of an equilibrium problem,
and the solution set of the variational inequality problem for a monotone k-Lipschitz-continous mapping in a
real Hilbert space. We prove that the iterative sequences converges strongly to a common element of the above

three sets.

Theorem 3.1 Let C be a closed convexr subset of a real Hilbert space H. Let F be a bifunction from
C x C — R satisfying (A1)-(A4) and let A be a monotone k-Lipschitz continuous mapping of C into
H and let S be a nonexpansive mapping of C into itself such that F(S)NVI(A,C)NEP(F) # 0. Suppose
z1=u€C and {zp}, {yn} and {u,} are given by

F(Umy)-i- ! <y_unuun_$n> >0, Yy € C;

Tn

Tn+1 = Rl + ﬂnxn + 'YnSPC(xn - )\nAyn)u

for all n € N, where {ay},{B,}, {7} are three sequences in [0,1], {\,} C [a,b] for some a,b € (0, 1) and
{rn} C (0,00) satisfying the following conditions:

(i) o+ Bt v =1,
(ii) limy, oo o = 0, D07 1 @y = 00,
(#5i) 0 <liminf, .o B, <limsup, . Gn <1,
(iv) Uminf, oo rn > 0,500 | |rpq1 — 7] < o0,
(v) limy, oo (Apt1 — An) = 0.

Then {x,} converges strongly to Pr(s)nvi(a,c)nEP(F)U-

Proof. For all x,y € C, we note that

(I = And)z — (I = XAyl = [z —y) = An(Az — Ay)|?
= |lo—yl* = 22z — y, Az — Ay) + A7 || Az — Ay]|?
< lz =yl + NPz = yl* = (1 A5K) [z — w1, (3.2)
which implies that
[ = AnA)z — (I = A A)yll < (14 Ank)llz =y (3.3)

Let z* € F(S)NVI(A,C)N EP(F), and let {T,,,} be a sequence of mappings defined as in Lemma 2.6 and
Up = T;. ©p. Then z* = Po(a* — N\, Az™) =T, z*. Put v, = Po(x, — A\ Ay, ). For any n € N, we get

[un — ™| = [T, wn = Tr 2™|| < [l — 27,
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From (2.5) and the monotonicity of 4, we have
lon = 2*[I* < llon = AnAyn = 2*[* = 20 — AnAyn — va®

lzn — x*HZ —lzn — UHHZ + 20 (AYn, u — )

||xn - x*HZ - ||xn - Un||2 + 2)‘n(<Ayn - A’U,,il'* - yn> + <A’U,,£C* - yn>) + <Aynuyn - Un>

IN

lzn — x*HZ —lzn — UHHZ + 220 (AYn; Yn — vn)

||xn - x*HZ - ||xn - yn||2 - 2(1'" —Yn>Yn — Un> - ||yn - Un||2 + 2)\n<Aynuyn - Un>

= lzn =2 = 20 = ynll® = g0 — vall® + 200 — XaAyn — Y, V0 — yn)-
Since A is k-Lipschitz-continuous, it follows that
(T, — A AYn — Yns Vo — Yn) = (T — MATn — Yny Un — Un) + A ATy — Ap AYn, Un — Yn)
< (ApAzy — A AYn, Un — Yn)
< Ankllzn = ynllllon = ynll-
Thus, we have

lon =21 < Nan =21 = Nz = yall® = g0 = vall* + 2Xakllzn = yalllvn — yal

IN

lon = "I = llzn = ynll* = lyn = vall* + MK (120 = yul® + v = yall?)
lzn = 2[* + A0k = Dllen = yall* + (0K = Dllyn — val? (3-4)

s

Then, we have also

[ns1 =2 = llanu+ Bazn + ynSvn — 27|
< amllu =27 4 Bullzn — 27 4+ mllon — 27|
< amllu =2+ Bullwn — 2" + mllen — 27|
< amflu— 2|+ (1 = an)llen — 27|
< max{|lu— 7, [0 — 2"}

Therefore {x,} is bounded. Consequently, the sets {u,} and {v,} are also bounded. Moreover, we

observe that

||Un+1 - Un” = HPC(xn-i-l - )‘n-i-lAyn-i-l) - PC(xn - )‘nAyn)H

IN

[(Zn+1 — Ant1AYn+1) — (20 — AnAyn) ||

[(@nt1 = 2n) = Ans1(AYni1 — Ayn) — Ant1 — An) Ayal|

[#n41 = Znll + Ang1kllyns1 = ynll + [Ant1 = An[| Ayl

[#n41 = Znll + Angakllunts — unll + [Anga = Anll|Ayn]- (3.5)

IN

IN

On the other hand, from u, =T}, 2, and u,11 =T, Tny1, we have

1
F(un,y) + —(y — tn,un — x,) >0 foralyeC (3.6)

T'n
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and

Funt1,y) + (Y — Up+1, Unt1 — Tny1) > 0 for all y € C. (3.7)

Tn+1

Putting y = up41 in (3.6) and y = u,, in (3.7), we obtain

1
F(unuun—i-l) + _<un+1 — Un, Un — xn> 2 0
Tn

and

1

F(un—i-lu un) + —<un — Un+1, Un+1 — xn—i—l) > 0.
Tn+1

It follows from (A2) that

Up — T u —x

<Un+1 — Uy, n no_ n+1 n+1> 2 0
Tn Tn+1
and hence
Tn

<un+1 — Un, Up — Un+1 + Un+1 — Tn — (un—i-l - xn+1)> > 0.

Tn+1

Since liminf, ., r, > 0, without loss of generality, let us assume that there exists a real number ¢ such that
rn > c¢ > 0 for all n € N. Then, we have

r
||un+1 - un”2 S <un+1 — Un, Tn+l — Tn + (1 - = )(Un+1 — $n+1)>
Tn+1
r
< unsr = wnll{llznt1 = zoll + 11 = ——=[llun+1 — zpt1ll}
Tn+1
and hence
||un+1 - un” < Hxn-i-l - xn” + |Tn+1 - Tn|||un+1 - xn—i—l”
Tn+1
L
< Hxn—i-l - xn” + ern—i-l - Tnlu (38)

where L = sup{||u, — 2| : n € N}. Substituting (3.8) into (3.5), we have

L
[vnt1 = vnll < [[Znt1 = 2nll + EAnpa {21 — 20l + ern-i-l = 7al} + A = A1l Ayal|
L
< T+ k) [Tt — zall + k)‘n-i-lzlrn-i-l — 7| + [An — Anta] | Aynl|- (3.9)
Let zp41 = (1 — Bn)zn + Bnxn. Thus, we get

o Ln+1 — ﬂnxn QU + ’YnSPC (xn - )\nAyn) QU + ’YnS’Un

- 1_611 1_611 B 1_611
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and hence we have

Q1 + Yngp1SVng1 aptt + vSv,

Znal — Zn = —
+ 1- ﬂn-i-l 1- Bn
U + Ynf1SUng1 M1l + Yng1SUn | M1l + Yng1SUn AU + 1nSun
1= Bnt1 1= Bn1 1—Bni1 1- 8,
On41 Qp Tn+1 Tn+1 Tn
= - u+ Svpt1 — Svy,) + - Svp,. 3.10
(1—6n+1 1—6n) 1—ﬁn+1( + ) (1—6n+1 1—6n) (3.10)
Combining (3.9) and (3.10), we obtain
Ont1 Qnp Tn+1
Zn+l — Zn|| — [|[Tnt1l — Xn|| < — wul| + Up41 — Un
s = zall = homsa =oall < 172 — 22+ T2 g = v
Tn+1 Tn
+ - Svnl|l — |Tne1 — zn
2 — St fonss =
Qpt1 (7% Yn+1
< — ul|| + 14+ Ap1k)||xner — xpn
T = Sl 12 (1 A — ]
Yn+1 L Yn+1
+7_)\n+1k|7an+1 - Tnl + 7|)‘n - )‘n+1|HAynH
(1= Bpt1) c 1 — Bt
Tn+1 Tn
+ - Svnl|l — |zne1 — zn
T2 = 210 = s =l
< ROy |, ) SR O
1=Bnt1 1-0, 1= Bn1
Tn+1 L
+7+{)‘n+1k_|7an+1 = 7| 4+ [An = Ansa| [ Ayl }-
1= B c
This together with (ii), (iv) and (v) imply that
lim sup(|[2n+1 — 2ull = |Tn4+1 — 20 ) < 0.
Hence, by Lemma 2.2, we have
lim ||z, — .|| = 0. (3.11)
Consequently,
lim |[zp41 — 2s|| = lim (1= 8n)|zn — 2a| = 0. (3.12)

From (iv), (v), (3.5) and (3.8), we also have ||[vp+1 — vn|| — O, ||ttn+1 — unl| — 0 and ||yn+1 — ynl| — O as

n — 00. Since
Tngl — Tn = QpU + Bnn + Y Stn — Tn = (U — ) + 1 (Svn — 24),
it follows by (ii) and (3.12) that

lim ||, — Sv,| = 0. (3.13)

n—oo
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We note that

[yn —vnll < [[Po(un — AnAun) = Po(zn — AnAyn)|
< (un = AnAug) = (20 = An Ayn)|
< un = @nll + Anf[Aun — Ayn|
< un = @nll + Ankllun = yall
< lun = @],

since A, < 1, hence we also have
||yn _Un||2 S ||un _J;nHZ- (314)

From this and by (3.4) and (3.14) we obtain when n > N that

IN

lzn =22 + 0k = Dllen = yal® + (0K = Dllyn — va?
lwn = 2|2 + A0k = Dllyn — val®

lvn — 2|

IN

< ln =272+ 0K = Dl|un — 2.

So, from this, we get

lzn1 = 2" = llanu + Batn + Svn — " [* < anllu — 2| + Bullon — 27|12 + n | Svn — 2™
< anllu— 2P+ Ballzn — 27| + yallvn — 27|
< omllu— 2 + Bullan — &1+ {llen — 21+ AGE = Dllun — zal*}
= anllu—a"P + 1 - an)llon — 2|7 + W0k = Dlun — 20
< ol =2+ e — 2|+ (G = Dljun — @,

it follows that

(1- )‘ikz)nxn - unHZ

IN

anllu—a*|* + ||lon — 2% = lwns — 2"

IN

anllu =22 + |[2ns1 = @l (Jon — 27| = 2nes — 2*).

Since a, — 0, {A\n} C [a,b] C (0, #) and ||2p4+1 — @] — 0, imply that

lim ||z, —u,|| = 0. (3.15)
Since liminf, . 7, > 0, we get
tim 22 = fim e, — g = 0 (3.16)
im ||——| = lim —|z, —un| =0. )
n—soo Tn n—so00 T,
By (3.4), we note that
o — &1 < Jlan — 2|12 + (AZK® = D)]|zn — ynl*. (3.17)
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Thus, from Lemma 2.1 and (3.17), we get

[2n41 =[P < anllu—2|® + Ballzn — 2*||* + 7a | Svn — 2*||
< apllu— x*HZ + Bnllzn — x*HZ + Ynllvn — x*HZ
< apllu = 2P + Ballzn — 27 + y{llen — %2+ A0E2 = Dllzn — ynl*}
< anllu =P+ flan =2+ (OGE = 1)z, — yall®.
(3.18)
Therefore, we have
(L= Ak) 20 —yall? < anllu—2*|* + zn — %] = 201 — 2"
= apllu—a2*|* + |Zns1 = 2l (|2 — 2| + 201 — 7). (3.19)
Since ay, — 0 and ||, — Zp41]] — 0 as n — oo, we obtain
lim ||z, —yn| = 0. (3.20)
We note that
lvn —ynll = [[Pe(@n — AAyn) — Po(un — A Auy)||
< @ = AnAyn) = (un — AnAuy)||
< @n = unll + AnllAun) — Ay, ||
< an = unll + Ankllun — ynl|
< len = unll + Ank{llun — 2nll + [lzn — yall}
< (L4 Mk)lJun — @pll + Akl @n — yn|
since (3.15) and (3.20), we have
lim ||vp, —ynl| =0. (3.21)
Since
[Svn = vall < 1Svn = @nll + 20 = ynll + 1y — vall,
and hence
lim ||Sv, —v,| = 0. (3.22)

Next, we show that

lim sup(u — 2o, &, — 20) < 0,

n—oo

where 20 = Pp(s)nvia,c)nepr)(u). To show this inequality, we choose a subsequence {v,,} of {v,} such that

lim sup(u — zp, Svn, — 20) = lim (u — 2o, Svp, — 20).

n—00 100
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Since {v,,} is bounded, there exists a subsequence {vnij} of {vn,} which converges weakly to z. Without

loss of generality, we can assume that v,, — z. From ||Sv, —v,|| — 0, we obtain Sv,, — z. Let us show
z € EP(F). Since up, =Ty, x,, we have

1
F(unuy)+ T_<y_unuun _xn> 2 07Vy€ C

n

From (A2), we also have

1

— (Y — Un, Up, — Tpn) > F(y, un)

Tn
and hence

Up, — T,
<y = Uny, M> 2 F(yvunz)
n;

From [up — &n| — 0, |lzn — Sva|| — 0, and [|Sv, — vn| — 0, we get u,, = z. Since =" — 0, it

ng

follows by (A4) that 0 > F(y, z) for all y € C. For ¢ with 0 <t <1 and y € C, let y; =ty + (1 —t)z. Since
y € C and z € C, we have y, € C' and hence F(y;,z) <0. So, from (Al) and (A4) we have

0= F(yt,yt) <tF(yr,y) + (1 =) F(yr, 2) < tF (Y, y)

and hence 0 < F(y,y). From (A3), we have 0 < F(z,y) for all y € C' and hence z € EP(F). By the opial’s
condition, we obtain z € F(S). Finally, by the same argument as that in the proof of [9, Theorem 3.1, p.
197-198] , we can show that z € VI(A,C). Hence z € F(S)NVI(A,C)NEP(F).

Now from (2.4), we have

limsup(u — 2o, &, — 20) = limsup(u — 29, Sv, — 20) = lm (u — 2o, Svp, — 20)
n—-s00 n—s00 71— 00
= (u—2,2—20) <0. (3.23)
Therefore,
[#ns1 —20[* = (@t Bun + Y0 Svn — 20, Tn1 — 20)

= ap(t— 20, Tnt1 — 20) + BnlTn — 20, Tng1 — 20) + T (Svn — 20, Tnt1 — 20)

< gBallan = 20l + a1 = 20l) + nls = 20, 2011 = 20) + 390100 = 20l* + fomsr = 20l
< 5Balon = 20l + s = 20l) + anu = 20, ns1 = 20) + 5 (on = 20l + s = 2o1)
= 51— an)(llzn = 20l + fonsa — 20l) + anfs = 20,7041 — 20)
< {0 = an)llen = 20l + enss = oI} + @l = 20, 2041 — 20)

which implies that

241 = 20l < (1 = an)llen = 20]1* + 200 (u = 20, Tnt1 — 20)-
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Finally by (3.23) and Lemma 2.4, we get that {z,} converges to 2o, where 20 = Pr(s)nvi(a,c)nepr)(w). This
completes the proof. O

Using Theorem 3.1, we can prove the following result.

Theorem 3.2 (Yao Liou and Yao [14, Theorem 3.1]) Let C be a closed convex subset of a real Hilbert space

H. Let A be a monotone k-Lipschitz-continuous mapping of C' into H and let S be a nonexpansive mapping
of C into itself such that F(S)NVI(A,C) # 0. For fixed w € H and give xo € H arbitrary, let the sequence
{zn},{yn} be generated by

Tn+1 = QU + ﬂnxn + 'YnSPC (xn - )\nAyn)u

where {an}, {Bn}, {1} are three sequences in [0,1] and {\,} is a sequence in [0,+]. If {on}, {Bn}, {7} and
{A\n} are chosen so that A, € [a,b] for some a,b with 0 <a<b< 4+ and

(1) an+Pnt+rm=1,

(ii) limy, oo o = 0, D07 1 @y = 00,
(#5i) 0 <liminf, .o B, <limsup, . Gn <1,
(iv) limy, oo (Apt1 — An) =0,

then {x,} converges strongly to Pr(s)nvi(a,c)To-

Proof. Put F(x,y) =0 for all z,y € C and r, =1 for all n € N in Theorem 3.1 .
Then, we have u,, = Poxy, = &, . So, from Theorem 3.1 the sequence {z,} generated in Theorem 3.2 converges

strongly to Pr(s)nvi(a,c)u- )

Remark 3.3 In Theorem 3.2, we also obtain Yao et al.’s theorem [14].
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