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In this paper, we explore the relations among reduced cases of algebraic models

for homotopy 3-types for groups such as braided crossed and quadratic modules and

reduced simplicial groups with Moore complex of length 2.

Key Words: Braided Crossed modules, Cat-groups, Simplicial groups, Quadratic

Modules.

1. Introduction

Whitehead [19] obtained an algebraic description of homotopy type of any 3-dimensional
complex, and he gave the notion of crossed modules which model homotopy 2-type. Mac
Lane used them to describe the third cohomology of a group, moreover, Mac Lane and
Whitehead, [14], gave a description of 3-type in terms of a crossed module.

Conduché [8] introduced the notion of 2-crossed module of groups model homotopy
3-type. Simplicial groups were studied by Kan [12]. Conduché also gave an equivalence
between 2-crossed modules and simplicial groups with Moore complex of length 2. This
equivalence establishes the role of 2-crossed modules as algebraic models of homotopy 3-
types since the homotopy properties of a simplicial group are given by its Moore complex.
It is known that since crossed modules model homotopy 2-type, the category of crossed
modules is equivalent to the category of simplicial groups with Moore complex of length
1.
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Brown and Gilbert [6] defined the braided, regular crossed modules which model
homotopy 3-types. They proved that this structure is equivalent to the simplicial groups
with Moore complex of length 2. This equivalence ensured that the braided, regular
crossed modules model homotopy 3-types. Furthermore, they showed that the category
of braided, regular crossed modules is equivalent to that of 2-crossed modules. The
reduced case of braided, regular crossed module of groupoids is called a braided crossed
module of groups (cf. [6]).

Another algebraic model of homotopy 3-type is quadratic module of groups. This
structure was introduced by Baues [3]. Baues defined a functor from simplicial groups
to quadratic modules. In fact, a quadratic module is a 2-crossed module with additional
nilpotent conditions. The reduced case of quadratic module is called a reduced quadratic
module (cf. [3]).

This article intends to work on relations among reduced cases of algebraic models of
homotopy 3-types such as braided crossed modules, reduced quadratic modules, reduced
simplicial groups, and braided categorical groups.

2. Braided Crossed and Reduced Quadratic Modules

Crossed modules were given by Whitehead in [19]. A crossed module (C2, C1, ∂) is
a group homomorphism ∂ : C2 → C1, together with an action of C1 on C2 written xy

for y ∈ C1 and x, x′ ∈ C2, satisfying ∂(xy) = y−1(∂x)y and x∂x′
= x′−1xx′. The second

condition is called a Peiffer identity. If ∂ satisfies only the first condition, then it is called
a pre-crossed module. Clearly, a crossed module is a pre-crossed module. We denote
such a crossed module by (C2, C1, ∂). A morphism of crossed modules from (C2, C1, ∂)
to (C ′

2, C
′
1, ∂

′) is pair of group morphisms, ϕ : C2 → C ′
2 and ψ : C1 → C ′

1 such that
ϕ(xy) = ψ(x)ϕ(y) and ∂′ϕ(x) = ψ∂(x) for x ∈ C2 and y ∈ C1. Before giving the definition
of reduced quadratic module, we should recall some basic structures from [3].

We denote the commutator in a group G by

[x, y] = x−1y−1xy

for x, y ∈ G and we denote the Peiffer commutator in a pre-crossed module ∂ : C2 → C1

by

〈x, y〉 = x−1y−1xy∂x
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for x, y ∈ C2. Thus, a pre-crossed module ∂ : C2 → C1 is a crossed module if 〈x, y〉 = 1
for all x, y ∈ C2. Furthermore, in a group G, there exists a lower central series

· · ·Γn+1 ⊂ Γn ⊂ · · · ⊂ Γ2 ⊂ Γ1 = G

where Γn = Γn(G) is the subgroup of G generated by all iterated commutators [x1, ..., xn]
of length n. Where Γ2(G) is the commutator subgroup of G. Similarly, there exists a lower
Peiffer central series

· · ·Pn+1 ⊂ Pn ⊂ · · · ⊂ P2 ⊂ C2

in a pre-crossed module ∂ : C2 → C1. Where Pn = Pn(∂) is the subgroup of C2 generated
by all iterated Peiffer commutators 〈x1, ..., xn〉 of length n in C2.

A group G is nilpotent of class 2 if Γ3(G) = 1 and Γ2(G) �= 1, in this case we
call G a nil(2)-group. A nil(2)-module is a pre-crossed module ∂ : C2 → C1 with
additional “nilpotency” condition. This condition is P3(∂) = 1 where P3(∂) is generated
by Peiffer elements 〈x1, x2, x3〉 of length 3. Thus a nil(2)-module can be considered as
generalizations of nil(2)-groups.

For any group G, the group Gab = G/Γ2(G) is the abelianization of the group G. The
crossed module

∂cr : Ccr
2 = C2/P2(∂) → C1

is called the crossed module associated to pre-crossed module ∂ : C2 → C1 (cf. [3]).
Where P2(∂) = 〈C2, C2〉 is the Peiffer subgroup of C2. Baues gives the notion of ∂cr

to define the quadratic module structure in [3]. However, in definition of the reduced
quadratic module, the notion of nil(2)-module corresponds to the nil(2)-group. Because,
in a quadratic module, if its last component is trivial, the reduced quadratic module can
be obtained.

Definition 2.1 ([3]) A reduced quadratic module (ω, ∂) of groups is a diagram

Nab ⊗Nab

ω

������������
w

��
M

∂
�� N
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of homomorphism between groups such that the following axioms are satisfied:
1. The group N is a nil(2)-group and the quotient map N → Nab to the abelianization
Nab of N is denoted by x �−→ x.

2. The composition ∂ω = w is the commutator map, or equivalently for x, y ∈ N

∂ω(x ⊗ y) = w(x⊗ y) = [x, y].

3. For a ∈ M and x ∈ N ;

1 = ω
(
(∂a⊗ x)(x ⊗ ∂a)

)
.

4. For a, b ∈ M ,

ω(∂a ⊗ ∂b) = [a, b].

A map (l, m) : (ω, ∂) → (ω′, ∂′) between reduced quadratic modules is a pair of
homomorphisms l : M → M ′, m : N → N ′ with m∂ = ∂′l and lω = ω′.

We denote the category of reduced quadratic modules of groups and of maps as above
by RQM.

Braided regular crossed module and its reduced case called braided crossed module
were given by Brown and Gilbert [6] as models for homotopy 3-types.

Definition 2.2 ([6]) A braided crossed module of groups

C2
∂→ C1

is a crossed module of groups together with a map {−,−} : C1 ×C1 → C2 called braiding
map satisfying the following axioms:

BC1- {x, yy′} = {x, y}y′{x, y′}
BC2- {xx′, y} = {x′, y}{x, y}x′

BC3- ∂{x, y} = [y, x]
BC4- {x, ∂a} = a−1ax

BC5- {∂b, y} = (b−1)yb

for all x, x′y, y′ ∈ C1 and a, b ∈ C2.

From BC4 and BC5, for a, b ∈ C2, obviously

{∂b, ∂a} = a−1a∂b

= a−1b−1ab ( ∵ ∂ is a cross. mod.)
= [a, b].
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Thus, we can add an axiom to the axioms of braided crossed module for later use, as

BC6- {∂b, ∂a} = [a, b]

for a, b ∈ C2. A morphism of braided crossed modules is a morphism of crossed modules
which is compatible with the braiding map. We denote the category of braided crossed
modules by BCM. Now, we give the relation between braided crossed modules and
reduced quadratic modules of groups:

Proposition 2.3 There is a functor from the category of braided crossed modules to that
of reduced quadratic modules of groups.

Proof. Let

∂ : C2 → C1

be a braided crossed module. We construct a reduced quadratic module from this
structure. Let

N = C1/Γ3(C1)

be a quotient group. Then N becomes a nil(2)-group since the triple commutators are
trivial on itself. Let

q1 : C1 → N

be a quotient map. Let C = Nab and let

N � C

q1x �−→ q1x

be a quotient map. Consider the subgroup P of C2 generated by the elements of the form

{[x, y], z} and {x, [y, z]}

for x, y, z ∈ C1. Here, {−,−} is the braiding map. Since the elements [x, y] and [y, z] are in
Γ2(C1) and {−,−} is the braiding map, it can be shown that P is a normal subgroup of
C2. Now, consider the quotient group M = C2/P and quotient map q2 : C2 → M.

For all x ∈ C1 and [y, z] ∈ Γ2(C1) and {x, [y, z]} ∈ P , from BC3 we can write,

27



ULUALAN

∂{x, [y, z]} = [x, [y, z]] ∈ Γ3(C1). Similarly, [x, y] ∈ Γ2(C1) and z ∈ C1 and {[x, y], z} ∈ P,

we can write ∂{[x, y], z} = [[x, y], z] ∈ Γ3(C1). Thus we obtain ∂(P ) ⊆ Γ3(C1). Then,
we have a well defined homomorphism ∂ : M → N given by ∂(aP ) = (∂a)Γ3(C1) for
aP ∈ M . Indeed, if aP = bP , we have ab−1 ∈ P and then ∂(ab−1) ∈ ∂(P ). Since
∂(P ) ⊆ Γ3(C1), we obtain ∂(ab−1) ∈ Γ3(C1) and since ∂ is a homomorphism we obtain
∂a∂b−1 ∈ Γ3(C1) and

(∂a)Γ3(C1) = (∂b)Γ3(C1).

Thus, we have the following commutative diagram:

M
∂ �� N

C2

q2

��

∂
�� C1

q1

��

Let

w : C ⊗C −→ N

q1x⊗ q1y �−→ [x, y]

be commutator map. We can define the quadratic map using the braiding map

ω : C ⊗ C −→ M

by ω (q1x⊗ q1y) = q2{y, x}. Here, {−,−} is the braiding map. Therefore

C ⊗ C
ω

�����
��

��
��

w

��
M

∂

�� N

becomes a reduced quadratic module. Now, we show that all axioms of reduced quadratic
module are satisfied.

1. For elements xΓ3(C1), yΓ3(C1), zΓ3(C1) ∈ C1/Γ3(C1) = N , since

[[xΓ3(C1), yΓ3(C1)], zΓ3(C1)] = [[x, y], z]Γ3(C1)
= Γ3(C1) (∵ [[x, y], z] ∈ Γ3(C1))

28



ULUALAN

and

[xΓ3(C1), [yΓ3(C1), zΓ3(C1)]] = [x, [y, z]]Γ3(C1)
= Γ3(C1), (∵ [x, [y, z]] ∈ Γ3(C1)),

where the group N is a nil(2)-group.
2. For q1x, q1y ∈ C, we obtain

∂ω (q1x⊗ q1y) = ∂q2{y, x}
= q1∂{y, x}
= q1([x, y]) (by BC3)
= [q1x, q1y].

3. For q2a ∈ M and q1x ∈ N , we obtain

ω
(
[∂q2a] ⊗ [q1x][q1x] ⊗ [∂q2a]

)
= q2 ({x, ∂a}{∂a, x})
= q2(1). (by BC4 and BC5).

4. For q2a, q2b ∈ M , we obtain

ω
(
∂q2a ⊗ ∂q2b

)
= ω(q1∂a ⊗ q1∂b)

= q2{∂b, ∂a}
= q2[a, b] (by BC6)
= [q2a, q2b].

Thus all the axioms of reduced quadratic module are satisfied. We can define a functor
from the category of braided crossed modules to that of reduced quadratic modules;

∆ : BCM → RQM.

✷

3. Braided Cat-Groups, Crossed and Reduced 2-Crossed Modules

Cat-groups were given by Loday in [13]. In the following, Cat(Gp) will denote the
category of internal categories in the category of groups. An object of Cat(Gp), called
a cat-group, will be represented by a diagram of groups and group morphisms

A
s,t ���� O
I

��
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such that sI = tI = idO, and the composition of two morphisms x, y ∈ A with t(x) = s(y)
will be denoted x ◦ y. The following definition can be found in the literature [4], [10], [11].

Definition 3.1 A braiding for a cat-group

G : A
s,t ���� O
I

��

is a map

O × O
τ−→ A

(a, b) �−→ τa,b

which satisfies the following conditions:
a) sτa,b = ba and tτa,b = ab.

b) Naturality:
Given x, y ∈ A; x : a → a′, y : b → b′, the following diagram is commutative.

ba
yx ��

τa,b

��

b′a′

τa′,b′
��

ab xy
�� a′b′

c) Hexagon axiom:
For a, b, c ∈ O the following diagrams are commutative.

(ab)c

a(bc)

��������

��������
(ba)c

τa,bIc
����������

(bc)a

τa,bc

��

b(ac)

b(ca)

��������

�������� Ibτa,c

����������

a(bc)

(ab)c

��������

��������
a(cb)

Iaτb,c

����������

c(ab)

τab,c

��

(ac)b

(ca)b

��������

�������� τa,cIb

����������

d) τ1,a = τa,1 = Ia.
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A cat-group together with a braiding map is usually called a braided cat-group. Given
braided cat-groups (G, τ ), (G′, τ ′), a morphism between them is a morphism of cat-groups
which is compatible with τ in the sense that the following square is commutative.

O ×O
τ ��

f0×f0

��

A

f1

��
O′ ×O′

τ ′
�� A′

BCat(Gp) will denote the category of braided cat-groups.

Now, we give the relation between braided crossed modules and braided cat-groups.
It is well-known that crossed modules are equivalent to internal categories in the category
of groups (cf. [10] and [13]). By using this equivalence, we give the following proposition
to see the role of the notion of braiding map between these structures from Joyal and
Street [11].

Proposition 3.2 The category of braided crossed modules is equivalent to that of braided
cat-groups.

Proof. Let ∂ : C2 → C1 be a braided crossed module. Then, we know from [10] and
[13] that

G : C1 � C2

s,t ���� C1
I

��

together with t(x, y) = x , s(x, y) = x(∂y) and I(x) = (x, 0), is a cat-group. It is easy to
see that the composition of two morphisms is

(x, y) ◦ (x′, y′) = (x, yy′)

if x′ = x(∂y) for (x, y), (x′, y′) ∈ C1 � C2. Let C1 = O and C1 � C2 = A. The braiding
map on this cat-group is given by

τ : O × O −→ A

(a, b) �−→ (ba, {b, a})
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for a, b ∈ O, where {−,−} is the braiding map on the crossed module ∂. Then, (G, τ )
becomes a braided cat-group. Indeed,

sτa,b = s(ba, {b, a})
= baδ{b, a}
= baa−1b−1ab (by BC3)
= ab

and

tτa,b = t(ba, {b, a})
= ba,

and this is axiom (a) of braided cat-group. Other axioms can be shown similarly. This
enables us to define a functor

Θ : BCM −→ BCat(Gp).

Conversely, let

G : A
s,t ���� O
I

��

be a braided cat-group. Then t : ker s → O is a crossed module associated to the cat-
group G together with the action given by lx = (Ix)−1l(Ix). The braiding map on this
crossed module is given by

{−,−} : O ×O −→ ker s
(a, b) �−→ (Ib)−1(Ia)−1τa,b.

For example, the equalities
for a, b ∈ O

t{a, b} = t((Ib)−1(Ia)−1τa,b)
= b−1a−1ba

= [b, a],
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for a ∈ O, y ∈ ker s

{a, t(y)} = (Ity)−1(Ia)−1τa,ty

= y−1I(a)−1yI(a)
= y−1(y)a,

and for x ∈ ker s and b ∈ O,

{t(x), b} = (Ib)−1(I(tx))−1τtx,b

= (Ib)−1x−1I(b)x
= (x−1)bx

are axioms BC3, BC4, and BC5, respectively. The other axioms can be shown similarly.
Then, this crossed module becomes a braided crossed module. Thus we can define a
functor

∆ : BCat(Gp) −→ BCM.

✷

Garzon and Miranda showed in [10] that the category of braided cat-groups is equiv-
alent to ReX2Mod, the category of reduced 2-crossed modules given by Conduché in
[8]. Also, we can easily say that the category of braided crossed modules is equivalent
to that of reduced 2-crossed modules. Therefore, we can give the following diagram of
equivalences of categories:

BCM ��

		����������� ReX2Mod��



������������

Bcat(Gp)
[11]

������������� [10]

��������������

4. Simplicial Groups and Moore Complex

We refer the reader to May’s book [15] and Mutlu and Porter’s article [16] for the
basic properties of simplicial groups.

Denoting the usual category of finite ordinals by ∆, we obtain for each k ≥ 0, a
subcategory ∆≤k determined by the objects [j] of ∆ with j ≤ k. A simplicial group G
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consists of a family of groups Gn together with face and degeneracy maps dn
i : Gn →

Gn−1, 0 ≤ i ≤ n (n �= 0) and sn
i : Gn → Gn+1, 0 ≤ i ≤ n satisfying the usual simplicial

identities:

1. dn−1
i dn

j = dn−1
j−1d

n
i , (0 ≤ i < j ≤ n),

2. sn+1
i sn

j = sn+1
j+1 s

n
i , (0 ≤ i ≤ j ≤ n),

3. dn+1
i sn

j = sn−1
j−1d

n
i , (0 ≤ i < j ≤ n),

4. dn+1
i sn

j = id, (i = j or i = j + 1),
5. dn+1

i sn
j = sn−1

j dn
i−1 (0 ≤ j < i− 1 ≤ n)

given by May [15]. In fact it can be completely described as a functor G : ∆op → Grp,
where ∆ is the category of finite ordinals. A reduced simplicial group is a simplicial group
whose last component is trivial. A k-truncated simplicial group is a functor from ∆op

≤k to
Grp. We will denote the category of simplicial groups by SimpGrp and the category of k-
truncated simplicial groups by TrkSimpGrp . By a k-truncation of a simplicial group, we
mean a k-truncated simplicial group trkG obtained by forgetting dimensions of order > k

in a simplicial group G. This gives a truncation functor trk : SimpGrp→ TrkSimpGrp
which admits a right adjoint coskk : TrkSimpGrp → SimpGrp called the k-coskeleton
functor, and a left adjoint skk : TrkSimpGrp → SimpGrp , called the k-skeleton
functor. For the explicit constructions of these see [9].

Recall that given a simplicial group G, the Moore complex (NG,∂) of G is the normal
chain complex defined by

NGn =
n−1⋂
i=0

kerdn
i

with ∂n : NGn → NGn−1 induced from the face map dn
n by restriction. The nth homotopy

group πn(G) of G is the nth homology of the Moore complex of G, i.e.

πn(G) ∼= Hn(NG, ∂)

=
n⋂

i=0

kerdn
i /d

n+1
n+1(

n⋂
i=0

kerdn+1
i ).

We say that the Moore complex NG of a simplicial group is of length k if NGn = 1 for
all n ≥ k + 1, so that a Moore complex of length k is also of length l for l > k.
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Corollary 4.1 ([8]) Let G′ be (n-1)-truncated simplicial group. Then there is a simplicial
group G with trkG ∼= G′ if and only if G′ satisfies the following property:

For all nonempty sets of indices (I �= J), I, J ⊂ [n− 1] with I ∪ J = [n− 1],

[
⋂
i∈I

kerdi,
⋂
j∈J

kerdj ] = 1.

This normal subgroup NG
n depends functorially on G, but we will usually abbreviate

NG
n to Nn, when no change of group is involved.

4.1. Braided Cat-groups and Reduced Simplicial Groups

In this section, we give an equivalence between the category of braided cat-groups and
the category of reduced simplicial groups with Moore complex of length 2. This result is
a combination of the equivalence between braided 2-groups and braided crossed modules
(cf. [11]) and the equivalence between reduced 2-crossed modules and reduced simplicial
groups with Moore complex of length 2 (cf. [8]).

Firstly, we give a functor from the category of reduced simplicial groups to that of
braided cat-groups.

Let G be reduced simplicial group with Moore complex NG. We construct a braided
cat-group

C : A
s,t ���� O
I

�� .

Let O = NG1. By using the action of NG1 on NG2 via s1, define the semi-direct product
group A = NG1 � NG2/∂3(NG3). The source and target maps are given by s(x, a) = x

and t(x, a) = x∂2a respectively. The composition can be defined by

(x, a) ◦ (y, b) = (x, ab)

for y = x∂2a. The identity map I : O → A is given by I(x) = (x, 1). Where a

represents a coset of element a of NG2 in NG2/∂3(NG3). The group operation in
NG1 � NG2/∂3(NG3) is given by

(x, a)(y, b) = (xy, (s1yas1y−1)b)
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for x, y ∈ NG1 and a, b ∈ NG2. Then, the interchange law holds. That is, we have a
cat-group

C : A
s,t ���� O
I

�� .

Define the braiding map on this cat-group by

τ : O ×O −→ A

(x, y) �−→ τx,y = (yx, s0y−1s1x−1s0ys1y−1s1xs1y)

for x, y ∈ O. Now, we show that some axioms of braided cat-groups are satisfied.

a)

sτx,y = s(yx, s0y−1s1x−1s0ys1y−1s1xs1y)
= yx

and

tτx,y = t(yx, s0y−1s1x−1s0ys1y−1s1xs1y)
= yxd2(s0y

−1s1x
−1s0ys1y

−1s1xs1y)
= yx(s0d1y

−1x−1s0d1yy
−1xy)

= yx(x−1)d1yy−1xy (by action)
= yxx−1y−1xy (by reduced condition)
= xy.

b) for x = (a, k) and y = (b, l), s(x) = a, t(x) = ad2k = a′ and s(y) = b,

t(y) = bd2l = b′, we must show that

τa,b ◦ xy = yx ◦ τa′,b′ .

xy = (a, k)(b, l) = (ab, (s1b)−1ks1bl) and τa,b = (ba, s0b−1s1a−1s0bs1b−1s1as1b) and then
since tτa,b = ab = s(xy), we have

xy ◦ τa,b = (ba, s0b−1s1a−1s0bs1b−1s1as1b) ◦ (ab, (s1b)−1ks1bl)
= (ba, s0b−1s1a−1s0bs1b−1s1aks1bl)
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and we have s(xy ◦ τa,b) = ba and

t(xy ◦ τa,b) = bas0d1b
−1a−1s0d1bb

−1ad2kbd2l

= ba(a−1)d1bb−1ad2kbd2l (by action)
= baa−1b−1ad2kbd2l (by reduced condition)
= ad2kbd2l

= a′b′.

Furthermore, yx = (b, l)(a, k) = (ba, (s1a)−1ls1ak)
and τa′,b′ = (b′a′, (s0b′)−1(s1a′)−1s0b′(s1b′)−1s1a′s1b′) and

yx ◦ τa′,b′ = (ba, (s1a)−1ls1ak) ◦ (b′a′, (s0b′)−1(s1a′)−1s0b′(s1b′)−1s1a′s1b′)
= (ba, (s1a)−1ls1ak(s0b′)−1(s1a′)−1s0b′(s1b′)−1s1a′s1b′)
= (ba, s1a

−1ls1aks0(b′)−1s1(ad2k)−1s0(b′)s1(bd2l)−1s1(ad2k)s1(bd2l))
= (ba, s1a

−1ls1ak(s1(ad2k)−1)d1(b′)s1(bd2l)−1s1(ad2k)s1(bd2l)) (by action)
= (ba, s1a

−1ls1ak(s1(ad2k)−1)s1(bd2l)−1s1(ad2k)s1(bd2l))
(by reduced condition)

and we have s(yx ◦ τa′,b′) = ba and

t(yx ◦ τa′,b′) = baa−1d2lad2k(ad2k)−1(bd2l)−1(ad2k)(bd2l)
= (bd2l)(ad2k)(ad2k)−1(bd2l)−1(ad2k)(bd2l)
= (ad2k)(bd2l)
= a′b′.

Thus, the diagram

ba

τa,b

��

yx �� b′a′

τa′,b′
��

ab xy
�� a′b′

is commutative.
The axiom c) takes more work and it can be completely showed similarly to axiom b).

Then, we leave the detailed calculations to the reader.
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d) We must show that τ1,a = τa,1 = Ia. Where Ia = (a, 1). We have

τ1,a = (a, s0a−1s11−1s0as1a−1s11s1a)
= (a, s0a

−1s0as1a
−1s1a)

= (a, 1)
= Ia

and

τa,1 = (a, s01−1s1a−1s01s11−1s1as11)
= (a, s1a

−1s1a)
= (a, 1)
= Ia.

Thus we can define a functor from reduced simplicial groups to braided cat-groups;

Γ : ReSimpGrp−→ BCat(Gp).

Theorem 4.2 The category of reduced simplicial groups with Moore complex of length 2
is equivalent to that of braided cat-groups.

Proof. In the above statements, we have already defined a functor from the category
of reduced simplicial groups to that of braided cat-groups. Therefore we can define a
functor from the category of reduced simplicial groups with Moore complex of length 2
to that of braided cat-groups;

Γ : ReSimpGrp≤2 −→ BCat(Gp).

Conversely, let

C : A
s,t ���� O
I

��

be a braided cat-group. We construct a reduced simplicial group. Let e ∈ O be identity
element. Suppose that G0 = {e} and G1 = O. Then we have a 1-truncated simplicial
group with trivial homomorphisms {G1, G0}. The group O acts on ker s by I. That is,
for x ∈ O and a ∈ ker s, ax = I(x)−1aI(x) ∈ ker s. Indeed, s(ax) = s(I(x)−1aI(x)) =
x−11x = 1. By using this action, we can create the semi-direct product group

O � ker s
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with the group operation

(x, a)(x′, a′) = (xx′, I(x′)−1aI(x)a′).

On the other hand, the group O acts on O � ker s by

(x, a)x′
= (xx′, I(x′)−1aI(x))

for (x, a) ∈ O � ker s and x′ ∈ O. By using this action, we can create the semi-direct
product group O � (O � ker s). Let G2 = O � (O � ker s). We have

d2
0(c1, c2, a) = c1 d2

1(c1, c2, a) = c1c2

d2
2(c1, c2, a) = c2 s1

0(c1) = (c1, 1, 1), s1
1(c2) = (1, c2, 1).

These maps satisfy the simplicial identities. We thus have a reduced 2-truncated simplicial
group

{G2, G1, G0}.

There is a Cosk2 functor from the category of 2- truncated simplicial groups to that of
simplicial groups. We can write the following diagram;

ReSimpGrp≤2
Θ �� BCat(Gp)



��������������

Tr2ReSimpGrp
Cosk2

�����������������

and this enables us to define a functor

∆ : BCat(Gp) −→ ReSimpGrp≤2.

✷
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Thus, we can picture the following diagram of equivalences of categories;

RQM ReSimpGrp≤2

����
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
�

��		
		

		
		

		
		

		
		

		
		

		
		

	

��














[18]��

BCM

[11]

��

������������� [6]

��














BCat(Gp)

��

��

�������������������������

��																									

ReX2Mod

[10]

��

��





































[8]

���������������������������������������

The numbers in this diagram correspond the references.
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