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Abstract

In the present paper we shall give the radius of starlikeness for the classes of

p-valent analytic functions in the unit disc D = {z | |z| < 1 } .
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1. Introduction

Let Ap the class of f(z) normalized by

f(z) = zp +
∞∑

n=p+1

anz
n, p ∈ N = {1, 2, 3, ... } (1.1)

which are analytic and p-valent in D. Further, let Ω be the family of functions ω(z)
which are regular in D and satisfying the conditions ω(0) = 0, |ω(z)| < 1 for z ∈ D.
Next, for arbitrary fixed numbers A, B, −1 ≤ B < A ≤ 1, denote by P (A,B) the family
of functions

p(z) = 1 + p1z + p2z
2 + ... (1.2)

which are regular in D such that p(z) ∈ P (A,B) if and only if
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p(z) =
1 +Aω(z)
1 +Bω(z)

(1.3)

for some function ω(z) ∈ Ω and every z ∈ D. This class was introduced by W. Janowski
[4].

Morever, let S∗(A,B, b, p, q) denote the family of functions f(z) ∈ Ap and such that
f(z) is in S∗(A,B, b, p, q) if and only if

1 +
1
b
(z.
f(q+1)(z)
f(q)(z)

− p+ q) = p(z) (1.4)

for some functions p(z) ∈ P (A,B) and all z ∈ D, and q ∈ N0 = N ∪ {0}, whereas, as
usual, f(q)(z) denotes the derivative of f(z) with respect to z of order q, and

f(0)(z) = f(z).

We note that by giving specific values to A, B, b, p and q, we obtain the sub-
classes of the class S∗(A,B, b, p, q) which were considered earlier by various authors
[1] , [2] , [5] , [6] , [9] , and [10] .

We shall need the following definition and lemma.

Definition 1.1 The radius for the property = in the class F is denoted by R=(F ) and
is the largest R such that every function in the class F has the property = in each disc
Dr for every r < R.

2. New Results

In this section of this paper, we shall give the radius of starlikeness and the radius of
convexity for the class S∗(A,B, b, p, q).

Lemma 2.1 Let ω(z) be regular in the unit disc with ω(0) = 0. Then if |ω(z)| attains
its maximum value on the circle |z| = r at the point z1, we can write z1ω

′(z1) = kω(z1),
where k is real and k ≥ 1.

This lemma was proved by I. S. Jack [3].
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Lemma 2.2 The function

w =


1+Az
1+Bz , B 6= 0

1 + Az , B = 0

maps |z| = r onto a disc centred at C(r), and having the radius ρ(r), viz.


C(r) = ( (1−ABr2)

1−B2r2 , 0)

C(r) = (1, 0)

, ρ(r) = (A−B).r
1−B2r2 , B 6= 0

, ρ(r) = |A| .r , B = 0.

Proof. 

w = 1+Az
1+Bz

⇔ z = w−1
A−Bw ⇔ |z|

2 = r2 = |w−1|2
|A−Bw|2

⇒ u2 + v2 + (2ABr2−2)
1−B2r2 u+ (1−A2r2)

1−B2r2 = 0

}
, B 6= 0

w = 1 +Az ⇔ z = w−1
A ⇔ |z|2 = r2 = |w−1|2

|A|2

⇒ u2 + v2 − 2u+ (1− A2r2) = 0

}
, B = 0.

(2.1)

Lemma follows from (2.1). 2

Lemma 2.3 The function

w =


(A−B)z
1+Bz , B 6= 0

Az , B = 0

maps |z| = r onto the disc centred at C(r), and having radius ρ(r)


C(r) = (−B(A−B)r2

1−B2r2 , 0)

C(r) = (0, 0)

, ρ(r) = (A−B).r2

1−B2r2 , B 6= 0

, ρ(r) = |A| .r , B = 0.
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Proof.

w = (A−B)z
1+Bz

⇔ z = w
(A−B)−Bw ⇔ |z|

2 = r2 = |w|2
|(A−B)−Bw|2

⇒ u2 + v2 + (2B(A−B)r2)
1−B2r2 u+ (A−B)2r2

1−B2r2 = 0

}
, B 6= 0

w = Az ⇔ z = w
A ⇔ |z|

2 = r2 = |w|2
|A|2

⇒ u2 + v2 − r2A2 = 0

}
, B = 0.

(2.2)

2

Lemma follows from (2.2).

Theorem 2.1 Let f(z) = zp + ap+1z
p+1 + ap+2z

p+2 + ... be an analytic function in the
unit disc D. If f(z) satisfies

1
b
(z
f(q+1)(z)
f(q)(z)

− p + q) ≺


(A−B)z
1+Bz = F1(z) , B 6= 0

A.z = F2(z) , B = 0,

(2.3)

then f(z) ∈ S∗(A,B, b, p, q), and this result is as sharp as the function ( 1+Az
1+Bz ).

Proof. We define the function w(z) by

f(q)(z)
zp−q

=


(1 +Bw(z))

b(A−B)
B , B 6= 0

eAbw(z) , B = 0,

(2.4)

where (1 +Bw(z))
b(A−B)

B and ebAw(z) have the values 1 at the origin.
Then w(z) is analytic in D and w(0) = 0. If we take the logarithmic derivative from

the equality (2.4) and after the brief calculations we get

1
b
(z
f(q+1)(z)
f(q)(z)

− p+ q) ≺


(A−B)zw′(z)

1+Bw(z) , B 6= 0

A.z.w′(z) , B = 0.

(2.5)
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Now it is easy to realize that subordination (2.3) is equivalent to
|w(z)| < 1 for all z ∈ D. Indeed, assume the contrary: there exists a z1 ∈ D such that
|w(z1)| = 1. Then by the Lemma of I. S. Jack, z1w

′(z1) = kw(z1) and k ≥ 1 for such
z1 ∈ D (using Lemma 2.3), and we have

1
b
(z1

f(q+1)(z1)
f(q)(z1)

− p+ q) ≺


(A−B)kw(z1)

1+Bw(z1)
= F1(w(z1)) /∈ F1(D) , B 6= 0

A.k.w(z1) = F2(w(z1)) /∈ F2(D) , B = 0.

(2.6)

But this is a contradiction of (2.3) of this theorem; so our assumption is wrong, i.e.,
|w(z)| < 1 for all z ∈ D. By using condition (2.5), we get

1 +
1
b
(z
f(q+1)(z)
f(q)(z)

− p+ q) =


1+Aw(z)
1+Bw(z) , B 6= 0

1 + Aw(z) , B = 0.

(2.7)

Then we obtain from equality (2.7)

1 +
1
b
(z
f(q+1)(z)
f(q)(z)

− p+ q) ≺


1+A.z
1+B.z , B 6= 0

1 +A.z , B = 0.

(2.8)

From equality (2.8), we get f(z) ∈ S∗(A,B, b, p, q). 2

Corollary 2.1 Let f(z) ∈ S∗(A,B, b, p, q). Then f(z) can be written in the form

f
(q)
∗ (z) =


zp−q(1 +Bw(z))

b(A−B)
B , B 6= 0

zp−q .eAbw(z) , B = 0,
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Theorem 2.2 The radius of starlikeness and the radius of convexity of the class S∗(A,B, b, p, q)
is

Rsc =
2(p− q)

|b| (A− B) +
√
|b|2 (A− B)2 − 4(p− q) [(B2 − AB)Reb + (q − p)B2]

. (2.9)

This radius is sharp because the extremal function is

f
(q)
∗ (z) =


zp−q(1 + Bw(z))

b(A−B)
B , B 6= 0

zp−q.eAbw(z) , B = 0

.

Proof. By using Lemma 2.2. set of values (z · f
(q+1)(z)
f(q)(z)

) is obtained which comprises

the closed disc with centre C(r) and the radius ρ(r), where

C(r) =
(p− q) −

[
(AB −B2)b+ (p− q)B2

]
.r2

1−B2r2
,

ρ(r) =
|b| (A −B)r
1− B2r2

.

Therefore, by using the definition of the class S∗(A,B, b, p, q), we have

∣∣∣∣z f(q+1)(z)
f(q)(z)

−C(r)
∣∣∣∣ ≤ ρ(r).

This gives

Re(z.
f(q+1)(z)
f(q)(z)

) ≥ (p− q) − |b| (A −B)r +
[
(B2 − AB)Reb + (q − p)B2

]
.r2

1−B2 .r2
. (2.10)

Hence for r < Rsc the first hand side of the preceeding inequality is positive, implying
that

Rsc =
2(p− q)

|b| (A −B) +
√
|b|2 (A− B)2 − 4(p− q) [(B2 −AB)Reb + (q − p)B2]

(2.11)
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Also note that inequality (2.9) becomes an equality for the function f(q)
∗ (z); it follows

that

Rsc =
2(p− q)

|b| (A −B) +
√
|b|2 (A −B)2 − 4(p− q) [(B2 −AB)Reb + (q − p)B2]

.

2

Remark 2.3 (i) By taking q = 0, p = 1, A = 1, and B = −1 in (2.9), we obtain

Rs =
1

|b|+
√
|b|2 − 2Reb+ 1

.

This is the radius of starlikeness for the class of starlike functions of complex order
which was obtained by M. A. Nasr and M. K. Aouf [6].

(ii) By setting , q = 0 in (2.9), then we obtain the radius of starlikeness for the class
S∗(A,B, b, p, 0)

Rs =
2p

|b| (A− B) +
√
|b|2 (A− B)2 − 4p [(B2 − AB)Reb +−pB2 ]

.

(iii) By letting q = 1 in (2.9), we also obtain the radius of convexity for the class
S∗(A,B, b, p, 1)

Rc =
2(p− 1)

|b| (A− B) +
√
|b|2 (A− B)2 − 4(p− 1) [(B2 − AB)Reb + (1− p)B2]

.
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Department of Mathematics and Computer Sciences,

Faculty of Science and Arts
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