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Pullbacks of Crossed Modules and Cat!- Commutative
Algebras
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Abstract

In this paper we first review the definitions of crossed module [10], pullback
crossed module and cat'-object in the category of commutative algebras. We then

describe a certain pullback of cat'- commutative algebras.
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1. Introduction

The terms of crossed modules over groups and algebras, Cat!-groups and algebras are
very useful in Category theory. Interest in these subjects has been heightened by their
exploration via computer. A good example is the program GAP [8] (Groups, Algorithm
and Programming)* which is used to calculate crossed modules and cat!-groups over
groups. The applications of crossed modules and cat!-groups were introduced by Alp and
Wensley [3] as a GAP share package known as XMod'. Crossed modules were introduced
by J. H. C. Whitehead in [10]. Loday defined cat!-groups and showed that the category
of crossed modules is equivalent to the category of cat!-groups in [7]. Later, Brown and
Wensley defined Pullback crossed module over groups in [5]. Using the equivalence of
these two categories, Pullback cat!-group was defined by Alp [1]. Crossed modules and
Pullback crossed module over algebra were presented in [9]. Pullback cat!-commutative

algebra is presented in this paper.

1991 AMS Mathematics Subject Classification: 13D99, 16A99, 17B99, 17D99, 18D35
*www-gap.dcs.st-andrews.ac.uk/” gap/
fwww-groups.dcs.st-and.ac.uk/~ gap/Packages/xmod.html
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It is hoped this paper will give good motivation for future studies into crossed square
and induced crossed module of commutative algebras. The crossed module of commu-
tative algebra and its pullback will constitute a square which will be a crossed square.
The defining action of commutative algebras will play very important role in the crossed

square case.

2. Crossed modules and Cat!-commutative Algebra

Fix a commutative ring A (with unit). Recall that a commutative algebra over A is

an A-module M with a bilinear map M x M — M, (m,m’) — mm/' satisfying

mm' = m'm
(mm/)ym"” = m(m'm”)
for all m,m’, m” € M. We shall assume all commutative algebras to be over A [6].
Let M and N be commutative algebras. A map M x N — N, (m,n) +— ™nis a

commutative action if and only if

COMACTI1:  k(™n) = Fmn =" (kn)
COMACT2: ™(n+n')="n+™n'
COMACT3:  (mH+m)p = mp 4 m'y
COMACT4: ™(nn') = ("™n)n’ = n(™n’)
COMACTS:  (mm)p = m(™ n)

forall k e k,m,m’ € M,n,n’ € N.

Let M be a k-algebra with identity. A crossed module of commutative algebras is
an M-algebra N, together with a commutative action of M on N and an M-algebra
morphism 9 : N — M such that for alln € Nym € M

COMCM1:  9(™n) m(on)
COMCM2: ©Ony/ = pp/.

The standard examples of crossed modules are [2] and [9]:

1. Let I be any ideal of a k algebra M. Consider an inclusion map ¢ : I — M is a

crossed module.
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2. Let R be an M-module. It can be considered as an M-algebra with zero multipli-

cation, and then 0 : R — M is a crossed M-module.

3. Assume given a simplicial algebra F and a simplicial ideal I. The inclusion¢ : [ — F
induces a map 9 : mo(I) — mo(E) and F acting on I by multiplication an action of

mo(E) on mo(I), so O is a crossed module.

4. Any ideal I in P gives an inclusion map, inc : I — P, which is a crossed module.
Conversely given an arbitrary crossed P-module 0 : M — P, one easily sees that
the Peiffer identity implies that P is an ideal in R.

5. Given any morphism 6 : L — C' of P-modules we can form the semidirect product

P x C with its usual multiplication
(p, o) (p', ') = (pp', pc’ + pe),

where c¢’ = 0 by zero multiplication. Giving L the zero multiplication and a P x C
module structure via the projection from P x C' onto P, one obtains a crossed
(P x C)-module

0:L—PwxC, 0()=(0,0()).

A morphism between two crossed modules from (0 : N — M) and (& : N' - M’) is a
pair (6, ¢) of k-algebra morphisms such that 6(™n) = ¢(™@(n) and 8'0(n) = ¢ (n).

Given a crossed M-module 0 : N — M we form the k—algebra R = M x N, again
the semidirect product algebra with multiplication

(m,n)(m’,n') = (mm/, mn’ +m/'n + nn').

There are two morphism ¢, s : R — M given by t(m,r) = m and s(m,r) = m+ 0r. There
is also the obvious morphism [9] e : M — R, e(m) = (m, 0). These morphisms satisfy the

axiom of cat!-algebra:

COMCAT1: tes = s and set =t;
COMCAT?2: kertkers=0.

3. Pullback Crossed Module of Commutative Algebras

Pullback crossed module of commutative algebra was presented in [9]. In that study

the verification of crossed modules axioms were not proven. We will re-organize pullback
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crossed modules presentation here. Let N, M be commutative algebras. Let X =
(0 : N — M) be a crossed module of commutative algebras and ¢ : Q@ — M be a

homomorphism. Then

VN N
9 b
Q - M

X = (0™ 1 1**N — @), is the pullback crossed module of commutative algebras by ¢,
where t**N = {(¢,n) € Q x N | t¢ =9n, ¢ € Q,n € N} and 9**(¢,n) = ¢. The action of
Q@ on (**N is given by %(q1,n) = (qq1,'In).

Proposition 3.1 **N is a commutative algebra in which scalar multiplication k(g, n) =
(kq, kn), addition is (g1, n1)+ (g2, n2) = (¢1+4q2, n1+n2) and multiplicationis (g1, n1) (g2, n2) =

(Q1Q27n1n2)-

Proposition 3.2 The map is a commutative algebra action of ) on +**N.

Proof. To complete proof we must show that the conditions of commutative algebra

action are satisfied.

COMACT1:
]f(q(ﬂh,nl) = k‘(qm,“]m)

= ((ka)q1, k("))

= (Mg, kany)

(*qu, ")

= kg1, kni)
COMACT?2:
“((q1,m1) + (g2:m2)) = ‘(@1 + g2, n1 +n2)

(q(q1 + q2), " (n1 + n2))
= (qq1 + qq2,"“"n1 + "'na)

(qq1,"n1) + (qq2, “In2)
= q1,m1) + (g2, n2).
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COMACTS:

(@re)(gn) = (Feq(atey)
= (g + q2q," """ %n)
= (q1q,""n) + (q2q,"?n)
= "(g,n) +%(q,n).

COMACT4:

“(q1,m1)(g2,m2) = *(q1g2, nan2)

= (9192, ""(nan2))
= (qq1q2, nninz)
= (%q1,n1))(g2, n2).

And since multiplication is commutative gq; = ¢1¢q, then

(99192, nnan2) = (q1992,nannz)
= (q1,m)%(q2,n2).
Finally,
COMACTS5:
"2 (gn) = (91929, n2)
= T (q2q,'"q)
= (R(gm).

Theorem 3.3 The homomorphism 0** : **N — @ has the structure of a crossed

module.
Proof. Boundary homomorphism 0**(¢,n) = ¢ and commutative algebra action of @
on t**N, %(q1,n1) = (qq1,*Inq) satisfy the COMCM1 and COMCM?2 conditions:
COMCM1:
9" (Y(gq1,m)) = 9" (qq1,""m1)

= qq

= q0""(q1,n1)
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COMCM2:
8**(q,n)(q1,n1) _ q(CJ1,7l1)
= (qq1,""n1)
= (qq1,nm) since “n; = 9'n;
= (q7 n) (q17 nl)
Thus the axioms of crossed module are satisfied. O

4. Pullback Cat'-Commutative Algebra

A Pullback Cat!-commutative Algebra is defined as

er*

L)

L**R g** Q
e |t \
Q \L |
el ¢
L
M
Let CL = (e;t,s : R — M) be a cat!-commutative algebra and let ¢ : Q — M be a
homomorphism. Define t**R = (e**; t**, s** : 1** R — Q) to be the pullback of R, where

L
€
S

R ={(q1,7,q2) € Q@ x RX Q| 1q1 =tr,1q2 = sr},

t**(q1,7,92) = q1, $*(q1,7,q2) = q2 and €e**(q) = (g, etq, q). Multiplication in ¢**R is
componentwise. Let’s show that COMCAT1 and COMCAT?2 are satisfied:
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COMCAT1:

kk kokkok

e s (qu,r q2) = e (q2) = 17 (g2, g2, 42)
= Q2
- 8**(Q17T7 Q2)7

Kk kok

st (qu,rq2) = 8T (@) = 57 (qu, eqr, 1)
= ¢
= t7(q1, 7, q2).
To prove COMCAT?2, suppose a = (¢},71,q1) € kert™, b = (qa2,72,¢5) € ker s**.
Then ¢ = g5 = 0; so, by the definition of **, we have r; € kert, ro € kers. Then
[a,b] = (0, [r1,72],0) = (0,05,0) and [ab] = 0 so that COMCAT?2 is satisfied. It is easily

verified that t** and s** are homomorphisms.

Proposition 4.1 If /**X is the pullback of the crossed module & over ¢ : @ — M
and if R, D are the cat!-commutative algebras obtained from X, 1**X, respectively, then
D= R.

Proof.

VN

o** 0

Q ’ R.

Starting with the pullback crossed module **X = (9° : **N — @), the source
algebra of D is defined as the semi-direct product Q x ¢**N.

QX **N M x N
t®|| s® t|| s
Q - M
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The target, source and embedding of D are respectively given by

t°(d,(a,n) = ¢
s*(d,(g,n)) = 4'0"(g;n)
= dq
e*(q) = (¢.(1g,1n)).

We then define an isomorphism of cat!-commutative algebra (¢,idg) : D — ¢**C as

Q X "N U*(M x N)

] t®|| s® £r* ook *ok

id
where

¥(d', (g,n) = (¢, (g, n), ¢'q).

First note that ¥(¢’, (¢,n)) € **(M x N) because
t(tg',n) =1

and

s(td’,n) = (1q")(On) = (1q")(eq) = (d'q).
We verify that v is a homomorphism
w((q/17 (qlunl))(q,27 (q27n2)) = w(q/lq/27 (q(IZQQQ7n:qu2n2>)

4145, (1(q105), n1n2), ¢1q145q2)

( ! !

142

U(qh, (q1,m))0(43, (q2,m2)) = (g1, (eqh,m1), 4141) (g5, (edhs n2), 45q2)
(q143, (tqy, n1)(1gs, m2), 41 q19592)
(

0145, ((1q) (1q3), 1 n2), 41 q14502).-
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The inverse of 4 is given by ¥~ (g1, (m,n). g2) = (q1, (a1 "2, ))-
Then

t"y(d (g:n) = (¢, (ed'in), d'q)
= q/
= t*(d,(q,n)),
s*P(d, (g,n)) = s7(d, (g, n),q'q)
= qq
= (¢, (a,n)),
ve*(q) = (g (1o, 1n))
= (q,(tq,15),9)
= €"(q),

so the diagram commutes and the proof is complete. ]

The universal property of induced cat!-commutative algebra is the following. Let C =
(e;t,5: R — M) be a cat'-commutative algebra and let t**C = (e**;t**, s** : 1** N — Q)

be induced by the homomorphism ¢ : Q — M as given by the diagram

&

N
™
N —N

\‘S**ut** Sut
X

Q— M.

The pair (m,¢) is a morphism of cat'-commutative algebra such that, for any cat!-
commutative algebra H = (¢/;t',s' : H — Q) and any morphism of cat!-commutative
algebra (1,¢) : C — 'H, there is a unique morphism ((¢,1) : t**C — H)) of cat!-

commutative algebra such that wi)’ = .
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