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Stack-Sortable Permutations and Polynomials

I S. Giiloglu and C. Ko¢

Abstract

The Catalan numbers show up in a diverse variety of counting problems. In this note we give yet another
characterization of the Catalan number C(n). It is characterized as the dimension of a certain space of

multilinear polynomials by exhibiting a basis.
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1. Introduction

The action of permutations on polynomials is one of the most indispensable techniques of algebra and it
shows up in almost all considerations. In [1], to characterize differential forms which can be factorized as p A w
for a fixed 2-form g by means of a number of homogeneous exterior equations, a set of generators of Ann(u),
the annihilator ideal of () has been exhibited. In [2] this construction has been generalized to certain even and
odd forms. However, the generating sets of even forms under consideration there are far from being minimal.
In the construction of a minimal basis for Ann(p), where g = py+- - -4 o, , whose terms are exterior products
of vectors in a vector space for wich py -« - pi2, # 0, the first step is to construct a basis for the subspace of the

exterior algebra spanned by the products
(Ho(1) = Ho(2)) - (Ho(2n—1) = Ho(2n)); O € Son.

However, it is worthwhile to handle this problem in a more general context by considering the algebra of
polynomials. This is the objective of this paper. We consider F[zy,...,#2,], the ring of polynomials in the

undeterminates 1, xa, ..., o, over the field F' on which permutations acts canonically,
(ef) (1, @on) = f(To@), - To(2n)),
and exhibit a basis for F[S2,]p, the cyclic submodule generated by
pla1, ... 2an) = (21 — 22) (w3 — 24) .. . (T2n—1 — Tap)

of the module F[z1,...,x2,] over the group algebra F[Ss,] where Sa, is the symmetric group on 2n letters.
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2. A Basis Corresponding to Stack-Sortable Permutations

In order to facilitate the presentation we consider the polynomial algebra Flx1,...,2n; y1,...,ys] and

the action of permutations in S, on this algebra defined by
fCT = (Uf)($1a ey T Y1,y . ayn) = f(xcr(l)a .. ~a$0(n);y1a .. ayn)
Now, we consider the polynomial

p(xla"'axn;yla"'ayn):(xl_y1)~~~(xn_yn)a

and the cyclic submodule F[S,]p over the group algebra F[S,]. We construct a basis for this submodule by
using “231-avoiding permutations”, that is permutations for which o(k) < ¢(i) < o(j) cannot occur when
t < j < k. Such permutations are called stack-sortable permutations. Their set will be denoted by St,. It
is well known that the number of stack-sortable permutations of degree n is equal to the Catalan number
C(n) = n%—l (Zn") For this and many other characterizations of the Catalan numbers we refer to page 219 of the
book [3]. Our construction furnishes yet another characterization of Catalan numbers as the dimension of a

space of polynomials.

Proposition 1 The sets

{po(xla"'axn;yla"'ayn) | o E Stn} and {pa(xla"'axn;yla"'ayn—lao) | S Stn}

are linearly independent.
Proof.  To each permutation ¢ we assign a sequence ¢, = (51,82,...,5n;51,85,...5,,), where s5(,) = 1,

sy, = 0 and for k < n the terms s,(;) and s, are defined by

. )1 ife(k)<o(k+1) nd f
BTV 0 itolk) > olk+ 1)

We shall compute p;(ps) for stack-sortable permutations ¢ and 7; and using these values we shall obtain

a linear system of equations for the coefficients a, in the relation 3 arpr = 0 from which it will be

TESt,
immediate that all these coefficients are 0. Since the last term of ¢, is zero in our discussion we do not need

any distinction of the sets given in the proposition.

Obviously we have p:(p;) = £1. We consider the ordering of permutations defined by
>0 <= 31<k<nsuch that 7(i) = o(i) for all i > k and 7(k) > (k).
we claim that when ¢ and 7 are stack-sortable permutations with 7 > o, we have
pr(@o) = pr(51,82, ..., 8n;81,85,...55,) =0 .
In fact, assuming 7(k) > o(k) for some k < n, and 7(i) = (i) for all i > k, we observe that

7(k) = o(r) for some r < k and (k) = 7(l) for some | < k.
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Since for stack-sortable permutations ¢ and 7, neither inequality o(k) < (i) < o(j) nor 7(k) < 7(¢) < 7(j)
can occur when i < j < k. If we had s,() = 0, this would mean k¥ < n and o(k) > o(k + 1), which would
imply

ock+)=7k+1)<ok)=7r) <r(k)forl <k <k+1.

This would contradict the stack-sortability of 7. Thus s,y = 1 and hence sj = 0. The same argument repeated

for s,(,y = 1, where r < k, would imply
olk)<rk)=c(r)<o(r+1)forr<r+1<k.

This in turn shows that » 4+ 1 = k& cannot happen, and » < r+ 1 < k contradicts the stack-sortability of o.
Thus we obtained

5.y = Sa(r) = 0 and s, = 0.

to evaluate

pT(xla e T YL, - 'ayn) = ($T(1) - yl) c ($T(k) - yk) c ($T(n) - yn)

at 9o = (51,82,...,8n;51,85,...5,), We substitute z,() = S 4 =0 and yp = s, = 0 and obtain

pT(SDU) :pT(SlaSZa .- 'asn;sllaS/Za .- 8;7,) = Oa

as claimed. To complete the proof |, suppose that

Z a;pr =0

TESt,

and that o is the least permutation for which a, # 0. Then we have

Z anT(SDU) = ta, = Oa
TESt,

which is a contradiction. O

Lemma 2 (i) If n <2, every permutation is stack sortable.

(ii) > sgn(r)pr = 0 and hence the polynomial p,, associated to the 3-cycle o = (123), is a linear
TESts

combination of the p;,, where 1 = (12),72 = (13), 73 = (23), 74 = (132) and 75 = (1).

(iii) If o has a 231-pattern, say, o =[...,0(0),...,0(j),...0(k),..], with o(k) < o(i) < o(j), then p,
is a linear combination of the por, , where 1 <1 <5 7 = (ij), 72 = (ik), 73 = (jk), 72 = ({jk) and 15 = (kji).
Proof. (i) is obvious, (ii) is obtained by a straightforward verification, and (iii) is an easy consequence of
(1) 0
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Definition 3 An n-term sequence [t1,ts, ... tg, ..., ty] is said to be tidy if
tp >t forall ¢ ,andt; >t forall j>Fk , @<k,

A permutation is said to be tidy if the sequence [o(1),0(2),...,0(n)] is tidy that is if o(i) > o=1(n) for all
i>o"1(n).

Lemma 4 If 0= 1(n) € {1,n}, then o is tidy.

Proof. Obvious. O

Proposition 5 Every p, is a linear combination of the p, corresponding to tidy permutations .
Proof. Let
Po = (To() = Y1) - (To) = Yk) - (To(n) — Yn) With (k) =n

Considering Lemma 2 (i) we can use induction on n. By assuming the assertion is true for n — 1 | we consider

the permutation & € S,,_; defined by

E(i):{ o(i) if i<k

c(i+1) if i>k
And applying Lemma 2(iii) to

(o) = 1) - (Toh—1) = Y—1)(To(kg1) = Ybt1) - (To(n) — Un)
we may assume without loss of generality that

F(i)>a (n—1) forall i>7 *(n—1) in {1,2,...,n—1}.

In other words, the sequence [¢(1),...,0(k—1),0(k+1),...,0(n)] is tidy with largest term o(!) = n— 1. Now,
we consider several particular cases separately.

Case 1. Let ¢=*(n — 1) = n. Then
Po = ($0(1) - yl) co ($a(n—1) - yn—l)(xn—l - yn)a

and by induction hypothesis applied to bijections from {1,2,...,n — 1} onto

{1,2,...,n} — {n — 1}, it is a linear combination of polynomials of the form
Pr = (($T(1) - yl) co ($T(n—2) - yn—Z)($T(n) - yn—l))(xn—l - yn)a

where 7(i) > 771(n) forall i > 77 1(n) in{1,2,...,n—1}. Now, extending 7 to a permutation of {1,2,...,n}
with 7(n — 1) = n, we still have 7(i) > 7=!(n) for all ¢ > r=(n) in{1,2,...,n}. Thus, each 7 is tidy.

Case 2. Let 07 !(n—1) = 1. Then we may assume o~!(n) # n by Lemma 4, and the 231 pattern shows
up with

o(l)=n—1,0(k) =n forsomek <n, and o(n) =r for somer <n— 1.
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By using Lemma 2 (iii) we can express p, as a linear combination of the p, where 7 € {0 (In),o0 (1k),00
(kn), 00 (lkn),c0(1nk)}. For 7 = oo (Iln) we have 7(n) = n—1 asin Case 1, and for all others we have either
r(n) =n or (1) = n as in Lemma 4.

Case 3. Let 1 <o~ !(n—1) < ¢7*(n), then
Po = (o) —¥1) - (Toq)y = W) - (To) = Uk) - (To(n) = Yn)

with o(I) =n—1, o(k) =n and o(i) <l =" (n—1) for all i <I. Since | > 1, the induction hypothesis
allows us to express
(o) =) (To) = Yk) - (To(n) — Yn)

as a linear combination of polynomials

(r@y —w) - (Tre) = Yk) - (Tr(n) — Un),

where each 7 is a tidy permutation of {/,...,n}, and also its extension to {1,...,n} defined by
i) = 0'(2.') .if i<l
(i) if i>1

is tidy. Thus p, is a linear combination of products

(Toy = 1) (Bo—1) —vi—1)(®ry —U1) - (Tre) — Y) - (Tr(n) — Yn),
each of which turns out to be a polynomial associated with a tidy permutation 7.
Case 4. Let 071(n) < 07!(n — 1) < n. Then
Po = (Zo(1) —¥1) - (To)y = Uk) - (Toq) — W) - (To(n) — Yn)

with o(l) = n—1 and o(k) = n, and the sequence

[o(l),...,o(k=1),c(k+1),...,0(0),...,0(n)]
is tidy with largest term o(l) = n — 1. Since [ < n, we can use the induction hypothesis to write (ro(1) —
Y1) - (Tok) — Y) - (To@—1) — Yi—1) as a linear combination of the products

(Try —y1) - (Tre) — W) - (Tra-1) — Yiz1),

for which the sequence [r(1),...,7(k),...,7(l = 1)] is tidy and its terms are in {1,2,...,{ — 1,n}. Then each
sequence
[r(1),...,7(k),...,7(l=1),0(l),...,0(n)]
becomes a tidy sequence associated to a permutation in S, ; and thus p, becomes a linear combination of
polynomials
(ry =) (Try = yk) - (Tron) — Y—1)(@o) — 1) - (To(n) — Yn)

assoclated to tidy permutations. a

Combining the above propositions we establish our main result.
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Theorem 6 The set
{p-IT € St}

is an F -basis for the cyclic submodule F[S,]p and hence its dimension is the Catalan number C(n).

Proof. Linear independence follows from Proposition 1. To complete the proof we use induction on n.
Suppose that when m < n, for every permutation p € S,,, p, is a linear combination of the polynomials p,
where w runs over stack-sortable permutations in S,,. Take any p, and use Proposition 5 to express it as a
linear combination of polynomials p, corresponding to tidy permutations 7. Now, pick-up a tidy permutation
7 with & = 771(n). Then , 7(i) > k for i > k, and 7(i) < k for i < k. We consider two cases separately.

Casel. k = 1, we use Proposition 5 and the induction hypothesis to write
(l‘r(z) — 1) (l‘r(n) — Zp-1)
as a linear combination of the products
(To1) = 21) - (Tpn—1) = 2n—1),
where each p € S,,_1 is stack-sortable. By letting z1 = y2, ..., 2n—1 = Yy, we see that

(xn_yl)($p(1)_Zl)"'($p(n—1)_zn—1) = (xn_yl)(xp(l)_yZ)"'($p(n—1)_yn)

= ($ﬁ(1) - yl)(l}@) - 312) T (l‘F(n) - yn)a

where the permutation 7 is defined by

n if =1

ﬁ(i):{ pli—1) if i>1

and it 1s a stack-sortable permutation in S, .

Case 2. k= 77!(n) > 1. Then we have
pr=(xr)y —v1)  (Treo1) — Ye-1)(Trk) — Y&) - (Tr(n) — Yn)
with
{r(D),...,rk=1}={1,.. ., k=1} and {7(k),...,7(n)} = {k,.. ., n}

and applying the induction hypothesis to the restrictions of 7 to {1,...,k— 1} and {k,...,n} we can write
(tr1) = ¥1) - (®rk—1) — Y—1) as a linear combination of the products (z,1y —y1) - (®yr-1) — yr—1) with
n € Stp_1. Moreover, by using Casel we can write (2,x) — Yx) - (Zr(n) — Yn) as a linear combination of
products (z¢x) — Yk) - (Te(n) — Yn) Where each ¢ is a stake sortable permutation of {k,...,n} with ¢(k) =n.

Then for p, we obtain a linear combination of products

(Tgy —y1) - (Tpe—1) = Y1) (Ter) = W) - (To(n) — Yn)

= (To)y —¥1)(Tom) = Yk) - (To(n) — Yn),
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where the sequence [n(1),...,n(k —1),5(k),...,s(n)] defines the stack- sortable permutation ¢ in S, as
) if i<k—1
oy =4 "M
s(iy if 1>k,
and thus each product under consideration becomes

Po = ($0(1) - yl) co ($a(k) - yk) co ($a(n) - yn) for some ¢ € Stn

Corollary 7 Let
p(a1,. .. 2an) = (21 — 22) (23 — 24) ... (B2n—1 — Za2n).
Then the set
o = (Xo(1) = Tn41) - (To(n) — T2n)|o € Stn}
forms a basis for the cyclic submodule F[S2,]p.

Proof. Letting yx = znyr for £ =1,...,n it is sufficient to note that

(i — 25) (g — w) = (20 — o) (25 — ) — (20 — o) (25 — w),

because this allows us to write every element of F[Sy,]p as a linear combination of polynomials in the form

(o) = Y1) - (®o(n) — Yn), Where o is a permutation of {1,...,n}.
O
Corollary 8 Let
P(l‘l, .- ~,$2n) = (l‘l - 902)(1‘3 - 96‘4) cee (l‘zn—1 - l‘zn)l‘zn+1~
Then the set
{Po = (®o(1) = Tnt2) - (To(n) = T2n41)To(nt1)|0 € Stnir}
forms a basis for the cyclic submodule F[San41]p and hence its dimension is C(n).
Proof. Welet yp = xpqp41 for k=1,...,n and y,41 = 0 and we see by the theorem that each
Po = ($0(1) - xn+2) t (xa(n) - x2n+1)($a(n+1) - O)a
which 1s considered to be the evaluation of the polynomial
($0(1) - yl) o ($a(n) - yn)($a(n+1) - yn+1)a
which at y,41 = 0 can be expressed as a linear combination of the polynomials
($T(1) - yl) o ($T(n) - yn)($7(n+1) - yn+1)a TE Stn
evaluated at y,4+1 = 0 as desired. Linear independence follows from Proposition 1. a
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