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On Certain Modified Meyer-Konig and Zeller

Operators
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Abstract

We introduce certain modified Meyer-Konig and Zeller operators and we study

their approximation properties.

The similar results for modified Bernstein polynomials were given in [6].

Key Words: Meyer-Konig and Zeller operator, degree of approximation, Voronovskaya

theorem.

1. Introduction

1.1. In 1960, W. Meyer-Konig and K. Zeller in [7] introduced the following operators

for functions f € Cg and ne N ={1,2,..., }:

3 k) i o<az<l
kz::opnk(w)f(""’k) if 0<z<1,

F(1) if z=1,

M, (f;x) =

where

k
Prk(x) = ( n—]: ) xzF (1- x)""’l, ke Ny =NU{0},
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(1.1)
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and Cg is the space of all real-valued functions f, continuous on the interval @ = [0, 1]

and the norm is defined by

1A= 1 ON = max| ()] (1.3)

M, (f) is called the n—th Meyer—Ko6nig and Zeller operator.

Approximation properties of M, (f) have been examined in many papers (e.g. [1, 3,
5, 7]). Moreover, in many papers were introduced some modifications of operators M, (f)
(e.g. [2, 4, 5]) and were studied their approximation properties.

It is known ([1, 3, 5]) that if f € Cg, then M,,(f) € Cq and || M, (f)|| < ||f|| for n € N,

Moreover,

1M (f5) = 1) < Aws (f; nen, (1.4)

1
vn)’
where A is a suitable positive constant independent on n and x and ws(f;-) is the second

modulus of smmothness of f. Obviously (1.4) implies that

Jim [M,(5) = Ol = 0, (1.5

for every f € Cq. Moreover for f € Céﬂ ={feCq: fot2) ¢ Cg}with a fixed r € Ny,

we have

IMdﬁJ—fHI=O<l>» neN, (1.6)

n

and this estimation can not be improved.

1.2. In this paper we will show that the estimations (1.4) and (1.6) can be improved
for f € Cp, r > 2, by certain modification of the operators M, (f). We introduce the

following definition.

Definition 1 Let r € Ny be a fized number. For f € Cf and n € N we define the
modified Meyer-Kéonig and Zeller operators

S o) _
kzop"’“(””) ZO Y J(fm) (w _ fnk)J if 0<z<l,
— j=

() if x=1,

My (fi2) = (L.7)
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where

k
gnk = m fOT k S ]\]07 n e ]\]7 (18)

and pp(x) is defined by (1.2). Clearly Mpo(f;x) = M, (f;z) for every f € Coq,
reQ@,neN.

In Section 2 we will give some auxiliary results. The main theorems will be given in

Section 3.
In this paper we will denote by 4;(¢q), ¢ € N, a suitable positive constant depending

only on parameter g.

2. Lemmas

2.1. It is well known [1, 2, 3, 4, 7, 8] that

M,(1;2)=1 M,(t —xz;z) =0, (2.9)

1—x)? 1
Mn((t—x)2;x):u+Om (—2>, for x € Q and n € N.
n n

Moreover in [4] is given the following lemma.

Lemma 1 For every fized g € N there exists A1(q) = const. > 0 such that
M, ((t— x)2q;x) < Ai(g)n79, n € N,

uniformly for x € Q.

2.2. Now we will give some elementary properties of operators M,,.,.(f) defined by
(1.7)and (1.8).
From (1.7) it follows that M,,..(1;2) =1 for x € Q, n € N and r € Ny and

M,.-(f;0) = £(0), neN, reN. (2.10)
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Lemma 2 Letn,r € N be fized numbers. Then for every f € Cf, we have M,.-(f) € Co,
i.e. My (f) is an operator from the space C¢, into Cq. Moreover there exists Az(r) =
const. > 0 such that for every f € Cg, we have

1M (f5)1] < A2r) S| £O, mew. (2.11)
j=0

Proof.  We observe that if f € C(,, then for every fixed n € N and j, ¢ =0,1,...,r the

sequence ((&,1)7f9) (€ax))5S, is convergent to fU)(1) as k — oo. Moreover, it is easily
verified that the limitability method of sequences, generated by (p,i())52,, with a fixed

n € N and x — 1—, is regular. Hence we can write

lim ank ) () f9 (&) = F9(1)

r—1—

for every j,q=0,1,...,7rand n € N.
From the above, and by (1.7) and (1.8), we get

lim My (f;2) Z Z( )

x lim 2/~ qZp k(@) f9) (Enr)€2, =

r—1—

Z f(J) ZJ: ( ; )
q=0
Since
J ] 1 if 7=0
> = (2.12)
g=0 0 if ] Z 17
we have

111{1 M. (f;2) = f(1), ne€N, re Ny,

which by (1.7) shows that M,..(f) is a continuous function at x = 1. The continuity of

M,.-(f) at € [0,1) is obvious by the properties of sum of power series convergent on
[0,1).
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From this and (1.7), (1.8) and (1.1), we deduce that

Moo (i) = S TV 0 (16— 2y 79 1): )

|
=0

for x € Q, n € N and r € Ny. Further, by (1.1)-(1.3), (1.8) and the Holder inequality

and Lemma 1, we have

Ma((t =V fOWs0)| < [#9| Ma(lt - als )
< 9| (= 2)¥20) 20 (12)) 2 < 41 G) [ £ 72,
forx € @, ne N and 0 < j <r. Consequently
"1 o
LTI S ETACER D EIGE]
=0
< A2(7“)ZHf(j) .,  neN.
=0
Thus the proof of (2.11) is completed. O

3. Theorems

3.1. First we will prove an analogue of (1.4) for f € Cf, and My, (f), but we will use

the modulus of continuity of the derivative f("), i.e.
w(FDs5t) = sup { | f7 (@) = fO ()] 5 2y € Q o -yl <)

for t € [0,1] ([9]). The application of the second modulus of continuity wo(f(;-) to
approximation theorem for f € Cf, and M. (f), » € N, is difficult by derivatives f@)

and factors (z — &ux)?, 7 = 1, ..., 7, in the formula (1.7).

Theorem 1 Let r € Ny be a fized number. Then there exists As(r) = const. > 0 such
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that for every f € Cgy and n € N holds the following inequality
1
Mo (759 = JO < Ay (17 2). (313)

where w(f(T); -) is the modulus of continuity of F,

Proof. The estimation (3.13) for r = 0 follows from (1.4).
Let » € N. Similarly as in [6] we apply the following modified Taylor formula for
[ € Cg in a given point t € Q:

L C)) )
) = Z f j!(t) (‘T _t)J
j=0

—r rt
o / (1= O+ u(@ - 1) = fO)] du, @€ Q.
(r=1!Jo
Choosing t = &, and applying (2.9), we derive from the above Taylor formula and (1.7)
kz pnk = n r fv + ank I;? (LL', fnk)v (314)
=0

where
1

L) = [ =0 [ 6+ uta =€) = 176w o
The definition and properties of modulus of continuity of function ([9]) imply that

5O (€t + u(@ = &) = £ ()| < w (£ ule = €l

< w (Fife = &unl) < (Vitle = &url +1) w (£ 1/vA).

forevery 0 <u<1,0<z <1, k€ Ny and n € N. From this and (3.14) we get

(@) = M (f50)] < (3.15)
—w (f(T)§ 1/\/_) ipnk )z —Enkl " (Vnlz — &url + 1)

k=0

IN

IN

5w (F051/v/m) (VA My (1t = 2|75 2) + My (1t — 2] "5 2))
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for 0 <z <1 and n € N. Using the Holder inequality and (2.9) and Lemma 1, we get

M, (ft=al%a) < (M ((t—2)"a))"” (Mo (1;2)) /2

< Al(q)n_q/2, r€Q, n,qg€ N.

Further from (3.15) results that

|f(z) = My (fr2)] < As(r) w (f(T);n_lm) (\/ﬁ n~ (/2 4 n_T/2)

for all 0 < 2 < 1 and n € N. This inequality and (1.7) for x = 1 immediately yield
(3.13). O

From Theorem 1 we can derive the following two corollaries.

Corollary 1 Let f € Cf, r € Ny, then
Tim "2 || Mo (f:) = £ = 0.

Corollary 2 Let f € Cp, v € No, and let f) € Lip a with a fited 0 < a < 1, i.e.
w(fTst) = O(t*) fort € (0,1]. Then

|Muir(£5) = FOIl = O (n=0F72) | men.
Remark. Theorem 1, Corollary 1 and Corollary 2 show that the degree of approxi-

mation of function f € C7, with 7 > 2 by operators M,,.(f) is better than (1.4) and (1.6)
for M, (f).

3.2. Now we will prove the Voronovskaya type theorem.

Theorem 2 Suppose that f € 02;“2 with a fized r € Ny. Then

. _ (YUY @) My (- a) )
My (fi2) = fz) = ] (3.16)
(=1)"(r + 1) fOr2 ()M, ((t — 2)"+?; 2) _
+ )] + gn(z;7)
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for every x € Q and n € N, where

gn(z;7r) = o(n_(T+2)/2) as n — oo (3.17)

uniformly for x € Q.

Proof. By (1.1), (1.7) and (2.10) we have (3.16) for z = 0 and = 1.

Fix0<ax < 1. For f € Cgﬂ we have fU) ¢ Cg”_j, 0 < j <r, and by the Taylor

formula we can write

2 f(J -H)

f(J) Z

t —2) @, (t,x)(t — ) T2 (3.18)

for t € Q, where p;(t) = ¢;(t,x) is function such that ¢;(t)t"277 € Cgﬂ_j and
tlim @;(t) = ¢j(x) = 0. Taking ¢t = &, in (3.18) and applying this formula to M,..(f),

we get

') r »r+2 7 (+Z) .
My (f37) = ank(x)z 5"’“ Z fj (Enk — )’ (3.19)
k=0 =0
+ ank(gﬂ) W%(fnw(fn,k — x)"r2
k=0 =0 :

= Zl+z2, n e N.
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by elementary calculations we get

(e’ r -, j r+2 (q) T ‘
Z - Zp"k(x) Z ( ? k) Z / _(,)| (&npe — )17/
! k=0 =0 J: o (q ])-

fr (@) 1, ST (@) .
+(T+1—])' Euk — )" +(T+2 T x)+2}
> "L @) (g 2
SN ) IEE LITNEDS ( ‘ ) (-1
k=0 q=0 : j=o \ J
Frt(z) & o r ol )
T @) G o Z( j )(—1)

(r+2) T e T r ‘
A a1

k=0 =0

for n € N. Applying (2.12) and equalities

=0
with r € Ny, and by (1.1) and (2.9), we obtain

>, = f+ (_1)Tf(r+1)(x)M"(Et —x) )

(r+1)
(=17 (r + 1) fU ) (@) My (¢ — )"+ )
+ ! G +9c2 ! z x , n € N.
Denoting by
o) = > L0, e

(3.20)
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we have ¢, € Cqg, tlim or(t) = ¢p(x) = 0 and

S, = k(@) (k2 2, ()
k=0

M, ((t—2)""?¢,(t);z), ne€N.

Further, by the Holder inequality, we have
., 1/2
3 < (0 (=0 @Ry ) = (o) (320
for n € N. The properties of ¢,(-) and (1.5) imply that

lim M, (¢7(t);2) = ¢7(x) = 0

n—oo

uniformly on @. From this and (3.21) and Lemma 2 it follows that
gn(x;1) = o(n_(T+2)/2) as m — 0o,

uniformly on . This result and (3.19)—(3.21) imply the desired assertions (3.15) and
(3.16). Thus the proof is completed. O

Theorem 2 implies the following Voronovskaya type theorem for operators M, (f) ([1],

[2]):
Corollary 3 If f € Cé, then

(1 — )2
lim n(M,(f;z) — f(x)) = uf”(w)

n—oo 2

for every x € Q.
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