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Abstract

In this paper, we introduce simplex linear codes over the ring
Pn=s
n=0 u

nF2 of

types α and β, where us+1 = 0. And we determine their properties. These codes

are an extension and generalization of simplex codes over the ring Z2s .
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1. Introduction

Recently, there has been much interest in codes over finite rings, for example chain
rings Z2k , where Z2k denotes the ring of integers modulo 2k. In particular, codes over
ring F2 + uF2 have been widely studied in [2] [4],[5], [9], [8], [10]. More recently in [3],
Z4-simplex codes and their Gray images, have been studied by Bhandari, Gupta and Lal.
By following the same instruments, in [1] simplex codes over F2 + uF2 are studied.
In this paper we describe linear simplex codes and there properties over the chain ring
R = F2 + uF2 + u2F2 = F2(u)/(u3). These codes are extensions and generalizations of
simplex codes over the ring Z2k which were studied by Bhandari, Gupta and Lal in [11].

1.1. The ring R

The ring R is introduced in [15], R = F2 + uF2 + u2F2 is a commutative chain ring of 8
elements which are {0, 1, u, u2, v, v2, uv, v3}, where u3 = 0, v = 1 + u, v2 = 1 + u2, v3 =
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1 + u+ u2, uv = u+u2. The elements of R are the polynomials over F2 modulo the ideal
(u3) of F2[u], where F2 is the binary field {0, 1}. Addition and multiplication operations
over R are given in the following tables:

Table.

+ 0 1 u v u2 uv v2 v3

0 0 1 u v u2 uv v2 v3

1 1 0 v u v2 v3 u2 uv

u u v 0 1 uv u2 v3 v2

v v u 1 0 v3 v2 uv u2

u2 u2 v2 uv v3 0 u 1 v

uv uv v3 u2 v2 u 0 v 1

v2 v2 u2 v3 uv 1 v 0 u

v3 v3 uv v2 u2 v 1 u 0

. 0 1 u v u2 uv v2 v3

0 0 0 0 0 0 0 0 0

1 0 1 u v u2 uv v2 v3

u 0 u u2 uv 0 u2 u uv

v 0 v uv v2 u2 u v3 1

u2 0 u2 0 u2 0 0 u2 u2

uv 0 uv u2 u 0 u2 uv u

v2 0 v2 u v3 u2 uv 1 v

v3 0 v2 uv 1 u2 u v v2

The ring R is a commutative chain ring with maximal ideal uR = {0, u, u2, uv}. Since
u is nilpotent with nilpotent index 3, we have

R ⊃ (uR) ⊃ (u2R) ⊃ (u3R) = 0. (1.1)

Observe that R/uR ∼= F2, and

|uiR| = 2|(ui+1R)| = 23−i, i = 0, 1, 2. (1.2)

This follows from the fact that uiR/ui+1R is an R/uR vector space.
As R is a chain ring as in (1.1), every module M over R admits a decreasing filtration

M ⊃ uM ⊂ u2M ⊃ u3M = 0, (1.3)

as well as a direct sum decomposition

M ∼= (R/uR)l1 ⊕ (R/u2R)l2 ⊕ (R/u3R)l3 ∼= (u2R)l1 ⊕ (uR)l2 ⊕ (R)l3 . (1.4)

For more details about (1.1)–(1.4) see [13] and [17].
A linear code C of length n over the ring R is an R- submodule of Rn. An element of C
is called a codeword of C and a generator matrix of C is a matrix whose rows generates
C. Following [15] we use the following terminology. The Hamming weight of a codeword
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x in Rn is the number of non-zero components. The Lee weight ar of an element r of the
ring R is given by the following equations:

ar =



0 if r = 0
1 if r = 1, or v2

2 if r = u or uv
3 if r = v or v3

4 if r = u2.

Then the Lee weight of an element x = (x1, x2, ....xn) of Rn is

wtL(x) =
n∑
i=1

ar . (1.5)

This definition is analogous to the definition of the Lee weight of the elements of the
ring Z8, where a0 = 0, a1 = a7 = 1, a2 = a6 = 2, a3 = a5 = 3, a4 = 4.

Example 1.1 Let x = (1, 0, 0, u, v, v2, u2, uv); then wtL(x) = 13.

For x = (x1, x2, · · · , xn), y = (y1, y2, · · · , yn) ∈ (R)n, dH(x,y) = |{i : xi 6= yi}| is
called the Hamming distance between x and y and the minimum Hamming distance of
C is denoted by dH . The Lee distance between x and y ∈ (R)n is denoted dL(x,y) =
wtL(x − y). The minimum Lee distance dL of a code C is defined analogously.

1.1.1. Generator matrices

For k > 0, Ik denote the k × k identity matrix.

Definition 1.1 (Generator Matrix) Let C be a code over R. A matrix G is called a
generator matrix for C if the rows of G spans C and none of them can be written as a
linear combination of the other rows of G. In [6] Sloane and Calderbank have defined the
generator matrix for codes over Zps . In [13] G. Norton And A. Salagean have defined
the generator matrix over a finite chain rings. By the same theme we define the standard
form of the generator matrix for code C over R as

G =

Ik0 A01 A02 A03

0 uIk1 uA12 uA13

0 0 u2Ik2 u2A23

 ,
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where Aij are matrices over R and the columns are grouped into blocks of sizes ki,where

0 ≤ i < 3. Let k =
∑2

i=0(3− i)ki. Then |C| = 2k. The code C is called free module if and
only if ki = 0 for all i = 0, 1, 2.

Remark 1.1 The presence of zero divisors in R creates a problem in finding the linear
dependence of vectors in Rn. Consequently, defining the dimension of a module as a
cardinality of its basis is not meaningful. Recently in [16] Vazirani, Saran and Sundar
Rajan have introduced the notion of p-dimension for finitely generated modules over Zps .
As a consequence we define the 2-dimension for a code C over R in the following. A
subset B of C is a 2-basis for the linear code C over R if B is 2-linearly independent and
C is the 2-span of B. The number of vectors in any 2-basis for C is called 2-dimension
of C, denoted 2-dim(C).

1.2. The Generalized Gray map

In [7] C. Carlet has defined a generalized gray map φGL form Z2s to Z2s−1
2 and has

obtained the Z2s version of some binary codes and it is also shown that any Z2s-linear
code is distance invariant under this map. In [11] it was shown that this map need not
be linear. In [4] a linear isometry Gray map φ from the chain ring F2 + uF2 to F 2

2 was
obtained and it was extended from

((F2 + uF2)n, Lee distance) to (F 2n
2 , Hamming distance),

( see [4]).
In this paper we extend this result and define a generalized linear gray map φGL from
R = F2 + uF2 + u2F2 to F 4

2 and we will extend it from

Rn −→ to F 4n
2

by applying φGL to each coordinate as follows:
For any element of R expressed as x+ uy + u2z, we let

φGL(x+ uy + u2z) = (z, x+ z, y + z, x+ y + z),where x, y and z ∈ F2,

we extend this to vectors over R,

ΦGL(x + uy + u2z) = (z,x + z,y + z,x + y + z),
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where x, y, z ∈ F n2 and (x + uy + u2z) ∈ Rn. From the definition of this map we define
the generalized Lee weight of any non-zero element t ∈ R by

wtGL(t) = wtH(φGL(t)) =

2 if t 6= u2,

4 if t = u2.

We also have the following matrix which gives the generalized Lee weight to each non-zero
element of R

Gs =



φGL(1)
φGL(u)
φGL(v)
φGl(u2)
φGl(v2)
φGL(uv)
φGL(v3)


=



0101
0011
0110
1111
1010
1100
1001


.

The generalized gray map can be extended to (R)n by applying ΦGL to its components.
Note that this map is distance-preserving from
((R)n, Generalized Lee distance) to ((F2)4n, Hamming distance).

Remark 1.2 From the definition of the generalized Gray map and the generalized Lee
weights for the elements in the ring R, we extend the results that were given by Bonnecaze
and Udaya in [4] to the ring F2 + uF2 and we have the following lemma.

Lemma 1.1 If C is a linear code over R, so ΦGL(C) is a linear binary code and the
minimum Generalized Lee weight of C is the same as the minimum Hamming weight of
ΦGL(C).
Proof. Let t = x+ uy + u2z, t′ = x′ + uy′ + u2z′ ∈ R, then

t + t′ = x+ x′ + u(y + y′) + u2(z + z′)

and

φGL(t+ t′) = (z + z′, (x+ x′) + (z + z′), (y + y′) + (z + z′), (x+ x′) + (y + y′) + (z + z′))

= (z, x+ z, y + z, x+ y + z) + (z′, x′ + z′, y′ + z′, x′ + y′ + z′) = φGL(t) + φGL(t′),
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So ΦGL is a linear map.
Now let ci = xi + uy1 + u2zi ∈ C, where i = 1, 2.
And let wi = ΦGL(ci) , i = 1, 2.
Then
ΦGL(c2 + c2) = (z1 + z2, (x1 + x2) + (z1 + z2), (y1 + y2) + (z1 + z2), (x1 + x2) + (y1 + y2) + (z1 + z2))

= (z1,x1 + z1, y1 + z1,x1 + y1 + z1) + (z2, x2 + z2,y2 + z2, x2 + y2 + z2) = ΦGL(c1) + ΦGL(c2) = w1 + w2.

This implies that ΦGL(C) is linear binary code over F2.
Since the generalized Gray map ΦGL is an isometry from

(Rn, GL) to (F 4n
2 ,Hamming distance),

and from definition of Gray map,

wtH(ΦGL(c)) = wtGL(c), c ∈ C,

dH(ΦGL(c1),ΦGL(c2)) = dGL(c1, c2), c1, c2 ∈ C,

then the minimum generalized Lee weight of C is the same as the minimum Hamming
weight of ΦGL(C).
So the last assertion holds. 2

Lemma 1.2 Let C and C′ be equivalent codes over R. Then φ(C) and φ(C′) are equivalent
codes over F2.

A linear code over R of length n, 2-dimension k, minimum Hamming distance dH ,
minimum Lee distance dL and Generalized Lee distance dGL is called an [n, k, dH, dL, dGL]
code, or simply an [n, k] code. The binary image under the Generalized Gray map Φ(C)
of a code C over R is a linear code over F2 of length 4n, dimension k and minimum
Hamming distance dGL. Hence by the Griesmer bound for binary codes [12], we have

n ≥ d1
4

k−1∑
i=0

ddGL
2i
ee.

In [14] Rains has proved that for a linear code over Z4, dH ≥ ddL2 e. Also, the same result
holds for codes over the ring F2 + uF2 [1]. The following corollary generalizes it for the
ring R.
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Corollary 1.3 Let C be a linear code over R, then

dH ≥ d
dL
4
e, and dH ≥ d

dGL
4
e.

A linear code over C over R is said to be of type α(β) if

dH = ddGL
4
e(dH > ddGL

4
e).

Definition 1.2 [11] For each 1 ≤ i ≤ n, let AH(i)(AL(i) or AGL(i))
be the number of codewords of Hamming (Lee) or generalized Lee weight i in C.
Then {AH(0), AH(1), ......AH(n)}, ({AL(0), AL(1), ......AL(n)}) or
({AGL(0), AGL(1), ......AGL(n)}) is called the Hamming (Lee) or Generalized Lee weight
distribution of C.

2. R-Simplex Codes

In this section we will study the simplex codes of type α and β over R and also we
study the properties of their images under the Generalized Gray map.
Let Gk be a k × 23k matrix over R defined inductively by

G1 = [0, 1, u, v, u2, uv, v2, v3],

Gk =

[
00...0 11...1 uu...u ... v3v3...v3

G1 G1 G1 ... G1

]
; k ≥ 2. (2.1)

Note that the columns of Gk consist of all distinct k-tuples over R. The code Sαk generated
by R has length 8k and 2-dimension 3k.

Remark 2.1 If Ak−1 denotes an array of codewords in Sαk−1 and if i=(i, i, i, ..., i), then
an array of all codewords of Sαk is given by

Ak−1 Ak−1 Ak−1 . . . Ak−1

Ak−1 1 + Ak−1 u +Ak−1 . . . v3 + Ak−1

Ak−1 u +Ak−1 u2 + Ak−1 . . . v2 + Ak−1

...
...

...
. . .

...
Ak−1 v3 +Ak−1 v2 +Ak−1 . . . 1 +Ak−1


.

227



AL-ASHKER

Remark 2.2 If R1, R2, ...Rk denote the rows of the matrix Gk then wH(Ri) = 23k −
23(k−1), wH(u2Ri) = 23k−1,wL(Ri) = 23(k+1)−2, and wGL(Ri) = 23(k+1)−2.

For each m, 0 ≤ m ≤ 3, let S0 = {0}, S1 = {0, u2}, S2 = {0, u, u2, uv},S3 = R. Note that
S2 is the set of all zero divisors of R. A codeword c = (c1, c2, c3, ...cn) ∈ Sαk is said to
be of type m if all of its components belong to the set Sm. From the observation of Gk,
we have that each element of R occurs equally in every row of Gk, for this we have the
following lemma.

Lemma 2.1 Let c ∈ Sαk be a type m codeword. Then all the components of c will occur
equally often 23k−m times.

Proof. By remark (2.1) , since for any x ∈ Sαk−1 we have the following codewords of
Sαk :

y1 =
(

x x x . . . x
)

, y2 =
(

x 1+x u+ x . . . v3+x
)

,

y3 =
(

x u+x u2+ x . . . uv+ x
)

,....,and

y8 =
(

x v3+x uv+ x . . . 1+x
)

.

The result holds by induction on k and by remark (2.1). 2

To determine weight distribution of Sαk we need to determine the number of codewords
of type m in Sαk for 1 ≤ m ≤ 3. Following [11], let Cm be the matrix defined by

C1 =


u2R1

u2R2

...
u2Rk

 , C2 =



uR1

u2R1

uR2

u2R2

...
uRk

u2Rk


, C3 =



1R1

uR1

u2R1

1R2

uR2

u2R2

...
1Rk
uRk

u2Rk



,

where Ri is the ith row of the matrix Gk. The sub-codes D(m) of C generated by the 2-
linear combinations of the rows of Cm will have 2mk codewords. Note that the codewords
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generated by the matrix C1 have components either 0 or u2 and C3 yields the whole code
Sαk . Thus, for all m, 1 ≤ m ≤ 3, a codeword of type m will occur 2mk − 2(m−1)k times
in Sαk . This proves the following lemma.

Lemma 2.2 Let 0 < m ≤ 3. Then the number of codewords of type m in Sαk is
2(m−1)k(2k − 1).

Theorem 2.3 The hamming, Lee and generalized Lee weight distributions of Sαk are:

1. AH(0) = 1, AH(23k−m(2m − 1)) = 2(m−1)k(2k − 1) for 1 ≤ m ≤ 3,

2. AL(0) = 1, AL(23(k+1)−2) = 23k − 1 and

3. AGL(0) = 1, AGL(23(k+1)−2) = 23k − 1.

Proof. Let c ∈ Sαk be a codeword of type m 6= 0.The by Lemma 2.1, wtH(c) =
23k − 23k−m and hence by Lemma 2.2, AH(23k − 23k−m) = 2(m−1)k(2k − 1). For m = 0,

AH(0) = 1. Also, by Lemma 2.1 wtL(c) = 23k−m(
∑(3m−1)

t=0 wtL(t.u3−m)) = 23(k+1)−2

which is independent of m. Thus all type m 6= 0 codewords will have same Lee weight
Similar argument holds for generalized Lee weight. 2

Note:-Sαk is an equidistant code with respect to Lee and generalized Lee distances and
it is of type α.
As the length of Sαk is large, we can puncture some columns from Gk to yield good codes
over R.
Let Gαk be the k × 22(k−1)(2k − 1) matrix defined inductively by

Gβ2 =

[
111 . . .1 0 u u2 uv

0, 1, u, v, u2, uv, v2, v3 1 1 1 1

]
,

and for k > 2,

Gβk =

[
111 . . .1 00 . . .0 u, u . . .u u2, u2 . . . , u2 uv, uv, . . . , uv

Gk−1 Gβk−1 Gβk−1 Gβk−1 Gβk−1

]
,

where Gk−1 is the matrix of Sαk−1. By induction, it easy to verify that no two columns of

Gβk are multiple of each other. Let Sβk be the linear code over R generated by Gβk . Note

that Sβk is [22(k−1)(2k − 1), 3k] code.
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Remark 2.3 If Ak−1(Bk−1) denotes an array of codewords in Sαk−1(Sβk−1) and if i =

(i, i, ..., i) then an array of all codewords of Sβk is given by

Ak−1 Bk−1 Bk−1 Bk−1 Bk−1

1 + Ak−1 Bk−1 u + Bk−1 u2 + Bk−1 uv + Bk−1

u + Ak−1 Bk−1 u2 +Bk−1 Bk−1 u2 +Bk−1

...
...

...
...

...
v3 +Ak−1 Bk−1 uv + Bk−1 u2 + Bk−1 u + Bk−1


.

Remark 2.4 Each row of Gβk has Hamming weight 2(3−1)(k−1)−3[(2k − 1)(23 − 1) + 1],
and generalized Lee weight 23k−k−1(2k − 1). The Lee weight of the first row will be
23(k−1) + 23k−2 − 23k−k−1.

Remark 2.5 Let j ∈ R and let c be a codeword in the code C we denote wj(c) = |{k :
ck = j}|.

Let U, Z be the set of units and zero divisors of R, respectively. The following proposition
in the determination of the weight distribution of Sαk .

Proposition 2.4 Let 1 ≤ j ≤ k and let Rj be the jth row of Gβk . Then
∑

i∈U ωi =

23(k−1), and each zero divisor in R occurs 2(3−1)(k−2)(2k−1 − 1) times in Rj.

Proof. The proof follows directly from above using the definition of Rj. 2

Proposition 2.5 Let c ∈ Sβk . If one of the coordinates of c is a unit then
∑

i∈U ωi =

23(k−1), and each zero divisor in R occurs 2(3−1)(k−2)(2k−1 − 1) times in c.

Proof. The proof is follows by induction from remark (2.3). 2

Let C be a linear code over R. We can define the reduction code C(1) and the torsion
code C(2) of C as follows. C(1) = {x ∈ F n2 |∃y, z ∈ F n2 |x + yu+ zu2 ∈ C} and C(2) = {x ∈
F n2 |u2x ∈ C}. If C is a free module then C(1) = C(2). Hence the reduction and the torsion

codes of Sαk (Sβk ) are equal.

Proposition 2.6 The torsion code of Sαk (Sβk ) is equivalent to 2(3−1)k copies of the ex-
tended binary simplex code (2(3−1)(k−1) copies of the binary simplex code).
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Proof. The proof is by induction on k. 2

Theorem 2.7 The Hamming and Generalized Lee weight distribution of Sβk are

1. AH(0) = 1, AH(22(k−1)[2k−m{2m−1}+{21−m−1}]) = 2(m−1)k(2k−1), for each m; 1 ≤
m ≤ 3, and

2. AGL(0) = 1, AGL(23k − 1) = 2k − 1, AGL(23k−k−1(2k − 1)) = 2k(22k − 1).

Proof. By induction on k. By Theorem (2.3) and Remark (2.3) it easy to see that the

possible nonzero Hamming (Generalized Lee) weights of Sβk are {22(k−1)(2k−m(2m− 1) +
(21−m − 1)) : 1 ≤ m ≤ 3}({23k−1, 23k−k−1(2k − 1)}). By lemma (2.2), Hamming weight
of type m will occur 2(m−1)k(2k − 1) times. Moreover, generalized Lee weight 23k−1 will
occur 2k − 1 times. Thus the other weight will occur 23k − 2k times. 2

2.1. Gray Image Families

Let C be an [n, k, dH, dGL] linear code over R and let ΦGL be the generalized Gray map
defined in section (1.2). Then ΦGL(C) is a binary code having 2k codewords of length 4n,
and Hamming distance dGL. Also, ΦGL(C) is always a linear binary code.

Remark 2.6 (i) Let S α
k be the punctured code of Sαk obtained by deleting the zero

coordinate, then ΦGL(S α
k ) is a binary code of length 22(23k−1) and minimum

Hamming distance 23(k+1)−2.

(ii) ΦGL(Sβk ) is a binary code of length 22k(2k − 1) and minimum Hamming distance
23k−k−1(2k − 1).

2.2. Conclusion

In this paper we have studied R- simplex codes and some of their properties. Other
properties of these codes will reported in future study. One can also extend these ideas
to a more general rings like

∑s
n=0 u

nF2 and to
∑s

n=0 u
nFp, where p is a prime integer

and us+1 = 0.
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