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On the Normalizer of the Congruence Subgroup H; (/)
of the Hecke Group H’

Stleyman Uzun

Abstract

Let A = 2cos £ and let H? be the Hecke group associated to A. In this paper,
the normalizers of the congruence subgroups H{(I) in PSL(2,Z[)]) are studied in
the case where I = (2)*I', (2,I') =1 and I’ is a prime ideal.
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1. Introduction

The congruence subgroups of the Hecke group H? (¢ = 3,4,6) and the normalizers of
these groups in HY, in PSL(2,Z[)\,]) and in PSL(2,R) were studied by various authors
(see [1], [2], [4], [5], 8], [9], [16]). The normalizers of the congruence subgroups of the
Hecke group H® in PSL(2,R) were given for prime ideals (see [11],[12]). In this paper, we
investigate the normalizer of the congruence subgroup H{(I) of the Hecke group H® in
PSL(2,Z[)\]). Furthermore, in [8], it is conjectured that the normalizer of H3(I) in H® is
H3((2)*'I"), where T = (2)*I" is an ideal of Z[)], (2,I') = 1 and o/ = a — min (2,[121])-
We give a proof to the conjecture in the case where I’ is a prime ideal.

We start by recalling definitions, notations, and some preliminary results of these
concepts. By a Hecke group we mean a discrete subgroup of PSL(2,R) generated by
T and U,, where T and U, are the Mobius transformations given by T'(z) = —%, and
Uq(2) = 2+ Aq. Hecke [6] showed that these groups are discrete if and only if Ay = 2cos T
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or Ay > 2. This group is denoted by HY. It is known that a presentation for H? is
(T,Ug) =(T,8, | T> =51 =1),

where S, = TU,, and so H? is isomorphic to the free product C5 * C,.
We have the following table of the values of A, for small g:

¢ |3 4 5 6

M1 V2 53

The best known example is when ¢ = 3, and H? is the modular group I' = PSL(2,Z)
so the above can be thought of as a natural generalization of I'. Furthermore, we have the
following geometric interpretation: the modular group I is the triangle group (2,3, o)

and the Hecke group H? is the triangle group (2, g, 00).
Let H:={z € C | Im(z) > 0} and H := HUQ(A;) U{oo}. Then the Hecke group HY,
namely a subgroup of SL2(Z[\,])/ {£I}, acts on H by

(a b) az+b
Nz = .
c d cz+d

As usual, we denote an element of H? as a 2 X 2 matrix (

) remembering to
c

identify any such matrix with its negative.

Let I be an ideal of Z[A,]. The principal congruence subgroup of level I is

b
gy =4 ¢ €H|a—1,bcd—1=0(modl)
c d

and any subgroup A? of H? containing H9(I) is called a congruence subgroup of level I.

The two most important of these are

{(Z Z)EH‘”CEO(modI)}
Hf([)z{(i 2)EHq|a—1,c,d—1EO(modI)}.

Hg (1)

and
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It is easy to see that we have the inclusions HY(I) < H{(I) < H{(I) < H? and we can
also see that H9(I) is normal in H? and H{(I) is normal in H{(I).

Again, H{(I) is a natural generalization of the congruence subgroups I'g(n) of I". It
works because the elements of H? sit naturally in the ring Z[\,].

Recall that H? is commensurable with PSL(2,Z) if and only if ¢ = 4 and 6. The
elements of such groups are completely known (see [17]).

Suppose H? is not commensurable with PSL(2,Z). By the result of A. Leutbecher
([14],[15]), Q(N\) U {oo} is the set of cusps of H? if and only if ¢ = 5. Also, 5 is the only ¢
other than 4, 6 for which Q()) is a quadratic field. For all other ¢’s, the degree is > 2. As
a consequence, ¢ = 5 is the next most workable and interesting ¢. Some of the classical
results on the modular group can be generalized to H® (see [3], [9], [10], [11]).

From now on, q will be 5, so A := X5, then Z[\ = Z[\s] and U := Us, or

- (32)

The main facts used in our proofs :

(a) Z[)] is a principal ideal domain. The norm of any element u+ v\ of Z[}] is defined
by Nor(u+v\) = u?—v?+uv. Let I be a non-zero ideal of Z[)\]. For an element a € Z[)],
we say that a and I are relatively prime if there exist elements x € Z[\] and b € T such
that ax + b = 1, and this is denoted by (a,I) = 1.

Let a,b € Z[A]. The element a is said to be congruent to b modulo I (denoted by
a = b(modl)) ifa—be I

(b) The set of cusps of H® is Q(\) U {oo} ([14],[15]). Furthermore, if z € Q()) is a

cusp, z has a unique reduced form z = 2 ([13]). By definition, this means that a, ¢ € Z[)]

with ¢ > 0 and there exists b, d € Z[A] such that ( “

b
) € H5. Clearly, (a,c) =1 so
c d

that if z = ‘;—: with (a’, ') =1, then a = pa’, ¢ = pc’ where p is a unit in Z[\].

1 b
(c) (Corollary 5 of [13]) ( 0 1 ) € Hb® if and only if b = m\, m € Z. Similarly,

10
( 1)EH5ifandonlyifc:n)\,nEZ.
c

(d) (Proposition 6 of [13]) Suppose z;, z; are H5-rationals with reduced form o and

@‘

d—J respectively, and suppose that ; < z;. Then the following statements are equivalent:
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(i) ( @ b ) € H;
C; dj

(ii) (=i, z;) is an even line, that is, it is the image of the complete hyperbolic geodesic
with ends at 0 and oo under the action of some A € H®;

(iii) a;d; — bjc; = 1.

(e) A € H if and only if it is a finite word in the generators T and U. The word can

be written as
A=U0U"TU"T ... TU ™ (1.1)

where r; are non zero integers except ro and 7,4+; which may be 0. The word in turn
gives rise to the matrix A. By judicious applications of the generators the word can be
made unique ([18]).

(f) (Lemma 1 of [3]) If I is a non-zero ideal of Z[\5], then

[H®: Hy(D) =N ]] (1 + ﬁ) :

P|I

where the product is over the set of all prime ideals P which divide I. Here, for a non-zero
ideal T of Z[)\], N(I) denotes the absolute norm of I.

(g) (Theorem 4.5 of [7]) If K, H, G are groups with K < H < G, then [G: K] = [G :
H|[H : K]. If any two of these indices are finite, then so is the third.

(h) (Corollary 2 of [10]) The indices of the congruence subgroups of H° of level I = (2)
are [H® : H5(I)] = 10, and [H5 : HY(I)] = [H? : H3(I)] = 5.

The rest of this paper is organized as follows. In the next section, we give some
results concerning congruence subgroup Hg(I), where I = (2)%, (a = 1,2) or I is a prime
ideal, which will be needed later. In section 3, we find the normalizer of the congruence
subgroup HS(I) in PSL(2,Z[)]), where I = (2)*I’, (2,I') = 1, and the proof of the

conjecture in [8] for this case is given in Corollary 17.

2. Congruence subgroup Hj(I)

Lemma 1. Let the ideal I = (2) = 2Z[)\] and let A € H®. Then

1 rA
Ac HS(I) if andonlyifAz:I:( 0 Tl )(mod[),
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where r =0, 1.
Proof. By using (g) and (h), we have that

[H3(I): H>(I)] = 2.

1 A

Then, since U =
0 1

) ¢ H5(I), the partition of HJ(I) associated to the subgroup
H5(I) is
HS(I) = HY(I) UUH(I). (2.2)

Thus, for every matrix A in H§(I), from (2.2), there are two cases as follows.
Case 1. If A € H°(I), then we get

(10
A::I:( 0 1 )(mod[).

Case 2. If A€ UH5(I), then we have

(1A
A::I:(O ) )(mod[).

This completes the proof of the lemma. O

(=l

a

Corollary 2. Let A = ( ) be an element of H3(I). In this case,

QU

Cc

(1) if I =(2), then, a — d = 0(mod(2))
(ii) if I = (4) = (2)2, then, a — d = 0(mod(4)).

Proof. (i) Since a?> — 1 = (a — 1)(a + 1), by Lemma 1, we have

a® —1 = 0(mod(2)?). (2.3)

Since A € H{(2) and ad — be = 1, we have

ad = 1(mod(2)). (2.4)
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Suppose that a — d = u(mod(2)) for some u € Z[\]. Multiplying by a, one has a* — ad =
au(mod(2)). In this case, since a #Z 0(mod(2)), by (2.3) and (2.4), we have u = 0(mod(2)).
This implies that ¢ — d = 0(mod(2)).

(ii) Since A € H3(4) and ad — bc = 1, it is clear that ad = 1(mod(4)). Here, using a

similar argument as in the proof of (), we have a — d = 0(mod(4)). O

Remark 3. Let ( @

b
) be an element of H3(2). Then a — d = 0(mod(2)?) is not
¢

necessarily true.

Example 4. From (1.1),

1422 =X

A=UTUT =
22 -1

) € H(2).

Then, for the matriz A, we have a — d = 2(1 + \) # 0(mod(2)?).

Remark 5. Let ( @

b
) be an element of H3(4). Then a — d = 0(mod(2)?) is not
¢

necessarily true.

1+2X

Example 6. If we take A = ( o)

-A
. ), then, for matrices

2_( 3+6)  —2 -2\

41+2) —1-2X ) € Hy((2)?) and A* = ( 29 +480  —4(3+5)) )

8(3+5)) —11—16A

€ H3((2)3), we have a—d = 4(1+ ) # 0(mod(2)?) and a—d = 4(10+16X) # 0(mod(2)?),

respectively.
Remark 7. If the ideal I # (2), then Corollary 2 (i) and (ii) are not true.
Example 8. Let I = (3). From (1.1),

254+ 40X 10+ 17\
B:UTU4TU2TUTU—1T=< + * )e >

Hj(3).
9(2+3)) 8+11A
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For the matriz B, a = 25+40\. Then it is easily seen that a®> —1 % 0(mod(3)). It follows
that a — d Z 0(mod(3)).

Example 9. Let I = (2+ \). From (1.1),

12 + 25X 5+ 6A

C =TU*TUTU*TU T =
—(24+N2(4+5\) —4(3+5))

) € H3(2+\).

For the matriz C, a = 12+ 25X\ and a®> — 1 = (11 + 25))(13 + 25)). From (a), we have
Nor(a? — 1) = 131.229 and Nor(2 + \) = 5. In this case, since Nor(a® — 1) = 4 mod 5,
we obtain a® — 1 # 0(mod(2 + \)). This implies that a — d # 0(mod(2 + \)).

Example 10. Let I = (4 —X). From (1.1),

5\
D=TU'TU T = € Hi(4—-N\).
—(4- )\)3(2 +3X) —T7A
For the matriz D, a = 5\. Using a similar argument as in Example(9), we have

a®? — 1 # 0(mod(4 — \)). This implies that a — d Z 0(mod(4 — \)).
Corollary 11. H3(2) = H{(2).

Lemma 12. Let I = (1) be a prime ideal of Z|)\]. Let p be the positive rational prime
which lies below 7. Then

(i) (p) = (1) if and only if Hg(p) = Hg().

(ii) (p) # (1) if and only if H§(p) = Hg (7).

Proof. (i) If (p) = (1), then it is easily seen that HJ(p) = Hj(r). Suppose that
H(p) = H3(1). Let x = 2 € Q(\). By Leutbecher’s Theorem ([14], [15]), « is a cusp of
H?®. By (b), the reduced form for x is of the form =, where ¢ is a unit in Z[A]. Thus, by

(d), H3(7) contains an element of the form

Ac:<; Z) (2.5)

In this case, since Hj(p) = HJ(7), it follows that 7 = ¢~ !pu, where u € Z[\]. Thus we
have (p) = (7).

213



UZUN

(i) Let (p) # (7). Since (p) C (7), it is clear that H{(p) < H{(7). By (2.5),
A. ¢ H5(p). This implies that HJ(p) S HJ(7).
Conversely, from (2.5), we have (p) # (7).

3. Upper bound for N(HJ(2%T))

Let I’ be an ideal of Z[)\]. Since Z[}] is a principal ideal domain, I’ = (7) for some 7.
Note that we may assume that 7 is positive.

From now on, we take the ideal
I=(2)°T =(@)°~NI =(2°7), (3.6)
where (2,1') = 1 and I’ = (7) is a prime ideal. Denote by N(H{(2%7)) the normalizer

b
of H3(2°7) in PSL(2,Z[\]). Let X = ( * : ) € N(HZ(2°7)), and A = ( “ ) ) €
Yy &

H3(2%7). Then, we have that

YAY-! — ( atr —bry — dyz + ctz  —(a — d)xz + bx? — cz?

€ Hj(2°1 3.7
(a — d)ty —by? +ct>  —ayz + byr + dxt — ctz ) 0(2%7)  (3.7)

—1 _ * * 5/0a
X1AX = ( o d)ey b e ) € Hj(2%7). (3.8)
1 A
If we take A = ( ), then,
0 1
1— 2
XAX ! = ( QiyA fi . ) € H3(27) (3.9)
-y xy
14+tyh 32X
X 1AX = ( t)\y N ) € Hj(2%7). (3.10)
-y —ty

Tr Zz

Lemma 13. Let X =
y t

) € N(H3(2%7)). Then

y = 0(mod (2%'7)),
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where o/ = o — min (2, [|

[Nlfe)

1)

Proof. Since A is a unit in Z[)\], by (3.9) and (3.10), then

y* = 0(mod (2°7)).

Since ad —bec =1 and xt — yz = 1, from (3.8), we have

(a* — 1)y = 0(mod (2°7)).

(3.11)

(3.12)

Here, since I’ = (1) and (2) are prime ideals, by (3.6), (3.11) and (3.12), we obtain

y = 0(mod (2))

(a®> — 1)y = 0(mod (2)).
and
y = 0(mod (1))
(a? — 1)y = 0(mod (1)).

By (3.13), there exists o’ € Z such that

y = 0(mod (2)*) and y % 0(mod (2)* ).

This implies that
y? = 0(mod (2)%)
For o and o, there are two cases:

Casel. Let a < &’. Then (3.11) and (3.12) are always true.
Case2. Let o > o. From (3.11) and (3.18), we obtain

a<2d = =-<d <a.

e

From (3) and (3.17), we get

(a> — 1)y = 0(mod (2)*+2).

(3.13)

(3.14)

(3.15)

(3.16)

(3.17)

(3.18)

(3.19)

(3.20)
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By using (3.12) and (3.20), we have that

a<d +2= 0<a—ad <2 (3.21)

Thus, the smallest element o’ € Z which satisfies (3.19) and (3.21) must be found.
(i) For a = 1,2 and 3, by (3.19) and (3.21), we have that o/ = 1,1 and 2, respectively.
(i4) For av > 4, there exists an element 3 € N such that « = 3 + 4. In this case, by
(3.19) and (3.21),

2<cd and f+2<a.

Since ' is smallest, it follows that o’ = 8+ 2. Thus, for every o € Z such that o > 4,
we obtain o/ = o — 2. Consequently, from (i) and (ii), we have y = 0(mod (2% 7)), where
o = a—min (2 [|3]).

This completes the proof of the lemma. O
Lemma 14.(Lemma 1 of [12]) If I is a prime ideal of Z[)\], then
N(H (D)) = H(D).

Remark 15. If I is not a prime ideal of Z[)\], then Lemma 14 is not necessarily true as

in the following theorem.

Theorem 16. Let the ideal I = (2%7) as in (6). Then
N(H;(2%7)) = Hy(2"'7)

-

Proof. By Corollary 2 (i) and (ii), it is clear that

where o/ = o — min (2, [|

(NI

H3(2%'7) < N(HJ(2°7)) (3.22)
where o/ = a — min (2, [|%||). Now we prove the converse inclusion, that is,
2
HE(2%'7) > N(Hg(2°7))
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Tr Zz

where a':a—min(2, [|%|]).LetX: ( .
Y

) € N(H3(2%7)). Then, by Lemma 13
and (3.10), it is clear that

y = 0(mod(2%'7)).

This implies that y = 2% 7 for some ¢ € Z|A]. Suppose ¢ # 0. Recall that a = =%~ €

c2o’r
Q()) is a cusp of H® asin (b). Let a = Z—: be the reduced form for a. Then H® contains
an element of the form

Since (z,c2% 1) = 1,y = puc2® 7 where  is a unit of Z[\]. Hence 3/ is a multiple of 2% 7.
This implies that Y € HZ(2%'7) < N(H(2%7)). Since Xoo = Yoo, it follows that

y-lx — ( v ) € N(HZ(2°7)),
0 u™
where u, v € Z[\]. Applying (9) and (10) to Y ' X, we have that

1 w2\ 1 w2\
0 1 "lo 1

are elements of H3(2%7). By (c), u = +1. Multiplying Y !X by —T if necessary, we may

assume that ©u = 1 and
vy — 1 z4+yA 7
0 1

where x, y € Z. Note that

( (1) ?A ) e N(H3(2°7)).

As a consequence,

( (1) 91” ) e N(H3(2°7)).
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Suppose that x # 0. Since A € R \ Q, for any € > 0, there exist k and [ such that

k l
((1) f) ((1) i) :<(1) f>:aeN(H3<2%>>,

where 0 < |§| < e. As a consequence,

1 0 14+2%p 2962
o ol = P P € Hy(2%7),
20p\ 1 0 1—2%p

where p is the positive rational prime which lies below 7. This implies that HJ(2%7)
is not discrete, giving a contradiction. Hence x = 0 and Y !X € H8(2“,T). Since
Y € H3(2%'7), then we obtain X € HZ (2% 7).

Suppose y = 0. From the above argument, we have that X € HJ (2“,7). Consequently,

N(H(27)) < H3 (2% 7),

where o/ = a — min (2, [|%|]) .

This completes the proof of the theorem. O

Corollary 17. Let I = (2)*I' be an ideal of Z|)\], where I' is a prime ideal of Z[\]
and (2,1') = 1. Then the normalizer of H3(I) in H® is H3((2)*'I'), where o/ =
o —min (2, [|5]])-

Proof. From Theorem 16, it is clear that

N(H3(I)) N H® = H3((2)*'T"),

1) 0

Theorem 18. Let I = (2)*I’ be an ideal of Z[N], and (2,I') = 1. Then

[Nlfe)

where o/ = o — min (2, [|

1, a=1
[H3((2)*'T') : HY((2)°T')) =% 4, a=23
16, a>4

where o’ = o — min (2, [|

[Nfe)

-
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Proof. By using (f) and (g), we have that

5. m5((o)ar L a=1
HH) 1) BT = e b S =1 4, a=2.3.
16, a>4

where o = a —min (2, [|]])- ]
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