Best *p*-Simultaneous Approximation in Some Metric Space

M. Khandaqji and W. Shatanawi

Abstract

Let X be a Banach space, (I, μ) be a finite measure space, and Φ be an increasing subadditive continuous function on $[0, +\infty)$ with $\Phi(0) = 0$. In the present paper, we discuss the best *p*-simultaneous approximation of $L^{\Phi}(I, G)$ in $L^{\Phi}(I, X)$ where G is a closed subspace of X.

Key Words: Simultaneous, Approximation.

1. Introduction

A function $\Phi : [0, +\infty) \to [0, +\infty)$ is called a modulus function if it satisfies the following conditions:

- 1. $\Phi(x) = 0$ iff x = 0.
- 2. $\Phi(x+y) \le \Phi(x) + \Phi(y).$
- 3. Φ is a continuous increasing function.

For a modulus function Φ , a finite measure space (I, μ) and a Banach space X,

$$L^{\Phi}(I,X) = \{f: I \to X: \int_{I} \Phi(||f(t)||) d\mu < +\infty\}.$$

AMS Mathematics Subject Classification: 41A50, 41A28.

For $f \in L^{\Phi}(I, X)$, define

$$||f||_{\Phi} = \int_I \Phi(||f(t)||) d\mu.$$

In fact $(L^{\Phi}(I, X), || \cdot ||_{\Phi})$ is a complete metric linear space [4]. Further, it is known that $L^{1}(I, X) \subseteq L^{\Phi}(I, X)$. For more information about $L^{\Phi}(I, X)$, we refer to [3,5]. For x_{1}, x_{2} in X and 1 , we set

$$|(x_1, x_2)|_{\Phi, p} = ((\Phi(||x_1||))^p + (\Phi(||x_2||))^p)^{\frac{1}{p}}.$$

Note that $(X^2, |\cdot|_{\Phi,p})$ is a complete metric space. The diagonal of G^2 is given by $D = \{(g,g) : g \in G\}$. Throughout this paper, X is a Banach space, G is a closed subspace of X and Φ is a modulus function. For f_1 and f_2 in $L^{\phi}(I, X)$, we set

$$|(f_1, f_2)|_{\Phi,p} = [||f_1||_{\Phi}^p + ||f_2||_{\Phi}^p]^{\frac{1}{p}}$$

for all $1 . Then <math>((L^{\Phi}(I, X))^2, |\cdot|_{\Phi,p})$ is a complete metric space. We consider X as a metric space with a metric $d(x, y) = \Phi ||x - y||$.

Definition 1.1 For $x_1, x_2 \in G$, define $dist_{\Phi} : X^2 \to \mathbf{R}$ by

$$dist_{\Phi}(x_1, x_2, G) := \inf_{z \in G} \left[(\Phi(||x_1 - z||))^p + (\Phi(||x_2 - z||))^p \right]^{\frac{1}{p}}$$

Consequently, for $f_1, f_2 \in L^{\Phi}(I, X)$, we define

$$dist_{\Phi}(f_1, f_2, L^{\Phi}(I, G)) := \inf_{g \in L^{\Phi}(I, G)} \left[||f_1 - g||_{\Phi}^p + ||f_2 - g||_{\Phi}^p \right]^{\frac{1}{p}}.$$

Definition 1.2 We say that $z \in G$ is a best p-simultaneous approximation from G of pair elements $x_1, x_2 \in X$ if

$$\left[(\Phi(||x_1 - z||))^p + (\Phi(||x_2 - z||))^p \right]^{\frac{1}{p}} \le \left[(\Phi(||x_1 - y||))^p + (\Phi(||x_2 - y||))^p \right]^{\frac{1}{p}}$$

for every $y \in G$. We say that $g \in L^{\Phi}(I,G)$ is the best p-simultaneous approximation of a pair of elements f_1, f_2 in $L^{\Phi}(I,X)$, if for every $h \in L^{\Phi}(I,G)$, we have

$$||f_1 - g||_{\Phi}^p + ||f_2 - g||_{\Phi}^p \le ||f_1 - h||_{\Phi}^p + ||f_2 - h||_{\Phi}^p.$$

2

KHANDAQJI, SHATANAWI

Note that for $g \in G$ is the best *p*-simultaneous approximation from G of $x_1, x_2 \in X$ iff (g,g) is the best approximation from D of the pair $(x_1, x_2) \in X^2$ where the metric on X^2 is $|\cdot|_{\Phi,p}$. If every pair of elements $x_1, x_2 \in X$ admits a best *p*-simultaneous approximation from G, then G is said to be *p*-simultaneous proximinal in X. The problem of best simultaneous approximation has been studied by many authors in [2, 7, 12, 13]. Most of these works have dealt with the characterization of best simultaneous approximation in space of continuous functions with values in a Banach space X. Results of best simultaneous approximation in general Banach space can be found in [1, 8, 10]. Some results were obtained in the spaces of $L^p(I, X)$ have been tackled in [6, 11]. In the present paper, we investigate the best *p*-simultaneous approximations of $L^{\Phi}(I, G)$ in $L^{\Phi}(I, X)$ where G is a closed subspace of X.

2. Main Results

We start with the following technical lemma.

Lemma 2.1 Suppose $1 . For <math>f_1, f_2 \in L^{\Phi}(I, X)$ we have

- 1. $\int_{I} dist_{\Phi}(f_1(t), f_2(t), G) d\mu \leq 2 dist_{\Phi}(f_1, f_2, L^{\Phi}(I, G)).$
- 2. $dist_{\Phi}(f_1, f_2, L^{\Phi}(I, G)) \leq \int_{I} dist_{\Phi}(f_1(t), f_2(t), G) d\mu$

Proof. For any $g \in L^{\Phi}(I, G)$ and $t \in I$, we have

$$\begin{aligned} \left[dist_{\Phi}(f_{1}(t), f_{2}(t), G) \right]^{p} &\leq \left[\Phi ||f_{1}(t) - g(t)|| \right]^{p} + \left[\Phi ||f_{2}(t) - g(t)|| \right]^{p} \\ &\leq \left[\Phi ||f_{1}(t) - g(t)|| + \Phi ||f_{2}(t) - g(t)|| \right]^{p}. \end{aligned}$$

Therefore we have,

$$\int_{I} dist_{\Phi}(f_{1}(t), f_{2}(t), G) d\mu \leq ||f_{1} - g||_{\Phi} + ||f_{2} - g||_{\Phi}$$
$$\leq 2 [||f_{1} - g||_{\Phi}^{p} + ||f_{2} - g||_{\Phi}^{p}]^{\frac{1}{p}}.$$

After taking the infimum over all g in $L^{\Phi}(I, G)$, we finish our proof of inequality (1). By the density of simple functions in $L^{\Phi}(I, X)$, we have for any $\varepsilon > 0$ there are two simple functions f_1^* and f_2^* in $L^{\Phi}(I, X)$ such that

$$||f_1^* - f_1||_{\Phi} \le \frac{\varepsilon}{2^{\frac{1}{p}+1}},$$

and

$$||f_2^* - f_2||_{\Phi} \le \frac{\varepsilon}{2^{\frac{1}{p}+1}}.$$

We can write $f_i^* = \sum_{k=1}^n \chi_{A_k} x_k^i$, i = 1, 2, where $A_k, k = 1, 2, \ldots n$ are disjoint measurable subsets of I satisfying $\bigcup_{k=1}^n A_k = I$ and χ_{A_k} is the characteristic function of A_k , and $x_k^i \in X$. We may assume that $\mu(A_k) > 0$, for $k = 1, 2, \ldots n$. Since

$$dist_{\Phi}(x, y, G) = \inf_{z \in G} \left[(\Phi(||x - z||))^p + (\Phi(||y - z||))^p \right]^{\frac{1}{p}},$$

then for any k>0, we can select $y_{\scriptscriptstyle k}\in G$ such that

$$\left[(\Phi(||x_k^1 - y_k||))^p + (\Phi(||x_k^2 - y_k||))^p \right]^{\frac{1}{p}} < dist_{\Phi}(x_k^1, x_k^2, G) + \frac{\varepsilon}{2n\mu(A_k)}.$$

Let
$$g = \sum_{k=1}^{n} \chi_{A_k} y_k$$
. Clearly $g \in L^{\Phi}(I, G)$. Now
 $dist_{\Phi}(f_1, f_2, L^{\Phi}(I, G)) \leq [||f_1 - g||_{\Phi}^p + ||f_2 - g||_{\Phi}^p]^{\frac{1}{p}}$
 $\leq [(||f_1 - f_1^*||_{\Phi} + ||f_1^* - g||_{\Phi})^p + (||f_2 - f_2^*||_{\Phi} + ||f_2^* - g||_{\Phi})^p]^{\frac{1}{p}}$
 $\leq [||f_1 - f_1^*||_{\Phi}^p + ||f_2^* - f_2||_{\Phi}^p]^{\frac{1}{p}} + ||f_1^* - g||_{\Phi}^p + ||f_2^* - g||_{\Phi}^p]^{\frac{1}{p}}.$

It is easy to show that:

$$\begin{split} dist_{\Phi}(f_{1}, f_{2}, L^{\Phi}(I, G)) &< \frac{\varepsilon}{2} + \left[\left(\int_{I} \Phi(||f_{1}^{*}(t) - g(t)||) d\mu \right)^{p} + \left(\int_{I} \Phi(||f_{2}^{*}(t) - g(t)||) d\mu \right)^{p} \right]^{\frac{1}{p}} \\ &= \frac{\varepsilon}{2} + \left[\left(\sum_{k=1}^{n} \mu(A_{k}) \Phi(||x_{k}^{1} - y_{k}||) \right)^{p} + \left(\sum_{k=1}^{n} \mu(A_{k}) \Phi(||x_{k}^{2} - y_{k}||) \right)^{p} \right]^{\frac{1}{p}} \\ &\leq \quad \frac{\varepsilon}{2} + \sum_{k=1}^{n} \mu(A_{k}) \left[(\Phi(||x_{k}^{1} - y_{k}||))^{p} + (\Phi(||x_{k}^{2} - y_{k}||))^{p} \right]^{\frac{1}{p}} \\ &< \quad \frac{\varepsilon}{2} + \sum_{k=1}^{n} \mu(A_{k}) \left[dist_{\Phi}(x_{k}^{1}, x_{k}^{2}, G) + \frac{\varepsilon}{2n\mu(A_{k})} \right]. \end{split}$$

Thus

$$dist_{\Phi}(f_1, f_2, L^{\Phi}(I, G)) < \varepsilon + \int_I dist_{\Phi}(f_1^*(t), f_2^*(t), G) d\mu.$$
 (1)

4

KHANDAQJI, SHATANAWI

Using the subadditivity of Φ , we have

$$dist_{\Phi}(f_{1}^{*}(t), f_{2}^{*}(t), G) \leq dist_{\Phi}(f_{1}(t), f_{2}(t), G) + \left[\left(\Phi(||f_{1}^{*}(t) - f_{1}(t)||) \right)^{p} + \left(\Phi(||f_{2}^{*}(t) - f_{2}(t)||) \right)^{p} \right]^{\frac{1}{p}} \leq dist_{\Phi}(f_{1}(t), f_{2}(t), G) + \Phi(||f_{1}^{*}(t) - f_{1}(t)||) + \Phi(||f_{2}^{*}(t) - f_{2}(t)||),$$

for all t. Therefore

$$\int_{I} dist_{\Phi}(f_{1}^{*}(t), f_{2}^{*}(t), G) d\mu \leq \int_{I} dist_{\Phi}(f_{1}(t), f_{2}(t), G) d\mu + ||f_{1}^{*} - f_{1}||_{\Phi} + ||f_{2}^{*} - f_{2}||_{\Phi}.$$

Thus

$$dist_{\Phi}(f_1, f_2, L^{\Phi}(I, G)) \leq \int_I dist_{\Phi}(f_1(t), f_2(t), G)d\mu + \frac{\varepsilon}{2^p},$$

and hence

$$dist_{\Phi}(f_1, f_2, L^{\Phi}(I, G)) \le \int_I (dist_{\Phi}(f_1(t), f_2(t), G)d\mu.$$

Lemma 2.2 Suppose that $1 . If <math>f_1, f_2$ are simple functions in $L^{\Phi}(I, X)$ and if $\mu(I) = 1$, then

$$dist_{\Phi}(f_1, f_2, L^{\Phi}(I, X)) = \left[\int_{I} [dist_{\Phi}(f_1(t), f_2(t), G)]^p d\mu\right]^p.$$

Proof. By Inequality (2) of Lemma 2.1, and the assumption $\mu(I) = 1$, we have

$$dist_{\Phi}(f_1, f_2, L^{\Phi}(I, G)) \leq \int_I dist_{\Phi}(f_1(t), f_2(t), G) d\mu$$
$$\leq \left[\int_I [dist_{\Phi}(f_1(t), f_2(t), G)]^p d\mu \right]^{\frac{1}{p}}.$$

Given $\varepsilon > 0$. Choose $g_0 \in L^{\Phi}(I, G)$ with the property that

$$||f_1 - g_0||_{\Phi}^p + ||f_2 - g||_{\Phi}^p < (dist_{\Phi}(f_1, f_2, L^{\Phi}(I, G))^p + \varepsilon.$$
(2)

Since f_1, f_2 are simple functions in $L^{\Phi}(I, X)$, we let

$$f_i(t) = \sum_{k=1}^n x_k^i \chi_{A_k}(t), \ (i = 1, 2)$$

where A_k , k = 1, 2, ..., n are disjoint measurable sets with $\mu(A_k) > 0$, and $x_k^i \in X$. For a simple function g in $L^{\Phi}(I, G)$, we can set $g(t) = \sum_{k=1}^n y_k \chi_{A_k}(t)$. Thus

$$\begin{split} \int_{I} (dist_{\Phi}(f_{1}(t), f_{2}(t), G))^{p} d\mu &\leq \int_{I} (\Phi ||f_{1}(t) - g(t)||)^{p} d\mu + \int_{I} (\Phi ||f_{2}(t) - g(t)||)^{p} d\mu \\ &= \sum_{k=1}^{n} \int_{A_{k}} (\Phi ||x_{k}^{1} - y_{k}||)^{p} d\mu + \sum_{k=1}^{n} \int_{A_{k}} (\Phi ||x_{k}^{2} - g(t)||)^{p} d\mu(t) \\ &= \sum_{k=1}^{n} \mu(A_{k}) (\Phi ||x_{k}^{1} - y_{k}||)^{p} + \sum_{k=1}^{n} \mu(A_{k}) (\Phi ||x_{k}^{2} - g(t)||)^{p} \\ &\leq \left[\sum_{k=1}^{n} \mu(A_{k}) \Phi ||x_{k}^{1} - y_{k}||\right]^{p} + \left[\sum_{k=1}^{n} \mu(A_{k}) \Phi ||x_{k}^{2} - g(t)||\right]^{p} \\ &= \left[\int_{I} \Phi ||f_{1}(t) - g(t)||d\mu\right]^{p} + \left[\int_{I} \Phi ||f_{2}(t) - g(t)||d\mu\right]^{p} \\ &= ||f_{1} - g||_{\Phi}^{p} + ||f_{2} - g||_{\Phi}^{p}. \end{split}$$

By (2) and the fact that simple functions are dense in $L^{\Phi}(I, X)$, we have

$$\int_{I} (dist_{\Phi}(f_{1}(t), f_{2}(t), G))^{p} d\mu \leq ||f_{1} - g_{0}||_{\Phi}^{p} + ||f_{2} - g_{0}||_{\Phi}^{p}$$

$$< (dist_{\Phi}(f_{1}, f_{2}, L^{\Phi}(I, G))^{p} + \varepsilon.$$

Since ε is arbitrary, we have

$$\left[\int_{I} (dist_{\Phi}(f_{1}(t), f_{2}(t), G))^{p} d\mu\right]^{\frac{1}{p}} \leq dist_{\Phi}(f_{1}, f_{2}, L^{\Phi}(I, G)).$$

Theorem 2.1 Suppose $\mu(I) = 1$. If G is p-simultaneously proximinal in X, then for every pair of simple functions f_1 , f_2 in $L^{\Phi}(I, X)$, there exists $g \in L^{\Phi}(I, X)$ such that g is the best simultaneous approximation of the pair of elements f_1 and f_2 .

Proof. We can write $f_i = \sum_{k=1}^n \chi_{A_k} x_k^i$, i = 1, 2, where A_k , $k = 1, 2, \ldots n$ are disjoint measurable sets such that $\bigcup_{k=1}^n A_k = I$ with $\mu(A_k) > 0$ for $k = 1, 2, \ldots, n$. Pick

 $y_k \in G$ such that y_k is the best approximation of the pair of elements $x_k^1, x_k^2 \in X$. Let $g = \sum_{k=1}^n \chi_{A_k} y_k$. Then

$$\begin{split} (||f_{1} - g||_{\Phi}^{p} + ||f_{2} - g||_{\Phi}^{p})^{\frac{1}{p}} &= \left[\left(\int_{I} \Phi(||f_{1}(t) - g(t)||)d\mu \right)^{p} + \left(\int_{I} \Phi(||f_{2}(t) - g(t)||)d\mu \right)^{p} \right]^{\frac{1}{p}} \\ &= \left[\left(\sum_{k=1}^{n} \mu(A_{k}) \Phi(||x_{k}^{1} - y_{k}||) \right)^{p} + \left(\sum_{k=1}^{n} \mu(A_{k}) \Phi(||x_{k}^{2} - y_{k}||) \right)^{p} \right]^{\frac{1}{p}} \\ &\leq \sum_{k=1}^{n} \mu(A_{k}) \left[(\Phi(||x_{k}^{1} - y_{k}||))^{p} + (\Phi(||x_{k}^{2} - y_{k}||)^{p} \right]^{\frac{1}{p}} \\ &= \sum_{k=1}^{n} \mu(A_{k}) dist_{\Phi}(x_{k}^{1}, x_{k}^{2}, G) \\ &= \int_{I} dist_{\Phi}(f_{1}(t), f_{2}(t), G) d\mu \\ &\leq \left[\int_{I} (dist_{\Phi}(f_{1}(t), f_{2}(t), G))^{p} d\mu \right]^{\frac{1}{p}}. \end{split}$$

Using Lemma 2.2, we have

$$(||f_1 - g||_{\Phi}^p + ||f_2 - g||_{\Phi}^p)^{\frac{1}{p}} = dist_{\Phi}(f_1, f_2, L^{\Phi}(I, G)).$$

Theorem 2.2 Let $g \in L^{\Phi}(I, G)$ be a best *p*-simultaneous approximation of a pair $f_1, f_2 \in L^{\Phi}(I, X)$. Then for every measurable subset A of I and every $h \in L^{\Phi}(I, G)$, we have

$$\int_{A} \Phi(||f_{i}(t) - g(t)||) d\mu \leq \int_{A} \Phi(||f_{i}(t) - h(t)||) d\mu,$$
(3)

for some $i \in \{1, 2\}$.

Proof. Assume that $\mu(A) > 0$ for some $A \subseteq I$. If there is $h_0 \in L^{\Phi}(I, G)$ doesn't satisfy (3) for i = 1, 2, then we define $g_0 \in L^{\Phi}(I, G)$ by $g_0(t) = g(t)$ if $t \in I - A$ and $h_0(t)$

7	
1	

if $t \in A$. Thus for i = 1, 2 we have

$$\begin{split} \int_{I} \Phi(||f_{i}(t) - g_{0}(t)||)d\mu &= \int_{A} \Phi(||f_{i}(t) - h_{0}(t)||)d\mu + \int_{I-A} \Phi(||f_{i}(t) - g(t)||)d\mu \\ &< \int_{I} \Phi(||f_{i}(t) - g(t)||)d\mu. \end{split}$$

Hence we have

$$||f_i - g_0||_{\Phi}^p < ||f_i - g||_{\Phi}^p, \ i = 1, 2.$$

This contradicts the fact that g is best p-simultaneous approximation from $L^{\Phi}(I, G)$ of a pair of the elements f_1, f_2 .

Corollary 2.1 If g is a best p-simultaneous approximation from $L^{\Phi}(I,G)$ of a pair of elements $f_1, f_2 \in L^{\Phi}(I,G)$, then for every measurable subset A of I,

$$\int_{A} \Phi(||g(t)||d\mu \le 2 \max\left\{\int_{A} \Phi(||f_{1}(t)||)d\mu, \int_{A} \Phi(||f_{2}(t)||)d\mu\right\}.$$

Proof. It follows from Theorem 2.2 by taking h = 0.

Acknowledgement

We wish to express our sincere thanks to the referee for his/her comments.

References

- [1] Alsharif, sh.: Best Simultaneous Approximation $L^{\Phi}(I, X)$, submitted.
- [2] Chong, L., and Watson, G. A: On the Best Simultaneously Approximation, J. Approx. Theory, 91, 332-348(1997).
- [3] Deeb, W. and Khalil, R.: On the Tensor Product of Non Locally Topological Vector Spaces, Illinois J. Math. Proc. 30,594-601(1986).
- [4] Deeb, W. and Khalil, R.: Best Approximation in $L^p(I, X)$, 0 , J. Approx. Theory,**58**, 68-77(1989).

KHANDAQJI, SHATANAWI

- [5] Deeb, W. and Younis, Y.: Extreme Points in a Class of Non Locally Convex Topological vector space, Math. Reb. Toyama Univ. 6, 95-103(1983, New York (1972).
- [6] Khalil, R and Saidi, F.: Best Approximation in $L^1(I, X)$, Proc. Amer. Math. Soc., **123**, 183-190 (1995).
- [7] Mach, J.: Best Simultanneous Approximation of Vector Valued Function with Values in Certain Banach Spaces, Math. Ann, 240, 157-164 (1979).
- [8] Milman, P. D.: On Best Simultaneous Approximation in Normed Linear Spaces, J. Approx. Theory, 20, 223-238 (1977).
- [9] Pinkus, A.: Uniqueneness in Vector Valued Approxomation, J. Approx. Theory, 73, 17-92 (1993).
- [10] Sahney, B. N., and Singh, S. P.: On Best Simultaneous Approximation in Banach Spaces, J. Approx. Theory, 35, 222-224 (1982).
- [11] Saidi, F., Hussein, D. and Khalil, R.: Best Simultaneous Approximation in $L^p(I, X)$, J. Approximation Theory, **116**, 369-379 (2002).
- [12] Tanimoto, S.: On the Best Simultaneous Approximation, Math. Japonica, 48, 275-279 (1998).
- [13] Watson, G. A.: A Characterization of Best Simultaneous Approximation, J. Approx. Theory, 75, 175-182 (1993).

M. KHANDAQJI, W. SHATANAWI Department of Mathematics The Hashemite University Zarqa-JORDAN email: mkhan@hu.edu.jo • swasfi@hu.edu.jo Received 15.05.2006