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On the regular elements in 7Z,

Osama Alkam and Emad Abu Osba

Abstract

All rings are assumed to be finite commutative with identity element. An element
a € R is called a regular element if there exists b € R such that a = a®b, the element
b is called a von Neumann inverse for a. A characterization is given for regular
elements and their inverses in Z,, the ring of integers modulo n. The arithmetic
function V'(n), which counts the regular elements in Z, is studied. The relations

between V(n) and Euler’s phi-function ¢(n) are explored.
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1. Introduction

All rings are assumed to be finite commutative with identity element 1. The numbers

p and g are always assumed to be prime numbers.

Definition 1 An element a € R is called a regular element if there exists b € R such
that a = a?b, the element b is called a von Neumann inverse for a. The ring R is

called a von Neumann regular ring (VNR) if all elements of R are regular.

The following proposition is well known; it shows some basic properties of the regular

elements and their importance in ring theory, (see [3]).

Proposition 1 If a is a regular element in R, then there exists a unique element
a=Y € R such that:
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(1) a=a?a"V and o=V = (a(=V)32a.
(2) e = aa'"Y) is an idempotent.
(8)u=1—e+a is a unit.

(4) a = ue.

(5) aR = eR.

Recall that for each natural number n, the function ¢(n) is the number of integers ¢
such that 1 <t <mn, and ged(¢t,n) = 1, w(n) is the number of distinct primes dividing n,
7(n) is the number of divisors of n and o(n) is the sum of the divisors of n; see [5].

In section 2, we characterize regular elements in Z,, the ring of integers modulo n,
and find their von Neumann inverses.

In section 3, a new arithmetic multiplicative function V' (n), which counts the regular
elements in Z,, is introduced. This new function is related to the famous Euler’s phi-
function ¢(n). Different definitions of V(n) are given and basic properties are studied.
Many inequalities are proved relating V' to some of the famous arithmetic functions. The
asymptotic behavior of V is also studied.

In section 4, some open problems are posed for further research.

Studying and counting the regular elements in Z, is very interesting. The function
V shares with the function ¢ many of its important properties, while it differs in some
others. We think that the function V' could be used in cryptography theory and would

be a source for many research problems in ring and number theories.

2. Regular Elements in 7Z,

It is not always an easy task to determine if a particular element is a regular element
and to find its von Neumann inverse. However if the ring R is a local ring, then
computations are easier. In fact, in this case a regular element is either zero or a
unit. In this section, we use this fact together with the decomposition theorem of finite
commutative rings with identity to determine if a given element in Z, is regular or not
and to find its von Neumann inverse. See also [1]. For each ring R, let Vr(R) be the set

of all regular elements in R.

Lemma 1 Let R be a local ring with M its only mazimal ideal. Then Vr(R) = R\ (M \
{0}).
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Proof. Leta e R\ (M\{0}). Then a is a unit or zero and so a € Vr(R).If a € Vr(R),
then there exists b € R such that a = a?b, which implies that a(1 —ab) = 0. If a is not a
unit, then (1 — ab) is a unit and so a = 0, therefore a € R\ (M \ {0}). 0

Theorem 1 Let R = [][ R; where R; is a local ring for each i € I . Then (a;)icr 15 a
iel
reqular element if and only if a; is either zero or a unit in R; for eachi € I .
Proof.  (a;)ier is regular
= there exists (bi)iel such that (ai)ie] = ((ai)iel)z(bi)iel = (a%bi)ie[
S oa; = afbi foralliel

< a; = 0 or a; is a unit in R; for each 7 € I. O

m
It follows immediately from this theorem that if n = [] p;"*, then an element m € Z,
i=1

is regular if and only if m is a unit (mod p;*) or m is 0 (mod p;'*) for each i.
It is known (Euler’s Theorem) that if @ is a unit in Z,, then a*™ = 1 (mod n) and so
ar(m—1 (modn) is the multiplicative inverse of a in Z,,. The following theorem generalizes

Euler’s Theorem.

Theorem 2 An element a is regular in Z,, if and only if a¥™*+' = a (mod n).

m

Proof. Letn = [] p{". Suppose that a is a regular element in Z,. If e = 0 (mod p{"),
i=1

then a?(™*! = a (mod p). So assume that a is a unit (mod p*), which implies, using

©(n)

Euler’s theorem, that a?(™ = (a?®))*GfY = 1 (mod pet). Therefore, a¥(M*! = q
(mod p$), hence a?™*! =a (mod n).
Conversely, a = a?™*! = ¢2a#(™~1 (mod n), and so a is a regular element. O

The following corollary determines the von Neumann inverse for a regular element in
/o

Corollary 1 If a is a reqular element in Zy, then a?™ =1 is a von Neumann inverse for

a in Zyp. In fact, a1 = a?™=1 (mod n).
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Remark 1 Let a be a regular element in Z,. As a consequence of Proposition 1,
(@D = a, therefore, by Corollary 1,
a= (a1 = (a=D)em)=1 = (ge()=1)e() =1 (104 n).

Example 1 It is known that Zss ~ Zg X Zg. 25 = 1(mod 4) and 25 = 7(mod 9), so 25
is a regular element in Zss. Moreover, 13 = 25 = (25)9G6) -1 = (25)(=1) (mod 36) is
a von Neumann inverse for 25 in Zss. On the other hand, 18 =2 (mod 4) and 18 = 0

(mod 9), so 18 is not a regular element in Zsg.

3. Number of Regular Elements in Z,

In this section, we study the function V(n); it is the number of regular elements in
the ring Z,,. We also relate it to Euler’s phi-function.

Using Lemma 1 and Theorem 1 in Section 2, one can deduce easily that if R =
m
I1 Ri, where R; is a local ring with M, its unique maximal ideal for each i, then
i=1
m m m
[Vr(R)| = ]_[1(|RZ| — |M;] +1). Recall that if n = Hlpf”, then Z, ~ 1—[1 Ly and
= 1= 1=

K2

on) =1 —p ) =n]l0 - 11—7) Hence the following theorem easily follows.

K2
i=1 pln

Theorem 3 (1) V(p®) =p* —p* 14+ 1=9(p*) +1=p*(1—

(21 n= 1o, thenVin) = [T VG = 100 2~ +1) = [T 607 +1) =

nl:ll(l — p%_—i— p;l%‘)'

(3) If ged(m, k) =1, then V(mk) =V (m)V (k), i.e. the function V is a multiplicative

function.

We now give another formula for finding V(n). But first we give the following

definition.

Definition 2 Let a and b be two positive integers. We say that a is a unitary divisor
of b if a|b and ged(a,2) = 1. In this case, we write a || b, see [7].
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We now use the unitary divisors of an integer to calculate the number of regular

elements.
Theorem 4 V(n) = dzH;lcp(d). Moreover, —Z((Z)) = dzH;l ﬁ.

Proof. The proof follows immediately using the formula V(n) = [] (p(p*)+1). O

p*|ln

Example 2 90 = 2! x 32 x 5'. The unitary divisors of 90 are: 1,2,5,9,10,18,45,90.
Hence V(90) =70 = (1) + ©(2) + ©(5) + ¢(9) + ¢(10) 4+ ©(18) + ©(45) + ¢(90).

3.1. Basic properties

It is well known that ¢(n) is even for all n > 2. But this is not true for V(n) as it is

shown below.

Theorem 5 V(n) is even if and only if 2 || n, i.e. n =2 (mod 4).
Proof. V(n) = ] (p(*) +1). For p # 2,¢0(p*) + 1 is an odd number. For p = 2

p*|ln

and o =1, p(2)4+1 = 2iseven. Forp=2and a > 1, ¢(2%*)+1 isodd. Hence the result. O

Theorem 6 For each regular element a € Z,,, a"™ = aV(™=¢(M)  (mod n).

m
Proof. Suppose that n = [] py*. Let a be a regular element in Z,,. Ifa =0
i=1

(mod p$), then since V(n) > ¢(n), it follows that a¥' (™ = aV(™=¢() (mod p2*). So

) »(n)
assume that a is a unit (mod p*), hence @' (") = V(W) =¢(M) (g i) e = ¢V (M) =¢(n)
(mod p7).
Thus ¢V () = ¢V =% (mod n). O

We now calculate the summatory function of the arithmetic function V. Let F'(n) =

SV (d).

dln
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Theorem 7 Let n = [] pi"*. Then F(n) =[] F(p;") = ] (p;" + ci).
- .

Proof.  F(p°) = 5 V(') = VI+ 3 V) = 143 (") +1) = w1+ 3 o)+

k=0 k=1 k=1
(0% (0% k (0%
Z =2 o)+ X 1=p"+a.
k=1 k=0 k=1
Since the function V' is multiplicative we can obtain the general case easily. O

3.2. Inqualities

For each n, we have y/n <V (n) <n, since v/n < ¢(n) for all n not 2 or 6.

Since p ' < pM Tl 41 < pfilp; — 1) + 1 < p, it follows that Hpo” <

(21

p; -

ﬁ(w4+nswﬁmwz

=1 =1 K3
It is known that & < % < 1; see [6, 1.21]. Tt is clear that % > 1. In

fact, if we choose the subsequence {nj} such that ny is the product of the first k prime

3

1

k
Vio(n) _ o) _ BT b

numbers, then V(ny) = ny and (Z E b ) = = =101+ 2) = oo as
il;Ilpi =t

k — co. In fact, V(p*)a(p®) = (p* — p*~' + 1)(kZO pF) =p*(1—p! +p‘“)(k20p’“) =

prA+pt+ Y ph) =L+ pm + 3 pm ).

k=2 k=2
Since both V' and ¢ are multiplicative functions, if n = [] p*, then % =

i=1

m

Hu+m%+2m“”%

with equality if and only if n is a prime; see
=2p+ 1> 2p = pr(p). We show now that if

It is known that o(n) + ¢(n) < n 7(n
[6]. For any prime number p, o(p) + V(p

~ ~—

n is a composite number, then o(n) +V(n) <n 7(n).

Theorem 8 Ifn is a composite number, then o(n)+ V(n) < n 7(n).
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Proof. It is clear that Zé < 7(n) — 1, since there are at least 2 divisors d with

dln
é < % (namely d = n and any other divisor of n that is greater than 1). So @ =
> L <7(n) = 1. Thus o(n) +n < nr(n). Now the result follows, since V(n) < n. O

s

|n

3.3. Asymptotic Behaviour

The sequence {@} has no limit, since the subsequences {Vg%:l)} and {Vgin)} have

Ve
P

different limits. However if p is a prime and since V(n) is at most n for all n,

one can conclude that lim sup@ =1.

n—oo

Theorem 9 For any € > 0, lim (Z)(—l",)e = 00.

Proof. It is suffices to consider n = p™.

(;/79;1)6 = pm(l;ﬁjﬁtpim) =pm(1—pt+p ™) — oo as p™ — oo. Now it is easy to
deduce the general case. O
The subsequence {%}p is prime converges to 1, while the subsequnce {::((Z:))} where

k
ny is the product of the first & prime numbers, diverges since Z((Z:)) =[]+
i=1

1
pi—1

), so
one can conclude the following.

Theorem 10 (1) limsup L% = . (2) liminf% =1.

»(n) N—00

3.4. Factorial Equations

It is known that for any prime number p,
L o7(p!) =27((p—1)).
2. o(p) = (p+1)o((p — ).

3. () = (- De(lp—-1.

37



ALKAM, OSBA

In the case of V', we have V(p!) =V (p(p— 1)) =V(p)V((p— 1)) =pV((p — D).

Although lim V(") does not exist as shown above, the situation is different when

n—oo

dealing with factorials.

Theorem 11 lim V("') =0.
Proof. The result follows immediately since Vfﬁ!) = II (1- % + pl—a) = JI (1- (11—7 —
P in! pein:
%)) But > (— — —) diverges, and Lim (l — pl—a) =0, so Vfﬁ!) = a]i[ |(1 — 11—7 + pl—a)
p¥||n!
diverges to zero, see [2, 12-55]. O
We now extend the results of F. Luca in [4] to V(n).
Theorem 12 Let a be any positive rational number. Then the equation % = a has

finitely many solutions (m,n).
Proof.  Notice that V(n!) is odd for all n > 4, (see Theorem 5). Let a = § be a

positive rational number. Consider the equation V(n!) = $m!. If there are infinitely

many solutions (m,n) for the equation, then there is an mg > d such that $m! is even

for all m > mg, a contradiction. O
We now use the above theorem to solve the equation % =aq, for a = 1.
V(n') _

Corollary 2 =1, has a solution only forn =1,2, and 3.

Proof. Forn,m >4,V (n!) is odd while m! is even. O

4. Open Problems

1. If nis a product of distinct primes, then V(n) = n. It is clear that ged(p®, V(p®)) =
1. So V(gp®) t gp™. We use computer calculations to show that V(n) {n up to a
large n such that n is not a product of distinct primes. Does V(n) 1 n for all n

which is not a product of distinct primes?
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2. Let Vi(n) = V(n) and for all j > 1, Vj41(n) = V(Vj(n)). Since n is a finite
number and Vjyi(n) < Vj(n), then for each n, there exist & and m such that

m = Vi(n) = V;j(n) for all j > k. Can one estimate k& and m for each number n?

3. For all n > 2 x 10° V(n) > ¢(n) > see [4]. Is it true that for all

__n
2In(Inn)’

n>9V(n) > m? In fact we verified this using computer calculations for very

large values of n.
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