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On Pseudo-Inverses of Fredholm Operators

Christoph Schmoeger

Abstract
Suppose that A is a Fredholm operator on a Banach space. We prove that A
has index = 0 (resp. > 0, resp. < 0) if and only if A has pseudo-inverse which is
invertible (resp. Fredholm and left invertible, resp. Fredholm and right invertible).

Furthermore, we determine the interior points of some classes of linear operators.
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1. Terminology

X always denotes a complex Banach space, and the algebra of all bounded linear
operators on X is denoted by £(X).
If A € £L(X) we denote by N(A) the kernel of A and by a(A) the dimension of N(A).
A(X) denotes the range of A, and we define 5(A) = codim A(X).

An operator A € L(X) is called relatively regular if there is S € L£(X) such that
ASA = A. In this case S is called a pseudo-inverse of A, and, if B = SAS, then

ABA=A and BAB=B.

A € L(X) is called a Fredholm operator if a(A) and B3(A) are both finite. In this case we
define the index of A by ind (A) = a(A4) — B(A).
Observe that a Fredholm operator is relatively regular [2, Satz 74.4].
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Let A € £(X). The sequence N(A), N(A?), N(A3), ... is increasing, while the se-
quence A(X), A%(X), A3(X), ... is decreasing. Define p(A), the ascent of A, to be the
smallest integer p > 0 such that N(AP) = N(APT!) or oo if no such p exists.

Define g(A), the descent of A, to be the smallest integer ¢ > 0 with A(X) = AT (X)
or oo if no such ¢ exists. It is shown in [2, Satz 72.3], that if p(4) < oo and ¢(4) < oo,
then p(A) = q(A).

We define various classes of operators:

O(X)={A e L(X): Ais Fredholm};

D(X) = {4 € B(X) 5 a(4) = 0}

D5(X) = {A € B(X) : B(A) = 0}

LX) ={Ae LX) : a(A) = B(4) = 0};

F(X)={Ae L(X):dimA(X) < oo}

Since Fredholm operators are relatively regular, ®,(X) is the set of all left invertible

Fredholm operators and ®g(X) is the class of all right invertible Fredholm operators.

The main results of this paper are as follows:

Theorem 1.1 If A € ®(X), then
(a) ind (A) =0 & thereis S € L(X)™! such that ASA = A;
(b) ind (A) > 0 < there is S € ®,(X) such that ASA = A;

(c) ind(A) <0<« thereis S € ®g(X) such that ASA = A.

Theorem 1.2 If A € &(X), then p(A) = q(A4) < oo if and only if there are p € Ny and
S € L(X)™! such that APSAP = AP and APS = SAP.

Proofs of the above follow in the next section.
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2. Proofs

Proposition 2.1 Suppose that A € L(X) is relatively regular and B is a pseudo-inverse
of A with ABA = A and BAB = B.

(a) AB, BA, I — AB and I — BA are projections with
(AB)(X) = A(X), (BA)(X) = B(X)

(I — AB)(X) = N(B) and (I — BA)(X) = N(A).

(b) If A€ ®(X), then B € (X), a(B) = 5(4), B(B) = a(A) and ind (B) = —ind (A).

Proof. Easy verification. a

Proposition 2.2 Let A and B be as in Proposition 2.1 and suppose that A € ®(X).
Then there are R € ®(X) and F € F(X) such that

BF =0 and A=R+F.
Furthermore we have:
(a) ifind (A) =0, then R € L(X)™!;
(b) ifind (A) > 0, then R € ®5(X);

(c) ifind (4) <0, then R € ®,(X).
Proof. By Proposition 2.1, (AB)(X) = A(X) and (I — AB)(X) = N(B). Hence

X = A(X) & N(B).

Since a(A) < oo, there is P € L(X) such that P2 = P and P(X) = N(A). Let
n = a(A), m = 3(A) and p = min{n, m}. Let {z1,...,2,} be a basis of N(A). Then

there are z7,...,x), € X* linearly independent with
n
szZx;(x)xj (x e X).
j=1
If {y1,...,ym} is a basis of N(B), define F € F(X) by

szZxJ*(x)yJ (x € X).
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Then F(X) C N(B), thus BF = 0. Let R = A— F. It is shown in the proof of Satz 77.2
in [2] that (a), (b) and (c) hold. O

Proof of Theorem 1.1 Let B, F and R be as in Proposition 2.2. Then BA = BR+ BF =
BR, hence A= ABA = ABR

(a) =: Since ind(A) = 0, we have R € L(X)™!. Thus AR™! = AB, hence
A=ABA = AR 'A.
<: By the Index-theorem([2, Satz 71.3]),

ind (A) = 2ind (4) +ind (S) = 2ind (4),

hence ind (A) = 0.

(b) = Since ind (4) > 0, there is S € £(X) such that RS = I. From R € ®3(X) we
get, by Proposition 2.1 (b), S € ®,(X). From A = ABR it results that AS = AB, hence
A= ABA = ASA.
<: Use the Index-theorem to see that ind (A) > 0.

(¢) =: Since ind (4) < 0, we have ind(B) > 0, by Proposition 2.1(b). Apply
Proposition 2.2 to B. Hence there are Fy € F(X), Ry € ®3(X) such that

AFQZO and B=R0+FQ

Let S = Ryg. From AB = ARy + AFy = AS, we derive A = ABA = ASA.
<: We have ind (4) < 0, by the Index-theorem. O

Proof of Theorem 1.2 (a) = (b): Let p = p(A) = ¢(A) < co. Satz 72.4 in [2] gives
X =N(AP)® AP(X).

From [2, Satz 101.2] we see that 0 is a pole if the resolvent (A — A)~!. Let P be the

associated spectral projection. Hence
P(X)=N(AP) and N(P)=AP(X).

Then PA = AP by [2, Satz 99.1]. Let F = AP+ P and R = A(l — P) — P. Then
A = R+F. The proof of Satz 77.4 in [2] shows that R is invertible in £(X). Furthermore,
we have RF = FR, AF = FA and AR = RA. Since F(X) C P(X) = N(AP), we get
APF =0, thus APT! = APR.
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Case 1: p=0. With S = I, we are done.
Case 2: p=1. We have A2 = AR. Let S = R~!'. Then AS = SA and A = A%2S = ASA.
Case 3: p > 1. Let Ay = AP. Satz 71.2 in [2] shows that Ay is a Fredholm operator.

From

N(Aj) = N(A®") = N(AP) = N(Ao),
and
AF(X) = A% (X) = AP(X) = Ao(X),

we conclude that p(Ap) = g(Ap) < 1. Case 1 and Case 2 show that there is an invertible
operator S in £(X) with AgS = SAp and Ay = ApSAp.

(b) = (a): Assume that p € Ny, S € L(X) is invertible, A?.S = SAP and AP = APSAP.
Then A??S = AP. Tt follows that AP(X) = A?(S(X)) = A?!(X), thus ¢(A) < oo.
Furthermore, N(A?P) = N(AP), hence p(A) < oco. O

3. Interior points of some classes of operators

For a subset M of £(X) let ¢l (M) and int (M) denote the closure and the interior
of M, respectively.

Notation.

$,(X)={Ac®X):ind(A) >0}
®_(X) ={A € ®(X):ind(A4) <0};
Bo(X) = {A € B(X) : ind (4) = 0};

R(X) ={A € L(X) : A is relatively regular};
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AX)={AeR(X): a(A) < oo or B(A) < co};
Ro(X)={AeR(X): ABA = A for some B € ¢,(X)};
Rp(X) ={A e R(X): ABA = A for some B € &3(X)};

Ro(X) ={AcR(X): ABA = A for some B e L(X) '}.

Operators of the class A(X) are called Atkinson operators, or relatively reqular semi-

Fredholm operators.

Proposition 3.1
(a) (X)), D_(X), Po(X) and A(X) are open subsets of L(X).

(b) Ra(X) UR(X)  cl (B(X)).
Proof. (a) follows from [2, Satz 82.4] and (b) is shown in [3, Theorem 3]. O

From Proposition 3.1 (a) and Theorem 1.1. we get
Do(X) C int (Ro(X)), @4 (X) C int (Ra(X)).
®_(X) Cint(Rg(X)) and A(X) Cint(R(X)).

We can be more precise:

Theorem 3.2
(a) int (R(X)) = A(X);
(b) int (Ro(X)) = @o(X);
(¢) int (Ra (X)) = @+(X);

(d) int (Rs(X)) = B_(X).
Proof. We only have to show the inclusion “C”.

(a) Let A € int(R(X)). Suppose that A ¢ A(X). Then a(4) = (A) = .
From [1, Theorem V. 2.6] we know that there is a compact K € L£(X) such that the
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range (A + AK)(X) is not closed for all A € C\ {0}. Since A is an interior point of
R(X), A+ AK has closed range for || sufficiently small, a contradiction.

(b), (c) and (d) Let v € {0, r, 8} and A € int (R (X)). Hence A € int (R(X)), thus
A € A(X), by (a). Proposition 3.1 (b) shows that there is a sequence (A,) in ®(X) such
that |4, — A|]] — 0(n — o0). Since A(X) is open, the stability of the index (]2, Satz
82.4]) shows that

ind (4,,) = ind (A) for n sufficiently large.

Thus ind(A) is finite, and so A € ®(X). Since A € R (X), Theorem 1.1 completes the
proof. O

Theorem 3.3

D, (X)UDs(X) = int({A e ®(X): N(A) C AX))}).

Proof. Since ®,(X) and ®3(X) are open, the inclusion “C” is clear. Now suppose
that A € int ({A € (X) : N(A) C A(X)}). Then there is € > 0 such that

if Be L(X) and ||A — BJ| <€, then B € ®(X) and N(B) C B(X). (%)

Assume that «(A4) > 0 and S(A) > 0. Then there are zg,yo € X with 29 # 0, z¢ €

N(A), yo ¢ A(X) and ||Ayo|| = 5. It follows that yo ¢ N(A). The Hahn-Banach

theorem shows that there is * € X™* such that
a=x"(xg) #0,2"(yo) =0 and |z*||=1.
Define B € L(X) b
Bz = Az + 2" () Ayo (x e X).

Then |[(A—B)z| < §|z|, thus ||[A—DB|| < e. By (%), B € ®(X) and N(B) C B(X). Since
B(X) C A(X), N(B) C A(X). We have yo — 29/ € N(B), thus yo € A(X) + N(A) =
A(X), which is a contradiction. O
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