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Abstract

Let R be an α-rigid ring and R0[[x; α]] be the nearring of a formal skew power

series in which addition and substitution are used as operations. It is shown that R

is Rickart and any countable family of idempotents of R has a join in I(R) if and

only if R0[[x;α]] ∈ Rr1 if and only if R0[[x;α]] ∈ R�1 if and only if R0[[x;α]] ∈ qRr2.

An example to show that, α-rigid condition on R is not superfluous, is provided.
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1. Introduction

Throughout this paper all rings are associative with unity and all nearrings are left
nearrings. We use R and N to denote a ring and a nearring respectively. Recall from [15]
that ring R is Baer if R has unity and the right annihilator of every nonempty subset
of R is generated, as a right ideal, by an idempotent. Kaplansky [15] shows that the
definition of Baer ring is left-right symmetric. A generalization of Baer rings is a Rickart
ring. A ring R is called right (resp. left) Rickart if the right (resp. left) annihilator of an
element of R is generated by an idempotent. R is called a Rickart ring if it is both right
and left Rickart ring. Note that for a reduced ring R, the concept of right Rickart and
left Rickart are equivalent. The class of Baer rings includes all right Noetherian Rickart
rings and all von Neumann regular rings. In 1974, Armendariz obtained the following
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result [2, Theorem B]: Let R be a reduced ring. Then R[x] is a Baer ring if and only if
R is a Baer ring. Recall a ring or a nearring is said to be reduced if it has no nonzero
nilpotent elements. A generalization of Armendariz’s result for several types of polyno-
mials extensions over Baer rings, are obtained by various authors, [2], [4], [12] and [22].
According to Krempa [17], an endomorphism α of a ring R is said to be rigid if aα(a) = 0
implies a = 0 for a ∈ R. Note that any rigid endomorphism of a ring is a monomorphism
and α-rigid rings are reduced, by Hong et al. [12]. Properties of α-rigid rings has been
studied in [10], [12–13], [17] and [21].

Birkenmeier and Huang in [5], have defined the Rickart-type annihilator conditions in
the class of nearring as follows (for a nonempty S ⊆ N , let rN(S) = {a ∈ N |Sa = 0}
and �N (S) = {a ∈ N | aS = 0}). For every singleton subset S of N :

(1) N ∈ Rr1 if rN(S) = eN for some idempotent e ∈ N ;
(2) N ∈ Rr2 if rN(S) = rN(e) for some idempotent e ∈ N ;
(3) N ∈ R�1 if �N (S) = Ne for some idempotent e ∈ N ;
(4) N ∈ R�2 if �N (S) = �N (e) for some idempotent e ∈ N .
When S is a principally generated ideal, the quasi-Rickart annihilator conditions in

the class of nearrings are also defined and denoted similarly except replacing R by qR. If
N is a ring with unity then N ∈ Rr1 (resp. R�1) is equivalent to N being a right (resp.
left) Rickart ring. In [3, p. 28], the Rr2 condition is considered for rings with involution.
They studied Baer-type annihilator conditions in the class of nearrings. In particular,
they studied Baer-type annihilator conditions on the nearring of polynomials R[x] (with
the operations of addition and substitution) and formal power series and obtaining the
following results: Let R be a reduced ring. (1) If R is Baer, then R0[x] (resp. R0[[x]])
satisfies all the Baer-type annihilator conditions. (2) If R0[x] (resp. R0[[x]]) satisfies any
one of the Baer-type annihilator conditions, then R is Baer.

In [8] Fraser and Nicholson studied the formal power series extensions over a reduced
Rickart ring. Also in [19], Liu studied the formal power series extensions over a principally
quasi-Baer ring. Thus, it is natural to ask: What can be said about various Rickart-typ an-
nihilator conditions for skew formal power series under addition and substitution, where
α is a endomorphism of R ? We use (x)f to denote the formal power series

∑∞
i=1 fix

i,
where fi ∈ R for each i, and (x)f ◦ (x)g indicates the substitution of (x)f into (x)g. Let
(x)f =

∑∞
i=1 aix

i and (x)g =
∑∞

j=1 bjx
j . Then

(x)f ◦ (x)g = ((x)f)g = b1(x)f + b2((x)f)2 + b3((x)f)3 + · · ·
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= b1a1x + (b1a2 + b2a1α(a1))x2 +
+ (b1a3 + b2a1α(a2) + b2a2α

2(a1) + b3a1α(a1)α2(a1))x3 · · · .
We denote the collection of all power series with positive orders using the opera-

tions of addition and substitution by R0[[x; α]], unless specifically indicated otherwise
(i.e., R0[[x; α]] denotes (R0[[x; α]],+, ◦)). Observe that the system (R0[[x; α]],+, ◦) is a
0-symmetric left nearring, since, the operation “◦”, left distributes but does not right
distribute over addition. Thus (R0[[x; α]],+,◦) forms a left nearring but not a ring. We
denote the set of all idempotents of R by I(R).

In this paper for an α-rigid ring R, we show that R is Rickart and any countable
family of idempotents of R has a join in I(R) if and only if R0[[x; α]] ∈ Rr1 if and only
if R0[[x; α]] ∈ R�1 if and only if R0[[x; α]] ∈ qRr2. An example to show that α-rigid
condition on R is not superfluous is provided.

As a consequence, for a reduced ring R, we show that R is Rickart and any countable
family of idempotents of R has a join in I(R) if and only if R0[[x]] ∈ Rr1 if and only if
R0[[x]] ∈ R�1 if and only if R0[[x]] ∈ qRr2 .

2. Nearrings of skew formal power series

Definition 2.1 (Krempa [17]) Let α be an endomorphism of R. α is called a rigid
endomorphism if aα(a) = 0 implies a = 0 for a ∈ R. A ring R is called to be α-rigid if
there exists a rigid endomorphism α of R.

Clearly, any rigid endomorphism is a monomorphism. Note that α-rigid rings are
reduced rings. In fact, if R is an α-rigid ring and a2 = 0 for a ∈ R, then aα(a)α(aα(a)) =
0. Thus aα(a) = 0 and so a = 0. Therefore R is reduced. But there exists an
endomorphism of a reduced ring which is not a rigid endomorphism (see [12, Example
8]). However, if α is an inner automorphism (i.e., there exists an invertible element u ∈ R

such that α(r) = u−1ru for any r ∈ R) of a reduced ring R, then R is α-rigid.

Lemma 2.2 (Hong et al. [12]) Let R be an α-rigid ring and a, b ∈ R. Then we have the
following:

1. If ab = 0 then aαn(b) = αn(a)b = 0 for each positive integer n.

2. If aαk(b) = 0 = αk(a)b for some positive integer k, then ab = 0.
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3. If e2 = e ∈ R, then α(e) = e.

A nearring N is said to have the insertion of factors property (IFP) if for all a, b, n ∈ N ,
ab = 0 implies anb = 0.

In the sequel, R0[[x; α]] denotes the nearring of skew formal power series
(R0[[x; α]],+, ◦) with positive orders and the operations of addition and substitution.

Proposition 2.3 Let R be an α-rigid ring and R0[[x; α]] be the 0-symmetric left nearring
of skew power series with coefficients in R. Then R0[[x; α]] is reduced.

Proof. Assume to the contrary that R0[[x; α]] is not reduced. Then there exists
(x)f =

∑∞
i=n aix

i ∈ R0[[x; α]] such that (x)f ◦ (x)f = 0, n ≥ 1, an �= 0. Then
a2

nαn(an) · · ·αn(n−1)(an) = 0 and hence an = 0, by Lemma 2.2, which is a contradic-
tion. Therefore R0[[x; α]] is reduced. �

Lemma 2.4 Let R be an α-rigid ring and (x)f =
∑∞

i=1 aix
i, (x)g =

∑∞
i=1 bix

i ∈
R0[[x; α]]. Then (x)f ◦ (x)g = 0 if and only if biaj = 0 = ajbi for all i, j ≥ 1.

Proof. Since (x)f ◦ (x)g = 0, we have

b1(x)f + b2((x)f)2 + b3((x)f)3 + · · · = 0. (1)

Then b1a1 = a1b1 = 0, since the coefficient of x is b1a1 and R is reduced. Multiplying a1

to eq. (1) from the left-hand side, then we have

a1b2((x)f)2 + a1b3((x)f)3 + · · · = 0. (2)

Hence a1b2a1α(a1) = 0, since it is coefficient of x2 in eq. (2) and by Lemma 2.2,
a1b2 = 0. Inductively, we have a1bi = bia1 = 0 for all i ≥ 1. Hence eq. (1) be-
comes (

∑∞
i=2 aix

i) ◦ (
∑∞

i=1 bix
i) = 0, since R satisfies the IFP property. Continuing this

process, we can prove ajbi = 0 for all i, j ≥ 1.
Since R satisfies the IFP property, the converse follows from Lemma 2.2. �

Lemma 2.5 Let R be a ring and α be an endomorphism of R. If (x)E =
∑∞

i=1 eix
i ∈

R0[[x; α]] is an idempotent, then e2
1 = e1. If R is α-rigid, then (x)E = e1x.
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Proof. Clearly, e2
1 = e1. Since (x)E ◦(x)E = (x)E, we have e1(x)E+e2((x)E)2+· · · =

(x)E and that e1e1(x)E + e1e2((x)E)2 + · · · = e1(x)E. Hence (x)E ◦ (e1(x)E − e1x) =
(x)E ◦ (e1e2x

2 + e1e3x
3 + · · · ) = 0. Thus e1ei = eie1 = 0 for all i ≥ 2, by Lemma 2.4.

Again, (x)E ◦(e2(x)E−e2x) = (x)E ◦(−e2x+e2e2x
2 + · · · ) = 0. Thus e3

2 = 0, by Lemma
2.4 and that e2 = 0. Repeating the same procedure yields (x)E ◦(−eix+eie2x

2+ · · · ) = 0
for all i ≥ 2. Our conclusion then follows from Lemma 2.4. �

Let I(R) be the set of all idempotents of R.

Definition 2.6 Let {e1, e2, · · · } be a countable family of idempotents of R. We say
{e1, e2, · · ·} has a join in I(R) if there exists an e ∈ I(R) such that

1. ei(1 − e) = 0, for all i and

2. if f ∈ I(R) is such that ei(1 − f) = 0, for all i, then e(1 − f) = 0.

Theorem 2.7 Let R be an α-rigid ring. Then the following conditions are equivalent:

1. R is Rickart and any countable family of idempotents of R has a join in I(R);

2. S = R0[[x; α]] ∈ Rr1;

3. (R[[x; α]], +, .) is a Rickart ring;

4. S = R0[[x; α]] ∈ R�1;

5. S = R0[[x; α]] ∈ qRr2.

Proof. 2.⇒1. Let R0[[x; α]] ∈ Rr1 and a ∈ R. Then rS(ax) = ex ◦ S for some idem-
potent e ∈ R, by Lemma 2.5. Hence for each r ∈ R, erax = ax ◦ (ex ◦ rx) = 0, since e is
a central element. Thus eR = Re ⊆ �R(a). Now let r ∈ �R(a). Then ax ◦ rx = rax = 0
and that rx = ex ◦ rx. Hence r = re ∈ Re. Consequently �R(a) = Re. Therefore R is
a Rickart ring. Suppose that {e1, e2, · · · } is a countable family of idempotents of R. Set
(x)φ =

∑∞
i=1 eix

i ∈ S. Since S ∈ Rr1, rS((x)φ) = ex ◦S for some idempotent e ∈ R. Let
g = 1 − e. Then ei(1 − g) = eie = 0 for each i, since e is a central idempotent. Suppose
that h is an idempotent of R such that ei(1 − h) = 0 for each i. Then (1 − h)ei = 0 and
that (x)φ◦(1−h)x = 0. Thus (1−h)x ∈ rS((x)φ) = ex◦S, and so (1−h)x = ex◦(1−h)x.
Hence 1 − h = (1 − h)e and that g(1 − h) = (1 − e)(1 − h) = 0. Therefore g is a join of
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the set {e1, e2, · · · }.
1.⇒2. Let (x)f =

∑∞
i=1 aix

i ∈ S. Then �R(ai) = Rei for each i, where e2
i = ei ∈ R.

Suppose that h be a join of the set {1 − ei|i = 1, 2, · · ·}. Then (1 − h)(1 − ei) =
(1−ei)(1−h) = 0 for each i. Hence (1−h) = (1−h)ei and that (x)f ◦ (1−h)x = 0. Thus
(1−h)x◦S ⊆ rS((x)f). Let (x)g =

∑∞
j=1 bjx

j ∈ rS((x)f). Then aibj = bjai = 0 for each
i, j, by Lemma 2.4. Hence bj = bjei for each i, j and so bj(1− ei) = (1− ei)bj = 0. Since
R is a Rickart ring, �R(bj) = Rfj for some idempotent fj ∈ R. Thus (1− ei) = (1− ei)fj

and so (1−ei)(1−fj) = 0 for each i, j. Since h is a join of the set {1−ei|i = 1, 2, · · ·}, so
h(1−fj) = 0 for all j. Hence bj = bj−fjbj = (1−fj)bj = (1−h)(1−fj)bj ∈ (1−h)R. Thus
(x)g =

∑∞
j=1(1−h)(1−fj )bjx

j = (1−h)x◦
∑∞

j=1(1−fj)bjx
j ∈ (1−h)x◦S, since (1−h)

is a central idempotent and α(1 − h) = (1 − h). Consequently rS((x)f) = (1 − h)x ◦ S.
Therefore R0[[x; α]] ∈ Rr1.

The equivalence of 1. and 3. follows from [10, Theorem 2.5] and proof of 1.⇔4. is
similar to that of 1.⇔2.

1.⇒5. Let (x)f =
∑∞

i=1 aix
i ∈ R0[[x; α]] and I the ideal of R0[[x; α]] generated by

(x)f . Since R is Rickart, rR(ai) = �R(ai) = eiR, for some central idempotent ei ∈ R.
Suppose that h is a join of the set {1 − ei|i = 1, · · ·}. Then (1 − ei)(1 − h) = 0, hence
air(1 − h) = airei(1 − h) = 0 for each i ≥ 1 and r ∈ R. Hence (1 − h)x ∈ rS(I).
But rS(hx) = (1 − h)x ◦ S. Thus rS(hx) ⊆ rS(I). Let (x)g =

∑∞
j=1 bjx

j ∈ rS(I).
Then (x)f ◦ (x)g = 0 and that aibj = bjai = 0 for each i, j, by Lemma 2.4. Hence
bj = eibj for each i, j. Since R is Rickart, rR(bj) = fjR for each j, where fj is a
central idempotent of R. Thus (1 − ei) ∈ rR(bj) = fjR and so (1 − ei) = fj(1 − ei)
for each i, j. Since h is a join of {1 − ei|i = 1, · · ·}, h(1 − fj) = 0 for each j. Hence
bj = bj − bjfj = (1 − fj)bj = (1 − h)(1 − fj)bj ∈ (1 − h)R. So (x)g ∈ (1 − h)x ◦ S.
Consequently rS(I) = rS(hx). Therefore S ∈ qRr2.

5.⇒1. Let a ∈ R and I be an ideal of S generated by ax. Since S ∈ qRr2, rS(I) =
rS(ex) for some idempotent e ∈ R, by Lemma 2.5. We show rR(a) = rR(e) = (1 − e)R.
Since ex◦(1−e)x = 0 so ax◦(1−e)x = 0 and that (1−e)a = 0. Hence rR(e) ⊆ rR(a). Sup-
pose that t ∈ rR(a). Then tx ∈ rS(I), since R is α-rigid. Hence ex◦tx = 0. Consequently
rR(a) = rR(e) = (1 − e)R. Therefore R is Rickart. Suppose that {f1, f2, · · ·} is a count-
able family of idempotents of R. Set (x)φ =

∑∞
i=1 fix

i and J be an ideal of S generated by
(x)φ. Then rS(I) = rS(ex) for some idempotent e ∈ R, since S ∈ qRr2. We show that e is
a join of {f1, f2, · · · }. Since rS(ex) = (1−e)x◦S, so (x)φ◦(1−e)x =

∑∞
i=1(1−e)fix

i = 0.
Then fi(1 − e) = (1 − e)fi = 0 for each i. Suppose that h is an idempotent of R such
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that fi(1 − h) = 0 for each i. Hence (1 − h)x ∈ rS(I) = rS(ex), by Lemma 2.2. Thus
ex◦(1−h)x = 0 and that (1−h)e = e(1−h) = 0. Consequently e is a join of {f1, f2, · · · }. �

The following examples show that there exists a Rickart ring R such that nearring
R0[[x; α]] /∈ Rr1 by using Theorem 2.7.

Example 2.8 (19, Example 6). Let W be an infinite set and B the Boolean ring of all
subsets of W . Set R is the subring of B consisting of all finite and cofinite subsets of W .
Then R is a commutative reduced Rickart ring, by [20, Example 3.7]. But R fails to have
the property that all countable family of idempotents have a join in R. Let α : R → R be
the identity map. Thus by Theorem 2.7, nearring R0[[x; α]] /∈ Rr1.

Example 2.9 For a given field F , let

R = {(an)∞n=1 ∈ Π∞
n=1Fn | an is eventually constant}

which is a subring of Π∞
n=1Fn, where Fn = F for n = 1, 2, ... . Then the ring R is a

commutative von Neumann regular ring and hence it is Rickart. Let α be the identity
map on R. Then R is α-rigid. Thus by Theorem 2.7, nearring R0[[x; α]] /∈ Rr1.

Corollary 2.10 Let R be a reduced ring. Then the following conditions are equivalent:

1. R is Rickart and any countable family of idempotents of R has a join in I(R);

2. S = R0[[x]] ∈ Rr1;

3. (R0[[x]], +, .) is a Rickart ring;

4. S = R0[[x]] ∈ R�1;

5. S = R0[[x]] ∈ qRr2.

The following example shows that the condition “R is α-rigid” in Theorem 2.7 is not
superfluous.

Example 2.11 Let F be a field and consider the polynomial ring R = F [y] over F . Then
R is a commutative domain and so R is Rickart. Since 0 and 1 are the only idempotents
of R, so each countable family of idempotents of R has a join. Let α : R → R be
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an endomorphism defined by α(f(y)) = f(0). Then the nearring ring R0[[x; α]] is not
reduced. In fact, for 0 �= yx2 ∈ R0[[x; α]], we have yx2 ◦ yx2 = y2α2(y)x4 = 0. So
R0[[x; α]] is not reduced. We claim that the only idempotents of R0[[x; α]] are 0 and
x. Let e = a1(y)x + a2(y)x2 + · · · ∈ R0[[x; α]] be a nonzero idempotent. Then (a1(y)x +
a2(y)x2+· · · )◦(a1(y)x+a2(y)x2+· · · ) = (a1(y)x+a2(y)x2+· · · ) and that a1(y)(a1(y)x+
a2(y)x2 + · · · ) + a2(y)(a1(y)x + a2(y)x2 + · · · )2 + · · · = (a1(y)x + a2(y)x2 + · · · ). So
a2
1(y) = a1(y). Since R is a domain, a1(y) = 0 or a1(y) = 1. Assume that a1(y) = 1.

Since (a1(y)a2(y) + a2(y)a1(y)α(a1(y)))x2 = a2(y)x2, hence a2(y) + a2(y) = a2(y) and
that a2(y) = 0. Since (a1(y)a3(y) + a3(y)a1(y)α(a1(y))α2(a1(y)))x3 = a3(y)x3 and
α(a1(y)) = a1(y) = 1, hence a3(y) = 0. Continuing this process, we have e = a1(y)x = x.
If a1(y) = 0, then it is clear that e = 0. Therefore the only idempotents of R0[[x; α]] are
0 and x. Now we show that R0[[x; α]] /∈ Rr1. Note that rR0[[x;α]](yx) �= R0[[x; α]], since
nearrring R0[[x; α]] has unity. Thus rR0[[x;α]](yx) �= rR0[[x;α]](0) = x ◦ R0[[x; α]]. Since
yx ◦ x2 = yα(y)x2 = 0, hence rR0[[x;α]](yx) �= rR0[[x;α]](x) = 0 ◦ R0[[x; α]]. Therefore
R0[[x; α]] /∈ Rr1.
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