Best p-Simultaneous Approximation in Some Metric Space

M. Khandaqji and W. Shatanawi

Abstract

Let X be a Banach space, (I, μ) be a finite measure space, and Φ be an increasing subadditive continuous function on $[0,+\infty)$ with $\Phi(0)=0$. In the present paper, we discuss the best p-simultaneous approximation of $L^{\Phi}(I, G)$ in $L^{\Phi}(I, X)$ where G is a closed subspace of X.

Key Words: Simultaneous, Approximation.

1. Introduction

A function $\Phi:[0,+\infty) \rightarrow[0,+\infty)$ is called a modulus function if it satisfies the following conditions:

1. $\Phi(x)=0$ iff $x=0$.
2. $\Phi(x+y) \leq \Phi(x)+\Phi(y)$.
3. Φ is a continuous increasing function.

For a modulus function Φ, a finite measure space (I, μ) and a Banach space X,

$$
L^{\Phi}(I, X)=\left\{f: I \rightarrow X: \int_{I} \Phi(\|f(t)\|) d \mu<+\infty\right\}
$$

[^0]For $f \in L^{\Phi}(I, X)$, define

$$
\|f\|_{\Phi}=\int_{I} \Phi(\|f(t)\|) d \mu
$$

In fact $\left(L^{\Phi}(I, X),\|\cdot\|_{\Phi}\right)$ is a complete metric linear space [4]. Further, it is known that $L^{1}(I, X) \subseteq L^{\Phi}(I, X)$. For more information about $L^{\Phi}(I, X)$, we refer to [3,5]. For x_{1}, x_{2} in X and $1<p<+\infty$, we set

$$
\left|\left(x_{1}, x_{2}\right)\right|_{\Phi, p}=\left(\left(\Phi\left(\left\|x_{1}\right\|\right)\right)^{p}+\left(\Phi\left(\left\|x_{2}\right\|\right)\right)^{p}\right)^{\frac{1}{p}}
$$

Note that $\left(X^{2},|\cdot|_{\Phi, p}\right)$ is a complete metric space. The diagonal of G^{2} is given by $D=\{(g, g): g \in G\}$. Throughout this paper, X is a Banach space, G is a closed subspace of X and Φ is a modulus function. For f_{1} and f_{2} in $L^{\phi}(I, X)$, we set

$$
\left|\left(f_{1}, f_{2}\right)\right|_{\Phi, p}=\left[\left\|f_{1}\right\|_{\Phi}^{p}+\left\|f_{2}\right\|_{\Phi}^{p}\right]^{\frac{1}{p}},
$$

for all $1<p<+\infty$. Then $\left(\left(L^{\Phi}(I, X)\right)^{2},|\cdot|_{\Phi, p}\right)$ is a complete metric space. We consider X as a metric space with a metric $d(x, y)=\Phi\|x-y\|$.

Definition 1.1 For $x_{1}, x_{2} \in G$, define dist ${ }_{\Phi}: X^{2} \rightarrow \mathbf{R}$ by

$$
\operatorname{dist}_{\Phi}\left(x_{1}, x_{2}, G\right):=\inf _{z \in G}\left[\left(\Phi\left(\left\|x_{1}-z\right\|\right)\right)^{p}+\left(\Phi\left(\left\|x_{2}-z\right\|\right)\right)^{p}\right]^{\frac{1}{p}}
$$

Consequently, for $f_{1}, f_{2} \in L^{\Phi}(I, X)$, we define

$$
\operatorname{dist}_{\Phi}\left(f_{1}, f_{2}, L^{\Phi}(I, G)\right):=\inf _{g \in L^{\Phi}(I, G)}\left[\left\|f_{1}-g\right\|_{\Phi}^{p}+\left\|f_{2}-g\right\|_{\Phi}^{p}\right]^{\frac{1}{p}}
$$

Definition 1.2 We say that $z \in G$ is a best p-simultaneous approximation from G of pair elements $x_{1}, x_{2} \in X$ if

$$
\left[\left(\Phi\left(\left\|x_{1}-z\right\|\right)\right)^{p}+\left(\Phi\left(\left\|x_{2}-z\right\|\right)\right)^{p}\right]^{\frac{1}{p}} \leq\left[\left(\Phi\left(\left\|x_{1}-y\right\|\right)\right)^{p}+\left(\Phi\left(\left\|x_{2}-y\right\|\right)\right)^{p}\right]^{\frac{1}{p}}
$$

for every $y \in G$. We say that $g \in L^{\Phi}(I, G)$ is the best p-simultaneous approximation of a pair of elements f_{1}, f_{2} in $L^{\Phi}(I, X)$, if for every $h \in L^{\Phi}(I, G)$, we have

$$
\left\|f_{1}-g\right\|_{\Phi}^{p}+\left\|f_{2}-g\right\|_{\Phi}^{p} \leq\left\|f_{1}-h\right\|_{\Phi}^{p}+\left\|f_{2}-h\right\|_{\Phi}^{p}
$$

Note that for $g \in G$ is the best p-simultaneous approximation from G of $x_{1}, x_{2} \in X$ iff (g, g) is the best approximation from D of the pair $\left(x_{1}, x_{2}\right) \in X^{2}$ where the metric on X^{2} is $|\cdot|_{\Phi, p}$. If every pair of elements $x_{1}, x_{2} \in X$ admits a best p-simultaneous approximation from G, then G is said to be p-simultaneous proximinal in X. The problem of best simultaneous approximation has been studied by many authors in [2, $7,12,13]$. Most of these works have dealt with the characterization of best simultaneous approximation in space of continuous functions with values in a Banach space X. Results of best simultaneous approximation in general Banach space can be found in [1, 8, 10]. Some results were obtained in the spaces of $L^{p}(I, X)$ have been tackled in $[6,11]$. In the present paper, we investigate the best p-simultaneous approximations of $L^{\Phi}(I, G)$ in $L^{\Phi}(I, X)$ where G is a closed subspace of X.

2. Main Results

We start with the following technical lemma.
Lemma 2.1 Suppose $1<p<+\infty$. For $f_{1}, f_{2} \in L^{\Phi}(I, X)$ we have

1. $\int_{I} \operatorname{dist}_{\Phi}\left(f_{1}(t), f_{2}(t), G\right) d \mu \leq 2 \operatorname{dist}_{\Phi}\left(f_{1}, f_{2}, L^{\Phi}(I, G)\right)$.
2. $\operatorname{dist}_{\Phi}\left(f_{1}, f_{2}, L^{\Phi}(I, G)\right) \leq \int_{I} \operatorname{dist}_{\Phi}\left(f_{1}(t), f_{2}(t), G\right) d \mu$

Proof. For any $g \in L^{\Phi}(I, G)$ and $t \in I$, we have

$$
\begin{aligned}
{\left[\operatorname{dist}_{\Phi}\left(f_{1}(t), f_{2}(t), G\right)\right]^{p} } & \leq\left[\Phi\left\|f_{1}(t)-g(t)\right\|\right]^{p}+\left[\Phi\left\|f_{2}(t)-g(t)\right\|\right]^{p} \\
& \leq\left[\Phi\left\|f_{1}(t)-g(t)\right\|+\Phi\left\|f_{2}(t)-g(t)\right\|\right]^{p}
\end{aligned}
$$

Therefore we have,

$$
\begin{aligned}
\int_{I} \operatorname{dist}_{\Phi}\left(f_{1}(t), f_{2}(t), G\right) d \mu & \leq\left\|f_{1}-g\right\|_{\Phi}+\left\|f_{2}-g\right\|_{\Phi} \\
& \leq 2\left[\left\|f_{1}-g\right\|_{\Phi}^{p}+\left\|f_{2}-g\right\|_{\Phi}^{p}\right]^{\frac{1}{p}}
\end{aligned}
$$

After taking the infimum over all g in $L^{\Phi}(I, G)$, we finish our proof of inequality (1). By the density of simple functions in $L^{\Phi}(I, X)$, we have for any $\varepsilon>0$ there are two simple functions f_{1}^{*} and f_{2}^{*} in $L^{\Phi}(I, X)$ such that

$$
\left\|f_{1}^{*}-f_{1}\right\|_{\Phi} \leq \frac{\varepsilon}{2^{\frac{1}{p}+1}}
$$

and

$$
\left\|f_{2}^{*}-f_{2}\right\|_{\Phi} \leq \frac{\varepsilon}{2^{\frac{1}{p}+1}}
$$

We can write $f_{i}^{*}=\sum_{k=1}^{n} \chi_{A_{k}} x_{k}^{i}, i=1,2$, where $A_{k}, k=1,2, \ldots n$ are disjoint measurable subsets of I satisfying $\bigcup_{k=1}^{n} A_{k}=I$ and $\chi_{A_{k}}$ is the characteristic function of A_{k}, and $x_{k}^{i} \in X$. We may assume that $\mu\left(A_{k}\right)>0$, for $k=1,2, \ldots n$. Since

$$
\operatorname{dist}_{\Phi}(x, y, G)=\inf _{z \in G}\left[(\Phi(\|x-z\|))^{p}+(\Phi(\|y-z\|))^{p}\right]^{\frac{1}{p}}
$$

then for any $k>0$, we can select $y_{k} \in G$ such that

$$
\left[\left(\Phi\left(\left\|x_{k}^{1}-y_{k}\right\|\right)\right)^{p}+\left(\Phi\left(\left\|x_{k}^{2}-y_{k}\right\|\right)\right)^{p}\right]^{\frac{1}{p}}<\operatorname{dist}_{\Phi}\left(x_{k}^{1}, x_{k}^{2}, G\right)+\frac{\varepsilon}{2 n \mu\left(A_{k}\right)}
$$

Let $g=\sum_{k=1}^{n} \chi_{A_{k}} y_{k}$. Clearly $g \in L^{\Phi}(I, G)$. Now

$$
\begin{aligned}
\operatorname{dist}_{\Phi}\left(f_{1}, f_{2}, L^{\Phi}(I, G)\right) & \leq\left[\left\|f_{1}-g\right\|_{\Phi}^{p}+\left\|f_{2}-g\right\|_{\Phi}^{p}\right]^{\frac{1}{p}} \\
& \leq\left[\left(\left\|f_{1}-f_{1}^{*}\right\|_{\Phi}+\left\|f_{1}^{*}-g\right\|_{\Phi}\right)^{p}+\left(\left\|f_{2}-f_{2}^{*}\right\|_{\Phi}+\left\|f_{2}^{*}-g\right\|_{\Phi}\right)^{p}\right]^{\frac{1}{p}} \\
& \left.\leq\left[\left\|f_{1}-f_{1}^{*}\right\|_{\Phi}^{p}+\left\|f_{2}^{*}-f_{2}\right\|_{\Phi}^{p}\right]^{\frac{1}{p}}+\left\|f_{1}^{*}-g\right\|_{\Phi}^{p}+\left\|f_{2}^{*}-g\right\|_{\Phi}^{p}\right]^{\frac{1}{p}}
\end{aligned}
$$

It is easy to show that:

$$
\begin{aligned}
\operatorname{dist}_{\Phi}\left(f_{1}, f_{2}, L^{\Phi}(I, G)\right) & <\frac{\varepsilon}{2}+\left[\left(\int_{I} \Phi\left(\left\|f_{1}^{*}(t)-g(t)\right\|\right) d \mu\right)^{p}+\left(\int_{I} \Phi\left(\left\|f_{2}^{*}(t)-g(t)\right\|\right) d \mu\right)^{p}\right]^{\frac{1}{p}} \\
& =\frac{\varepsilon}{2}+\left[\left(\sum_{k=1}^{n} \mu\left(A_{k}\right) \Phi\left(\left\|x_{k}^{1}-y_{k}\right\|\right)\right)^{p}+\left(\sum_{k=1}^{n} \mu\left(A_{k}\right) \Phi\left(\left\|x_{k}^{2}-y_{k}\right\|\right)\right)^{p}\right]^{\frac{1}{p}} \\
& \leq \frac{\varepsilon}{2}+\sum_{k=1}^{n} \mu\left(A_{k}\right)\left[\left(\Phi\left(\left\|x_{k}^{1}-y_{k}\right\|\right)\right)^{p}+\left(\Phi\left(\left\|x_{k}^{2}-y_{k}\right\|\right)\right)^{p}\right]^{\frac{1}{p}} \\
& <\frac{\varepsilon}{2}+\sum_{k=1}^{n} \mu\left(A_{k}\right)\left[\operatorname{dist}_{\Phi}\left(x_{k}^{1}, x_{k}^{2}, G\right)+\frac{\varepsilon}{2 n \mu\left(A_{k}\right)}\right]
\end{aligned}
$$

Thus

$$
\begin{equation*}
\operatorname{dist}_{\Phi}\left(f_{1}, f_{2}, L^{\Phi}(I, G)\right)<\varepsilon+\int_{I} \operatorname{dist}_{\Phi}\left(f_{1}^{*}(t), f_{2}^{*}(t), G\right) d \mu \tag{1}
\end{equation*}
$$

Using the subadditivity of Φ, we have

$$
\begin{aligned}
\operatorname{dist}_{\Phi}\left(f_{1}^{*}(t), f_{2}^{*}(t), G\right) & \leq \operatorname{dist}_{\Phi}\left(f_{1}(t), f_{2}(t), G\right)+\left[\left(\Phi\left(\left\|f_{1}^{*}(t)-f_{1}(t)\right\|\right)\right)^{p}+\left(\Phi\left(\left\|f_{2}^{*}(t)-f_{2}(t)\right\|\right)\right)^{p}\right]^{\frac{1}{p}} \\
& \leq \operatorname{dist}_{\Phi}\left(f_{1}(t), f_{2}(t), G\right)+\Phi\left(\left\|f_{1}^{*}(t)-f_{1}(t)\right\|\right)+\Phi\left(\left\|f_{2}^{*}(t)-f_{2}(t)\right\|\right)
\end{aligned}
$$

for all t. Therefore

$$
\int_{I} \operatorname{dist}_{\Phi}\left(f_{1}^{*}(t), f_{2}^{*}(t), G\right) d \mu \leq \int_{I} \operatorname{dist}_{\Phi}\left(f_{1}(t), f_{2}(t), G\right) d \mu+\left\|f_{1}^{*}-f_{1}\right\|_{\Phi}+\left\|f_{2}^{*}-f_{2}\right\|_{\Phi}
$$

Thus

$$
\operatorname{dist}_{\Phi}\left(f_{1}, f_{2}, L^{\Phi}(I, G)\right) \leq \int_{I} \operatorname{dist}_{\Phi}\left(f_{1}(t), f_{2}(t), G\right) d \mu+\frac{\varepsilon}{2^{p}}
$$

and hence

$$
\operatorname{dist}_{\Phi}\left(f_{1}, f_{2}, L^{\Phi}(I, G)\right) \leq \int_{I}\left(\operatorname{dist}_{\Phi}\left(f_{1}(t), f_{2}(t), G\right) d \mu\right.
$$

Lemma 2.2 Suppose that $1<p<+\infty$. If f_{1}, f_{2} are simple functions in $L^{\Phi}(I, X)$ and if $\mu(I)=1$, then

$$
\operatorname{dist}_{\Phi}\left(f_{1}, f_{2}, L^{\Phi}(I, X)\right)=\left[\int_{I}\left[\operatorname{dist}_{\Phi}\left(f_{1}(t), f_{2}(t), G\right)\right]^{p} d \mu\right]^{p}
$$

Proof. By Inequality (2) of Lemma 2.1, and the assumption $\mu(I)=1$, we have

$$
\begin{aligned}
\operatorname{dist}_{\Phi}\left(f_{1}, f_{2}, L^{\Phi}(I, G)\right) & \leq \int_{I} \operatorname{dist}_{\Phi}\left(f_{1}(t), f_{2}(t), G\right) d \mu \\
& \leq\left[\int_{I}\left[\operatorname{dist}_{\Phi}\left(f_{1}(t), f_{2}(t), G\right)\right]^{p} d \mu\right]^{\frac{1}{p}}
\end{aligned}
$$

Given $\varepsilon>0$. Choose $g_{0} \in \mathrm{E}^{\Phi}(I, G)$ with the property that

$$
\begin{equation*}
\left\|f_{1}-g_{0}\right\|_{\Phi}^{p}+\left\|f_{2}-g\right\|_{\Phi}^{p}<\left(\operatorname{dist}_{\Phi}\left(f_{1}, f_{2}, L^{\Phi}(I, G)\right)^{p}+\varepsilon\right. \tag{2}
\end{equation*}
$$

Since f_{1}, f_{2} are simple functions in $L^{\Phi}(I, X)$, we let

$$
f_{i}(t)=\sum_{k=1}^{n} x_{k}^{i} \chi_{A_{k}}(t), \quad(i=1,2)
$$

KHANDAQJI, SHATANAWI

where $A_{k}, k=1,2, \ldots, n$ are disjoint measurable sets with $\mu\left(A_{k}\right)>0$, and $x_{k}^{i} \in X$. For a simple function g in $L^{\Phi}(I, G)$, we can set $g(t)=\sum_{k=1}^{n} y_{k} \chi_{A_{k}}(t)$. Thus

$$
\begin{aligned}
\int_{I}\left(\operatorname{dist}_{\Phi}\left(f_{1}(t), f_{2}(t), G\right)\right)^{p} d \mu & \leq \int_{I}\left(\Phi\left\|f_{1}(t)-g(t)\right\|\right)^{p} d \mu+\int_{I}\left(\Phi\left\|f_{2}(t)-g(t)\right\|\right)^{p} d \mu \\
& =\sum_{k=1}^{n} \int_{A_{k}}\left(\Phi\left\|x_{k}^{1}-y_{k}\right\|\right)^{p} d \mu+\sum_{k=1}^{n} \int_{A_{k}}\left(\Phi\left\|x_{k}^{2}-g(t)\right\|\right)^{p} d \mu(t) \\
& =\sum_{k=1}^{n} \mu\left(A_{k}\right)\left(\Phi\left\|x_{k}^{1}-y_{k}\right\|\right)^{p}+\sum_{k=1}^{n} \mu\left(A_{k}\right)\left(\Phi\left\|x_{k}^{2}-g(t)\right\|\right)^{p} \\
& \leq\left[\sum_{k=1}^{n} \mu\left(A_{k}\right) \Phi\left\|x_{k}^{1}-y_{k}\right\|\right]^{p}+\left[\sum_{k=1}^{n} \mu\left(A_{k}\right) \Phi\left\|x_{k}^{2}-g(t)\right\|\right]^{p} \\
& =\left[\int_{I} \Phi\left\|f_{1}(t)-g(t)\right\| d \mu\right]^{p}+\left[\int_{I} \Phi\left\|f_{2}(t)-g(t)\right\| d \mu\right]^{p} \\
& =\left\|f_{1}-g\right\|_{\Phi}^{p}+\left\|f_{2}-g\right\|_{\Phi}^{p}
\end{aligned}
$$

By (2) and the fact that simple functions are dense in $L^{\Phi}(I, X)$, we have

$$
\begin{aligned}
\int_{I}\left(\operatorname{dist}_{\Phi}\left(f_{1}(t), f_{2}(t), G\right)\right)^{p} d \mu & \leq\left\|f_{1}-g_{0}\right\|_{\Phi}^{p}+\left\|f_{2}-g_{0}\right\|_{\Phi}^{p} \\
& <\left(\operatorname{dist}_{\Phi}\left(f_{1}, f_{2}, L^{\Phi}(I, G)\right)^{p}+\varepsilon\right.
\end{aligned}
$$

Since ε is arbitrary, we have

$$
\left[\int_{I}\left(\operatorname{dist}_{\Phi}\left(f_{1}(t), f_{2}(t), G\right)\right)^{p} d \mu\right]^{\frac{1}{p}} \leq \operatorname{dist}_{\Phi}\left(f_{1}, f_{2}, L^{\Phi}(I, G)\right)
$$

Theorem 2.1 Suppose $\mu(I)=1$. If G is p-simultaneously proximinal in X, then for every pair of simple functions f_{1}, f_{2} in $L^{\Phi}(I, X)$, there exists $g \in L^{\Phi}(I, X)$ such that g is the best simultaneous approximation of the pair of elements f_{1} and f_{2}.
Proof. We can write $f_{i}=\sum_{k=1}^{n} \chi_{A_{k}} x_{k}^{i}, i=1,2$, where $A_{k}, k=1,2, \ldots n$ are disjoint measurable sets such that $\bigcup_{k=1}^{n} A_{k}=I$ with $\mu\left(A_{k}\right)>0$ for $k=1,2, \ldots, n$. Pick
$y_{k} \in G$ such that y_{k} is the best approximation of the pair of elements $x_{k}^{1}, x_{k}^{2} \in X$. Let $g=\sum_{k=1}^{n} \chi_{A_{k}} y_{k}$. Then

$$
\begin{aligned}
\left(\left\|f_{1}-g\right\|_{\Phi}^{p}+\left\|f_{2}-g\right\|_{\Phi}^{p}\right)^{\frac{1}{p}} & =\left[\left(\int_{I} \Phi\left(\left\|f_{1}(t)-g(t)\right\|\right) d \mu\right)^{p}+\left(\int_{I} \Phi\left(\left\|f_{2}(t)-g(t)\right\|\right) d \mu\right)^{p}\right]^{\frac{1}{p}} \\
& =\left[\left(\sum_{k=1}^{n} \mu\left(A_{k}\right) \Phi\left(\left\|x_{k}^{1}-y_{k}\right\|\right)\right)^{p}+\left(\sum_{k=1}^{n} \mu\left(A_{k}\right) \Phi\left(\left\|x_{k}^{2}-y_{k}\right\|\right)\right)^{p}\right]^{\frac{1}{p}} \\
& \leq \sum_{k=1}^{n} \mu\left(A_{k}\right)\left[\left(\Phi\left(\left\|x_{k}^{1}-y_{k}\right\|\right)\right)^{p}+\left(\Phi\left(\left\|x_{k}^{2}-y_{k}\right\|\right)^{p}\right]^{\frac{1}{p}}\right. \\
& =\sum_{k=1}^{n} \mu\left(A_{k}\right) \operatorname{dist}_{\Phi}\left(x_{k}^{1}, x_{k}^{2}, G\right) \\
& =\int_{I} \operatorname{dist}_{\Phi}\left(f_{1}(t), f_{2}(t), G\right) d \mu \\
& \leq\left[\int_{I}\left(\operatorname{dist}_{\Phi}\left(f_{1}(t), f_{2}(t), G\right)\right)^{p} d \mu\right]^{\frac{1}{p}}
\end{aligned}
$$

Using Lemma 2.2, we have

$$
\left(\left\|f_{1}-g\right\|_{\Phi}^{p}+\left\|f_{2}-g\right\|_{\Phi}^{p}\right)^{\frac{1}{p}}=\operatorname{dist}_{\Phi}\left(f_{1}, f_{2}, L^{\Phi}(I, G)\right)
$$

Theorem 2.2 Let $g \in L^{\Phi}(I, G)$ be a best p-simultaneous approximation of a pair $f_{1}, f_{2} \in$ $L^{\Phi}(I, X)$. Then for every measurable subset A of I and every $h \in L^{\Phi}(I, G)$, we have

$$
\begin{equation*}
\int_{A} \Phi\left(\left\|f_{i}(t)-g(t)\right\|\right) d \mu \leq \int_{A} \Phi\left(\left\|f_{i}(t)-h(t)\right\|\right) d \mu \tag{3}
\end{equation*}
$$

for some $i \in\{1,2\}$.
Proof. Assume that $\mu(A)>0$ for some $A \subseteq I$. If there is $h_{0} \in L^{\Phi}(I, G)$ doesn't satisfy (3) for $i=1,2$, then we define $g_{0} \in L^{\Phi}(I, G)$ by $g_{0}(t)=g(t)$ if $t \in I-A$ and $h_{0}(t)$
if $t \in A$. Thus for $i=1,2$ we have

$$
\begin{aligned}
\int_{I} \Phi\left(\left\|f_{i}(t)-g_{0}(t)\right\|\right) d \mu & =\int_{A} \Phi\left(\left\|f_{i}(t)-h_{0}(t)\right\|\right) d \mu+\int_{I-A} \Phi\left(\left\|f_{i}(t)-g(t)\right\|\right) d \mu \\
& <\int_{I} \Phi\left(\left\|f_{i}(t)-g(t)\right\|\right) d \mu
\end{aligned}
$$

Hence we have

$$
\left\|f_{i}-g_{0}\right\|_{\Phi}^{p}<\left\|f_{i}-g\right\|_{\Phi}^{p}, \quad i=1,2
$$

This contradicts the fact that g is best p-simultaneous approximation from $L^{\Phi}(I, G)$ of a pair of the elements f_{1}, f_{2}.

Corollary 2.1 If g is a best p-simultaneous approximation from $L^{\Phi}(I, G)$ of a pair of elements $f_{1}, f_{2} \in L^{\Phi}(I, G)$, then for every measurable subset A of I,

$$
\int_{A} \Phi\left(\|g(t)\| d \mu \leq 2 \max \left\{\int_{A} \Phi\left(\left\|f_{1}(t)\right\|\right) d \mu, \int_{A} \Phi\left(\left\|f_{2}(t)\right\|\right) d \mu\right\}\right.
$$

Proof. It follows from Theorem 2.2 by taking $h=0$.

Acknowledgement

We wish to express our sincere thanks to the referee for his/her comments.

References

[1] Alsharif, sh.: Best Simultaneous Approximation $L^{\Phi}(I, X)$, submitted.
[2] Chong, L., and Watson, G. A: On the Best Simultaneously Approximation, J. Approx. Theory, 91, 332-348(1997).
[3] Deeb, W. and Khalil, R.: On the Tensor Product of Non Locally Topological Vector Spaces, Illinois J. Math. Proc. 30,594-601(1986).
[4] Deeb, W. and Khalil, R.: Best Approximation in $L^{p}(I, X), 0<p<1$, J. Approx. Theory, 58, 68-77(1989).
[5] Deeb, W. and Younis, Y.: Extreme Points in a Class of Non Locally Convex Topological vector space,Math. Reb. Toyama Univ. 6, 95-103(1983, New York (1972).
[6] Khalil, R and Saidi, F.: Best Approximation in $L^{1}(I, X)$, Proc. Amer. Math. Soc., 123, 183-190 (1995).
[7] Mach, J.: Best Simultanneous Approximation of Vector Valued Function with Values in Certain Banach Spaces, Math. Ann, 240, 157-164 (1979).
[8] Milman, P. D.: On Best Simultaneous Approximation in Normed Linear Spaces, J. Approx. Theory, 20, 223-238 (1977).
[9] Pinkus, A.: Uniqueneness in Vector Valued Approxomation, J. Approx. Theory, 73, 17-92 (1993).
[10] Sahney, B. N., and Singh, S. P.: On Best Simultaneous Approximation in Banach Spaces, J. Approx. Theory, 35, 222-224 (1982).
[11] Saidi, F., Hussein, D. and Khalil, R.: Best Simultaneous Approximation in $L^{p}(I, X)$, J. Approximation Theory, 116, 369-379 (2002).
[12] Tanimoto, S.: On the Best Simultaneous Approximation, Math. Japonica, 48, 275-279 (1998).
[13] Watson, G. A.: A Characterization of Best Simultaneous Approximation, J. Approx. Theory, 75, 175-182 (1993).
M. KHANDAQJI, W. SHATANAWI

Received 15.05.2006
Department of Mathematics
The Hashemite University
Zarqa-JORDAN
email: mkhan@hu.edu.jo • swasfi@hu.edu.jo

[^0]: AMS Mathematics Subject Classification: 41A50, 41A28.

