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Abstract

In this paper, we consider the Schrédinger operators defined by the differential

expression

Lu=—-Au+ q(z)u

in d-dimensional paralellepiped F', with the Dirichlet and the Neumann boundary
conditions, where g(z) is a real valued function of Lo(F'). We obtain the asymptotic

formulas for the resonance eigenvalues of these operators.

First asymptotic formulas for the eigenvalues of the Schrédinger operator in paral-
lelepiped with quasiperiodic boundary conditions are obtained in papers [8]-[11]. By
some other methods, the asymptotic formulas for quasiperiodic boundary conditions in
two and three dimensional cases are obtained in [2], [3], [6], [7]. The asymptotic formulas
for the eigenvalues of the Schrédinger operator with periodic boundary conditions are ob-
tained in [4] and with Dirichlet boundary conditions in 2-dimensional case are obtained
in [5].

Let Q= {Zle miwi;m; € Z,i=1,2,...,d} be a lattice in R? with the reduced basis
wy = (a1,0,...,0), we = (0,a2,0,...,0),....,wg = (0, ..., 0, ag),

I= {Zle nifBi :m; € Z,i=1,2,...d} be the dual lattice of 2, where
(w;, Bj) = 2m8;j, (.,.) is inner product in R? and F = [0, a;] x [0, az] x ... x [0, ag].

*Supported by a grant from TUBITAK.

323



KARAKILIC, VELIEV, ATILGAN

In this paper we consider the d-dimensional Schrédinger operators Lp(g(x)) and

Ly (g(z)), defined by the differential expression
Lu = —Au+q(x)u (1)

in F', with the Dirichlet boundary condition

ulop =0 (2)
and the Neumann boundary condition
Ju
— =0 3
on |8F 3 ( )

respectively, where OF denotes the boundary of the domain F, x = (21, 22, ..., z4) € R,
d > 2, A is the Laplace operator in R?, and % denotes the differentiation along the
outward normal n of OF.

We denote the eigenvalues and the normalized eigenfunctions of Lp(g(z)) by Ay and
U, respectively. The eigenvalues and the normalized eigenfunctions of Ly(g(x)) are
denoted by T n and Py, respectively.

The eigenvalues of the operators Lp(0) and Ly(0) are |y|? , with the corresponding

eigenfunctions
e 1 . 2 . d
Uy () = siny 1 siny“xo... siny*zq, (4)
and
— 1 2 d
Uy () = cosy x1 cos Y xa... cosY 'z, (5)
respectively, where v = (4}, 7%, ...,7%) € g
Since the orthogonal system {v./ (x)}v’egv is a basis in Lo(F'), the potential ¢(z) in
(1) can be written as
gx) = gy (), (6)
yes

’

where ¢/ is the Fourier coefficient of g(z) with respect to the basis v/ (z),y €

[NlL!

Without loss of generality we can take qo = 0.
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In this paper, we assume that the Fourier coefficients of the potential ¢(x) satisfy the

condition

7 gy PA+ 1) < o0, (7)

yel
where [ > w + d + 1. Therefore, one can write

g@)= > gy (z)+0(p "), (8)

v €T (p*)

where  p=1—d, T(p*)={ye}:0<|y <p}, a<(d+1—20) and p is a

large parameter.

Remark 1 Notice that, if () is sufficiently smooth, (q(z) € WL(F)) and the support
of gradq(x) = (5—1?1, 5_;2’ ey %qd) is contained in the interior of the domain F, then q(x)
satisfies the condition (7).

There is also another class of functions q(x), such that q(x) € WL(F),

gx) =Y qvy,

y'er
which is periodic with respect to Q and thus also satisfies the condition (7).
As in the papers [11], [12], we divide the eigenvalues |y|? for |y| ~ p of the Laplace
operator into two groups, where |y| ~ p means that ¢;p < |y| < eap and by ¢;, i = 1,2, ...,
we denote the positive independent on p constants whose exact values are inessential.

For this, we let ap = 3%, k = 1,2,...,d — 1 and introduce the following notations and

definitions:

M= Z |q'y,|7 (9)

ek

Vi(p®) = {z e R s |loP — e+ B2 < ™), Ea(p™p) = | Vi),
beT (pp™)

k
U(p™,p) = R\NE1(p™,p),  E(p™*,p) = U () Vi (™)),

V17250 YR ED (Pp) i=1
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where the intersection ﬂle Vi, (p“’“) in EY} is taken over 41,79, ..., 7% which are linearly
independent vectors and the length of -y; is not greater than the length of the other vectors
in 'y R. The set U(p™*,p) is said to be a non-resonance domain, and the eigenvalue
|7|? is called a non-resonance eigenvalue if v € U(p®,p). The domains V;(p®1), for all
b € T'(pp®) are called resonance domains and the eigenvalue |y|? is a resonance eigenvalue
if v € Vo(p™).

As noted in [12], the domain V;(p™*) \ Es, called a single resonance domain, has asymp-

totically full measure on V;(p™'), that is

w(Vo(p™1) \ E2) N B(p))
n(Vu(p*r) N B(p))

where B(p) = {z € R%: |z| = p}, if

— 1, as p— oo,

200 —a1 + (d+3)a<1l and az > 2a, (10)

hold. Since o < Flzov the conditions in (10) hold.

In [1], we obtained the asymptotic formulas for the non-resonance eigenvalues of the
d-dimensional Schrédinger operators Lp(g(z)) and Ly (g(z)) with the condition (7).

In continuation of the paper [1], in this paper we investigate the perturbation of the
resonance eigenvalue |y|?, i.e., when v € Vs(p®) \ Ea, where § is from {ey, ea, ..., €4} and
er1=(2-,0,...,0),e2= (0, 7-,0,...,0), ....,ea = (0, ..., 0, -).

Now let Hs = {z € R: (z,) = 0} be the hyperplane which is orthogonal to §. Then,

we define the following sets:

Qs ={w e Q: (w,8) =0} = Q[ Hs,

T T
I's = - 6)=0}=—[ |Hs.
s={re€ D) (v,6) =0} 5 ﬂ 5
Clearly, for all v € g, we have the following decomposition
y=30+p3, pBels, jeZ (11)

We write the decomposition (6) of ¢(z) as
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where ¢°(z) = Q(s) = 3,,c 7 Gns cosn(x,8), qns = [ q(x) cosn(z, §)dz, s = (z,6).
We consider the operators Lp(q’(x)) and Ly (¢°(z)), defined by the differential ex-

pression

Lu = —Au + ¢ (z)u (13)

with the Dirichlet boundary condition u|sr = 0 and the Neumann boundary condition
%l@F = 0, respectively.
It can be easily verified by the method of separation of variables that the eigenvalues

and the eigenfunctions of Lp(q°(x)) are Xjﬁ = 11; + |B|* and

©; 3 = ¢;(s)ug, respectively, where § € I'5, ji; is the eigenvalue and @;(s) is the corre-
sponding eigenfunction of the operator Tg (Q(s)) defined by the differential expression

Ty(s) = —[6]*y"(s) + Q(s)y(s) (14)

in [0, 7], with the Dirichlet boundary conditions y(0) = y(7) = 0.

Similarly, the eigenvalues and the eigenfunctions of Ly(q°(x)) are \j 5 = uj + |3)?
and ©;3 = ¢,(s)vg, respectively, where 3 € T's, and p; is the eigenvalue and ¢;(s)
is the corresponding eigenfunction of the Sturm-Liouville operator TJ‘E,(Q(S)), defined
by the differential expression (14) in [0, 7], with the Neumann boundary conditions
YO =) =0,

The eigenvalues of the operators 7% (0) and T%(0) are |nd|> with the corresponding
eigenfunctions sinns and cosns, respectively. It is well known that the eigenvalue 1
of T?(Q(s)) and the eigenvalue p; of T (Q(s)) such that |; — [§6]?| < sup Q(s),|u; —
76]%| < sup Q(s) together with the corresponding eigenfunction @;(s) of T/(Q(s)) and
the corresponding eigenfunction ¢;(s) of T%(Q(s)) satisfy the following relations:

1 1

i =i0]> + O(—), @,(s) =sinjs+ O(—),

1 = 1612+ O(),  y(s) = cos s + O(). (15)
|76] |76]

By the first equation in (15), the eigenvalue |y|? = |3|? + |jd|? of Lp(0) corresponds
the eigenvalue |3|2 + fi; of Lp(¢°); and by the second equation in (15), the eigenvalue
|7/ = |B]? + |76]? of Lx(0) corresponds the eigenvalue |3|2 4+ u; of Ly(q%). Now we

prove that there is an eigenvalue Ay of Lp(g) which is close to the eigenvalue |3]? + [1;
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of Lp(q’®) and that there is an eigenvalue Y of Ly (g) which is closed to the eigenvalue
|8|2 + i of Lyn(q?). For this we use the binding formula for Lp(q) and Lp(q°)

(A = X3.8) (¥, 05.8) = (U, (a(x) = ¢ (2))8,6), (16)
and the binding formula for Ly (q) and Ly (¢°)

(T = X8)(@N, 0;8) = (®n, (q(z) — ¢°(2))O; 5). (17)

Now as in the non-resonance case, we decompose (q(z) — ¢°(2))0; 3 by O, 5 and
(q(z)—q¢°(x))O, 5 by O, 5 then put these decompositions into (16) and (17), respectively.
Let us find these decompositions. Writing (11) for every 1 € T'(p®) and using (8), we
have

1 =m6+ P31, vy (x)=(cosnis)vg (z),

q(z) — Q(s) = Z d(B1,n1)(cosnys)vg, (z) + O(p~P%), (18)

(B1,m1) €T (p)

where 3 € T's, d(31,11) = [, q(z)(cos n15)vg, (z)dz and

I(p*) ={(B1,n1): B1 €Ts\{0},n1 € Z,n16+ 51 € T(p™)}.
The fact that v = jo 4+ 3 € Vs(p®*) \ E2 implies

gl <r, = pt el 41 (19)
and 3 ¢ V., (p™), for all e, # §, by which we have
1
65| > 37 ke #6 (20)

Clearly for (81,n1) € I"(pp®), we have |n1d + (1] < pp®, and since f; is orthogonal
to 4,

1
[B1l < pp® Inal < pp®, fna| < 51, (21)

(see 19).

Now we prove that

Z d(f1,m1)(cos n1s)vg, (x)vg(zr) = Z d(f1,n1)(cosni1s)vg, +5(x),
(B1,m1) el (p*) (Br,m1)€el” (p)
(22)

328



KARAKILIC, VELIEV, ATILGAN

for all 8 € T, satisfying (20).

Clearly vg(x) = ﬁZaeAﬁ el where Ag = {a = (1, a9,...,a4) € R : |a;] =
|Bt],i=1,2,...,d} and |Ag| is the number of vectors in Ag. Using these, it is not difficult
to verify that for all 8 € T, satisfying (20) and for all a such that (a,n1) € I'(p*), the

following relations hold:

wE@e@) = oo Y FeT =

vy eA, (XEA

(23)

4 'yEA

since [Ag| = |Ag,./| = 2%71, because all components of §; and §; + ~; for all i : e; # &
are different from zero and G, = 0, Br + 'y,; = 0 for k : e, = § . Really, the condition
(20) implies |3;| > $p**, Vi# k. Also, if (a,ny) € I'(p®), then for all v € A, we have
il < o, Vi # k. Therefore, |B; + 3| 2 |I8s] = Il > 50

The set A, consists of the vectors a',a?, ..., a*, where s = |A4,| and clearly,

Aal = Aaz = .= Aas = Aa, Vgl = Vg2 = ... = Ugs = VUq- (24)

2 s

Hence in (23), the vector a can be replaced by a',a?,...,a®. Summing the obtained s

equality and using (24), we get

Zvak(x)vg(x): Z Vg (T) & Z v (z)vg(x) = Z Vg, (7)
k=1

'Y,eAa 'Y,EAa ’Y,eAa

Thus, we have

S d( ) (cosnis)oy (2)os(a) = 3 (7 mi)(cosmasyuyrap(a),  (25)

Y EA, Y EAq

for all ny € Z, since d(y/,n1) cosnis = d(a,n1) cosnys, for all ¥/ € A,, n; € Z. Clearly,
there exist vectors B1, B2, ..., Bm € I'e, such that

I'(p*) C (U Ap;) x{n1 € Z: || < %7‘1}. (26)

In (25), replacing a by 8;, for j = 1,2, ..., m, summing all obtained m equations and using
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(26), we get (22). Similarly, one can prove

> dBum)(cosmis)og, (@ug(z) = D> d(Br,m)(cosmis)ug, +5(@),
(Br,m1)€l (p*) (Br,m1)€l’ (p*)
(27)
for all 8 € T, satisfying (20).
Now multiplying the both sides of the equation (18) by éjrﬁr, where 3 satisfies (20)

and using (27), we obtain

(a(z) — Q)05 = > d(B1,n)(cosnis)vg, Ojrp + O(p7")

(B1,n1)€l (p>)

= Z d(B1,n1)(cosn18)pj (s)ug,+p + O(p~P). (28)
(B1,n1)€l (p>)

Similarly, multiplying the both sides of the equation (18) by ©, 3 and using (22), we get
(9@) = Q)8 = D d(Bi,m)(cosms)oy(s)ug 5+ O(p™"), (29)

(B1,m1) €T (p*)

To decompose the right hand sides of (16) and (17) by ©;, 3 and ©, g, respectively, we

use the following lemmas:

Lemma 1 Let r be a number no less than ry, i.e. v > 11, and j, m be integers satisfying
l7] + 1 < r,|m| > 2r. Then,

1

(pj(s),cosms) = O(W), (30)
©(s) = | |Z (p;(s), cosms) cosms + O(p(l%)a) (31)
m|<2r
and
(@(s)sinms)| = Oy, (32)
o(s) = Z (p;(s),sinms) sinms + O(p(l%)a) (33)

|m|<2r
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Proof. First we prove (30) and (31) using the following binding formula for 7% (Q(s))
and T%(0)

(11 = [md]*)(;(s), cosms) = (p;()Q(s), cos ms). (34)
Using the obvious decomposition (see (7)) for Q(s),

Q(s) = Z 1,5 cos l1s + O(|lma| ==V, (35)

|l15|<%

into (34), we get

(115 — |md|*)(p;(s), cosms) = (p;(s) Z q1,5 cos Iy s, cosms) 4+ O(Jmd|~(=1)

|l15|<%

= Z 41,5 (0 (5), cos Iy s. cosms) + O(Jmé|~(=Y)

[
|l15|<%

= 37 ansles(s) gloostm + 1)+ cos(m — 1)s) + O(fma| 1)

o)< g2

= Z QZlé((Pj(S),COS(m —l)s) + O(|m5|—(l—1))_

[
|l15|<%

And, again using (34), we get

(15— ) (s) cosms) = 3" BOLD L) 4 3151000

i — |(m —11)0]?
gzl pj = [(m = 11)d]

Putting (35) into the last equation, we obtain

; —ll —12)8)
— |md|*)(p;(s),cosms) = 1 (5(5), cos(rm
(1 — m3[2) (i, (s), cos ms) 2, st P
l116] <5,
lig6)<Lmel

21

+0(jmé) (=1,

In this way, iterating k = [%] times and dividing both sides of the obtained equation by

331



KARAKILIC, VELIEV, ATILGAN

pj — |md|?, we have

(pj(s),cos(m —1l1 — ... = lg)s)
(pj(s),cosms) = Z Qy6- Qs =77
1115 |md| t=0 (/'LJ_ (m_ll__lt)§|2
10/<—=7--s
l1ps) <Pl
+O0(jmé|~1=1), (36)
where the integers m, [y, ..., [, satisfy the conditions
;] < %,i =1,2,..,k |il+1< @ (see assumption of the lemma). These conditions
imply that ||m — 13 — ... = I] — |j]| > @ This together with (15) give
1 1
= = O(|md|~2),
iy = Tom =T == T00P] ~ TR + 0 — Tom — & — . — o]~ CUm™)

(37)

fort =0,1,...,k—1. Hence by (36),(37) and (9), we have |(;(s), cosms)| = O(jms|~(—1)).
(30) is proved.
To prove (31), for j satisfying |j| +1 < r, we write the Fourier series of ¢,(s) with

respect to the basis {cosms :m € Z}, i.e.,

pi(s) = Z((pj(s),cosms)cosms
mezZ

Z (¢j(s), cosms) cos ms + Z (p;(s), cosms) cos ms.

|m|<2r m>2r

By (30), for |m| > 2r and |j| + 1 < r, we have (¢;(s),cosms) = O(|md|~(=1). Using

this relation, we get

pj(s) = Z (p;(s), cosms) cos ms + O(|mé)~=2),

|m|<2r

since |md| > p®, (31) is proved.
In the same way, instead of (34), using the the following binding formula for 7%/(Q(s))
and T (0)

(fi; — md|*)(;(s), sinms) = (5;(s)Q(s), sinms), (38)

(32) and (33) can be easily proved. O
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Lemma 2 Let r be a number no less than 1, i.e. © > 11, and j be integer satisfying

|7l +1<r. Then

(cosnis)pi(s) = Y a(ni,j,j+ j1)pie(s) + O~ 179), (39)
|71]<67

(cosn1)@i(s) = Y @n,j,j+ j1) @i (s) + O(r~179), (40)
|71]<67

for (n1, B1) € I'(p1p®), where a(ni, j,j+ 1) = ((cosnis)p;(s), ¢j+j, () and a(n1, j, j +
1) = ((cosn15)@;(s), Bj+4r ()
Proof. First we prove (39). Consider the Fourier series of (cosnis)y;(s) with respect

to the basis {@;+4,(s) : j1 € Z}
(cosnis)pi(s) = > ((cosnus)e;(s), @t (5)@s1i: ()
J1€Z
= Z a(nlvj?j +j1)(pj+j1 (S) + Z a(nlvj?j +j1)(pj+j1 (S)
[j1l<6r [j1]>67
To prove (39), we must prove 3. 5, |a(n1, j, j + j1)| = O(r~=(=3) or, equivalently,

la(ny, j. 5+ j1)l = O(r="2), Vi1 |ju| > 6r. (41)

Decomposing ¢;(s) by cosms, we have @;(s) = 3, -, (©;(s), cosms)cosms and multi-

plying this decomposition by cosmnis, we obtain

(cosmis)pi(s) = Z (p;(s), cosms)(cos ms)(cos n1s),
meZ

= Z (¢j(s),cos ms)%[COS(m + m)s + cos(ny — m)s]
mezZ

= Z (p;(s), cosms) cos(ny + m)s. (42)
meZ
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Using (42) and the decomposition ¢, (5) = >,z (@j14,(8), cos ks) cos ks, we get

a(ny,j,j+51) = ((cosnis)p;(s), i (s))
= Z (p;(s), cosms) cos(ny + m)s, Z((pjﬂl (8), cos ks) cos ks)
meZ keZ

= Z (p(s),cosms)(pj+j, (s), cosks)(cos(ni +m)s, cos ks)
m,k€Z

= D (pi(s), cos(k —n1)s)(pj4s (5), cosks). (43)
keZz

Consider the following two cases:
Case 1: |k| > 1|j1| > 3r. Since |ni| +1 <r (see 21), |k — ny| > 2r. Hence by (31)

Z [(@;(s),cos(k —ni1)s)| = Z O(m) = O(r~(=2), (44)

|k|> %51 |[k—n1|>2r

Case 2: |k| < i|ji|. By assumptions [j| < r and [j1| > 6r, we have [j; + j| > 5r.

For any integers Iy, ...,l; satisfying |l;| < %,i = 1,2,...,t, where t = [%], we have
lj1+ 4l — |k =l — ... — ] > &|71|. This together with (15) gives
1 O(15°?) (45)
= J1 ’
i = [(k =l — ... = ;)8 ]|

for i = 0,1,...,t. Arguing as the proof of (31), we get

Y (@iri(s) cosks)| = O(r~2), (46)

|kI< 571l

Using (44) and (46), we have

la(na, g, i+l < D [(95(5), cos(k = n)s)|[ (@15, (), cos k)|
[k|<31d1]

+ > s(s), cos(k — n1)s)|[(9515, (5), cos ks)| = O(r= =),

[k|>3 511

(41), hence (39) is proved.
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Similarly, to prove (40), instead of (41), we must prove

(G(n1, 4.5+ )l =0~ 2), Vi« [ji] > 6r

which can be proved in the same way as (41). Lemma is proved.

Now substituting (39) into (29) and (40) into (28), we get

(¢(x) — Q(5))Ojr .50 = > A 65"+ 51,8+ B1)Ojr gy s + O™

(B1,71)€Q(p=,67)

and

(q(2) = Q)0 = > AL +01. 8+ B1)Oj4jms + O

(B1,71)€Q(p=,67)

respectively, for every j’ satisfying |j/| + 1 < r, where
Q(pa,GT) = {(],6) : |]§| <6r,0< |6| < pa}v
A B3+ 51,8+ Br) = > d(B1,n1)a(na, ', §' + 1),
n1:(B1,m1)€r (p)

and

A, B85 + 01,8 + 1) = S d(Bm)an, i g+ )
n1:(B1,n1)€lV (p>)

We need to prove that

S AL B B <a
(Bl,]ﬂ)EQ(pO‘,GT)

and

Z A, 8,7 + 51,8 + B1)| < ca.
(Bl,]ﬂ)EQ(pO‘,GT)

(47)

P@)7

(48)

Pa)7

(49)

(50)

(51)
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First we prove (50). By definition of A(j', 5,5 + 1,0 + 51), d(B1,n1), (9) and (43), we

have

> A", 85" + 1. B+ B1)| < > d(Br,ma)| Y a(na, i3+ 1))

(81,71)€Q(p™,6r) (B1,n1) €T (p2) lj1|<6r
<M Z [(p(s), cos(k — n1)s)| Z (441 (8), cos ks)].
keZ lj1|<6r

Hence (50) follows from the inequalities ), ., [(©;(s), cos(k — n1)s)| < c3 and
> jv<6r [(©j45:(8),cosks)| < ca, which can be easily obtained by (34). (51) can be
proved similarly.
The decomposition (48) together with the binding formula (17) for Ly (q) and Lx(q%)
give
(T = Ajrp ) (@, ©jr,51) = (B, (g(2) — Q(5))O )

= > AL BT+ 518+ BN, Oy s ) + O(p7"Y)  (52)
(B1,41)€Q(p*,61)

and the decomposition (49) together with the binding formula (16) for Lp(q) and Lp(q°)

give

(An =X p)(Un, 0500) = (Ui, (q(z) — Q(5))O; )

= ) A 85+ 518+ B (YN, O g orip) + O(p7P). (53)
(B1,51)€Q(p™,67)

If the conditions (iterability conditions for the triple (N, 5/, 3'))
|TN — )‘j’ﬁ’l > cr and |AN — Xj’ﬁ’l > cg (54)

hold, then the formulas (52) and (53) can be written in the following forms:

(B, (g(x) = Q(5))O57)
TN — )‘j’,ﬁ’

(PN, O ) =

Y o L
_ Z A(] B85+ 91, B +Bl)(¢.N7®J +371,8 +51) +O(p—Pa) (55)

T - A’/ ’
(B1,J1)€Q(p>,67) N 3’8
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and

5 (U, () - Q()8y0)
(WN? 9] B ) AN . Xj/ﬁ/

_ Z g(jlvﬁlvjl+j1761+61)(‘11N7éj’+j175’+51)

(B1,71)€Q(p=,67) AN — )‘j’,ﬁ’

+O0(p~ %), (56)

respectively. Using (52), (55), we will find Y, which is close to A; 3; and using (53),
(56), we will find Ay, which is close to Xjﬁ, where |j| + 1 < ry. For this, first in (52) and
(53) instead of j', 3, taking j and (3, hence instead of r taking 71, we get
(T = A56)(Pn, ©5,8) = (P, (q(2) — Q(5))O;,5)
= Z A(j76>j+j176+ﬁl)(¢N7®j+j175+51) +O(p_pa) (57)
(B1,51)€Q(p™,671)

and
(An = X8)(Tn, 0;.8) = (U, (g(z) — Q(5))9;,5)

= Z g(j76>j+j1»6+61)(‘l/1\77éj+j175+51) +O(p_pa)v (58)
(B1,J1)€Q(p>,671)

respectively. To iterate (57) and (58) using (55) and (56), respectively, for
j'=j+71 and /' = B+ (1, we will prove that there is a number N satisfying
1 (% 3 1 (%
TN = Ajrguprsn | > 5% [AN = Ajrjupra] > 507 (59)

where |j + j1| +1 < 7ry = 7, since |j| +1 < r1 and |j1] < 6r1. Then (5 + j1,8 + B1)
satisfies both conditions in (54). This means that, in formulas (55) and (56), the pair
(4, B8') can be replaced by the pair (j + j1, 3+ B1). Then we get

(N, Ojtjip+8) = O(pP%) +

> A+ 41, B+ Bi,J + 1+ 52, B+ Bi + B2) (PN, ©Ojjitia, 451 +5) (60)
(B2,2)€Q(p* 672) TN = Ajtji B+6
and
(Un,0;15,,18) = O(p) +
3 A+ 1, B+ Br, g + 1 + J2, B+ B+ B2) (¥, O tirtin.BtBrtBa) 1)
(B2,72)€Q(p>,672) AN = Njyj.846
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respectively. Putting the formula (60) into (57), we obtain

(Tn = Ajp)e(N, 4, B) = O(p™) +

Z A(j?ﬁ?jlvﬁl)A(jlv617j2762)C(N7j2762)
TN — )‘jl,ﬁl

(62)
(B1,31)€Q(P™,671),
(B2,72)€Q(p™,672)

and putting the formula (61) into (58), we get

(Ax — Xj,8)b(N, 4, B) = O(p™P) +

A(j, 8,75, BHAGY, B, 12, B2)b(N, j2, 52)
> =
AN )\J1751

, (63)

(B1,31)€EQ(P™,671),
(B2,72)€Q(p™,672)

where ¢(N,j,8) = (®n,0,5), b(N,5,8) = (¥n,0,5) 7 = j +j1 + jo + ... + jx and
B = B+ B1+ B2 + ... + Br. Thus we will find a number N such that ¢(N,j,3) and
b(N, j, 8) are not too small and the conditions in (59) are satisfied.

Similar investigation for quasiperiodic boundary condition was made in [12]. Arguing
as in that paper, one can easily obtain the following results:

Result (a) Suppose hi(x), ha(x), ..., Am(x) € La(F), where m = [%] + 1. Then for

every eigenvalue A; g of the operator Ly (q%), there exists an eigenvalue Yy of Ly (g) and

for every eigenvalue Xj7 3 of the operator Lp(q’), there exists an eigenvalue Ay of Lp(q)

satisfying
(1) TN — Aj gl <2M, |AN — Xj75| < 2M, where M = sup |q(z)],

(i) [e(N,j, D] > p=9, [b(N, 5, B)| > p=12, where qa = [£ +2a,

(iii) |C(N»j»6)|2 > ﬁZ:’ll |((I)N» \|h2\|)|2 > ﬁl(q)N» \IZZH)
Ib(N, 7,8)|% > 5= 5" |(Tw, )| > L(Wy, H’}ZH)F7 Vi=1,2,...,m.

> >

(b) Let v = B+6 € Vs(a)\ Ez and (B1,j1) € Q(p™,6r1), (Br, jk) € Q(p™, 6ry), where
ry = Trp—q for k=2,3,...,p. Then for k =1,2,3, ..., p1, we have

3
Nig = Ajegel > 0%, VB £ B (64)
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and
<~ 3
Ass = e o] > 207, VB # B (65)

Now we prove the estimates (i), (ii) and (iii) of the Result(a) for the Neumann problem:
Let A, B, C be the set of indexes N satisfying (i), (ii), (iii), respectively. Using the binding
formula (17) for Ly(q) and Ly(¢%) and the Bessel’s inequality, we get

(@, (g(x) — Q(5))0;,)
Sl AP = Y 2P

N¢A N¢A N =g
< 1@ - Qs)e 47 < .
< oplle isll® < 3

Hence by Parseval’s relation, we obtain
o2 L 93
> eV AP > T
NeA

Using the fact that the number of indexes N in A is less than p® and by the relation
N¢B = |e(N,j,B)] < p~ 1, we have

> NGB < ph o < pm
NEA\B

Since A = (A \ B) J(A B), by above inequalities, we get

D LA NI S TSRO R S NOIE

NeA NeA\B NeANB

which implies

(66)

N =

. 3 —a
Yo Wi pP > >

NeAN B

Now, suppose that A\ B C = 0, i.e., for all N € A B, the condition (iii) does not
hold. Then by (66) and Bessel’s inequality, we have

Lo Y sk Y AYe v P

NeAN B NeAﬂB =1
- LY Y e top< in 2 =
22 o Tl =2
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which is a contradiction.
Similarly, the estimates (i), (ii) and (iii) for the Dirichlet problem can be easily
obtained.

Now we consider the following functions:

A(]?B?] +]176+61)A(] +j176+617j27ﬁ2)®‘27 2(.’[])

hi(w) = 3 s — Nies 5 — (67)
(j1.81) 5,8 J+J175+51)
(J2,82)

and

= A, B,J + d1, B+ B)AG + 41, B+ B, 52, B2)8j2 02 ()

hi(z)= ) e i 2P (68)
(3181) ()\j7ﬁ - )‘j+j175+51)
(J2,82)

where (ji1,01) € Q(p*,6r1) and (j2, B2) € Q(p™,6r2). Since {©,2 g2(x)} is a total system
and B # 0, by (50) and (64), we have }-, 5 |(hi(z), O/ 5% <cgp?ie2 e,

hi(z) € Ly(F)  and  [hi(2)]| = O(p~"*). (69)
Similarly, using the fact that {éjzﬁz ()} is a total system, by (51) and (65), we get
hi(z) € Ly(F)  and  ||hi(x)]| = O(p~"2). (70)

Theorem 1 a) For every eigenvalue Aj g of the operator Ln(q°) with
B+ jo € Vs(p®) \ E2, there exists an eigenvalue Yy of the operator Ly (q) satisfying

Tn =Xjp+O(p™*). (71)
b) For every eigenvalue Xjﬁ of the operator Lp(q®) with B + j6 € Vs(p®1) \ Eo, there

exists an eigenvalue AN of the operator Lp(q) satisfying

Ay =Xj 5+ 0(p~™). (72)

Proof. a) By Result (a), for the chosen h;(z),i = 1,2,...,m in (67), there exists a
number N, satisfying (i), (ii), (iii). Since 1 # 0, by (64), we have

[Ajs = Ajrgr| > crop™.
The above inequality together with (i) imply

|TN — )‘jl,ﬁl| > Cllpaz.
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Using the following well known decomposition

T A
Z | N — J75| + O(p—(m—i-l)(xg)7

|TN )‘J Bl |)‘J75_ |Z

we see that the formula (62) can be written as

(Yn — Ajp)e(N, 4, 8) = O(p~ )

Z A(]v 67] +j176 +61)A(] +j176+617j2762)c(N7j2762)

_l’_
TN = Njtji, B+

(B1,i1)€EQ(p™,617),
(B2,72)€Q(p™,6r2)

=D 1N = Xl T (@, )l + O(p (DR,

=1

Hh I

Now dividing both sides of the last equation by ¢(N, j, 8) and using (ii), (iii), we have

hi ). _hy
Tw-ngl < lommgapl, Ty dsll®r apl,
ol < T, FERNG]
T = Ajsl ™Dl @w, )]

mu —(m+1)az+qa
- hm |l + O
N.5.8)] 1m0 )

<l + 2M [z + ..+ (2M)™ ||| + O(p~ Dz 4a%),
Hence by (69), we obtain
TN = )\_775 + O(p_az),

since (m + 1)as — qo > .

The part b) of the theorem can be proved similarly. Theorem is proved. O

It follows from (64),(65), (71) and (72) that the triples (N, j*, 3¥) for
k =1,2,...,p1, satisfy the iterability conditions in (54). In (55) and (56), instead of j', 5’

and r taking j2, 3% and r3 , we have

] A 6 ] ,B2)(Pw, 3,33 .
W= 2 = T —))\( N 2oy (1
(B3,73)EQ(p™,673) N 72,8
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and

A(3%, 8%, 53, %) (U, O o)

= + O(p~Pe), (74)
AN — )\jzﬁz

BN, %) = Y

(B3,33)€Q(p™,673)

respectively.

To obtain the other terms of the asymptotic formulas of T and Ay, we iterate the
formulas (52) and (53), respectively.

Now we isolate the terms with multiplicands ¢(N, j, ) in the right hand side of (62);

hence we get

(Tn = Ajp)e(N, j, B) = O(p™"?)

AG,8,3",BYAGY B 3B)
+ E ( T _’;1 - )C(N»],ﬁ)
(81.71)€Q(p™ ,6r1) N it
(B2172)€Q(p™ ,613)
(G431 +32,8+81+82)=(3.8)
A(j767j1761)A(j17617j2762) -2 2
+ 3 (N, 12, 57). (75)
Ty —Aji g

(B1,71)€ERQ(p™,677)
(B2,72)€Q(p™,6r2)
(3+i1+i2,B+B1+62)#(,B)

Substituting the equation (73) into the second sum of the equation (75), we get

(Tn = Ajp)e(N, j, B) = O(p™%)

C a1 Al g o1
+ Z A(]767] , B )A(] B »]aﬁ)

CN? ’76 +
TN_)‘jl,Bl ( J )

(B1,31)€EQ(p™,671)
(B2,72)EQ(p™,613)
(32,82)=(3,8)

Z A(j?ﬁ?jlvﬁl)A(jlvﬁlvj2762)A(j27627j3763)

-3 3
(TN - )\j1751)(TN - )\jzﬁz) C(N’] ’B ) (76)

(B1,31)€EQ(p™,671)
(B2,72)EQ(p™,673)
(42,82)#(3,8)
(i3,83)€EQ(p™,673)

Again isolating the terms ¢(N, j, 8) in the last sum of the equation (76), we obtain

A, 5,5, BYAG, 8,5, B)
D

Ty — A N,j,08) =
( N Jﬁ)c( 7]»6) [ TN_)\jl,Bl

(B1,31)€EQ(p™,671)
(B2,i2)€EQ(p™,6r3)
(42.82)=(3.8)
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Z A(j767j17Bl)A(j17617j2762)A(j27627ja6)

Je(N, j, )
TN - Ajl Bl
(B1,71)€ERQ(p™,671) ’
(B2,72)€EQ(p™,6732)
(B3,73)EQ(p™,673)
(32,82)#(5,8)
(433,83)=(4.8)

Z A(j?ﬁ?jlvﬁl)A(jlv617j2762)A(j27627j3763)

3 93 por
(Tn — N1 (Tn — A2 g2) ¢(N,j3,3%) + O(p~P*). (77)

(B1,71)ERQ(p™,671)

(B2,i2)€EQ(p™,672)

(i3,83)EQ(p™,673)
(452.,82)#(3.8)
(43.83)#(.8)

In this way, iterating 2p times, we get

2p
(Tn = Aj,0)e(N, , B) = [D_ Sile(N, j, B) + Cs, + O(p™ "), (78)
k=1
where
k .
A(z 1 Bz 17‘7 Bz)
k(TN Ajp) = ) =7 JAG*,8%,5.8)  (19)
(B1,71)€EQ(P™,671),..., =1 ( N = -71751)
(Uk+1:Br+1)€EQ(PY 6T 1 1)
(jF+1,gR+1)=(;j,8)
(55,89)#(3,8),5=2, .., k
and
k . ; i o
AL B L , , )
Cllc — Z (H ( 7 Vs ))A(]k,ﬁk,]k+1,ﬁk+1)C(N,]k+l,ﬁk+1).
(B1,41)€Q(P™,671), ..., i=1 ( N~ J’%B’)

(Ik41:Br+1)€EQ(PY 671 1)
(3%,8%)#(5,8),5=2,..., k+1

(80)

Similarly, we isolate the terms with multiplicands b(N, j, 3) in the right hand side of
(63), substitute the equation (74) into the obtained equation and iterate 2p times, we

obtain
(An = X;,0)b(N, 5, 8) = ZS (N, j,8) + C%, + O(p~P), (81)

where
LR E D v (f[l Au (A; 0 ZAJ’;)BZU G5 8550 (52)

(Ik41:Br+1)€EQ(PY 671 1)
(GR+1, 8+ =(5,8)
(3%,8%)#(3,8),8=2,..., ke
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and
k5 i1 i
A 31_1761_1731761 o . .
C]Igl _ Z (H ( _ ))A(]k,Bk,]k—i_l,ﬁk—i_l)b(N,]k—i_l,ﬁk—i_l).
(B1,31)EQ(P™,671),..., i=1 (An — Aji,gi)

(Ik41:Br+1)€EQ(PY 671 1)
(3%,8%)#(4,8),8=2,...,k+1

(83)

First we estimate S} and C}. For this, we consider the terms which appear in the
denominators of (79) and (80). By the conditions under the summations in (79) and (80),
we have j1 +jo+ ...+ 7; F0or By +PBo+ ...+ 5; #0, for i = 2,3, ..., k.

If 81 + B2+ ... + B; # 0, then by (64) and (71), we have

1
|TN - )\ji7ﬁi| > §pa2. (84)
6 +06+...4+ 8, =0,ie., j1 + jo + ... + j; # 0, then by well-known theorem
(Njg = Ajigil = g — pje| > s,
hence by (71), we obtain
1
|TN - )\ji7ﬁi| > 5013. (85)

Since Gy # 0 for all k£ < 2p, the relation 51 +G2+...+5; = 0implies 81+ 02 +...+Fi+1 #
0. Therefore the number of multiplicands T — A;i g in (84) is no less than p. Thus by
(50), (84) and (85), we get

S1=0(p""), Cy,=0(p7"™). (86)
By similar calculations and considerations, it can be easily obtained that

S =0(p2), Cy,=0(pP). (87)

Theorem 2 (a) For every eigenvalue \; g of Ln(¢°) and for every eigenvalue Xjﬁ of
Lp(q°) such that B+ j5 € Vs(p®t) \ Ea, there exists an eigenvalue Yy of the operator
Ly (q) and an eigenvalue Ay of the operator Lp(q) satisfying

Ty =Ajg+ Ee1+O0(p ") (88)
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and

Ay = Xj,ﬁ + Ej—1 + O(pF2), (89)

respectively, where By=0, Bo=3"3%) St (Eser-+ Xyp, Ny0), Bo=0, Be=523, S} (Buca +
NigsAig) 5=1,2, ...
(b) If
TN — Mgl < e, [An— Xl <cs (90)
and

(N, 4, B)| > p~"*,  [b(N, ], B)| > p~"* (91)

then Y n satisfies (88) and AN satisfies (89).

Proof. By Result (a)—(b), there exists N satisfying the conditions (90) and (91) in
part (b). Hence it suffices to prove part (b). By (64), (65) and (90), the triples (N, j*, 3*)
satisfy the iterability conditions in (54). Hence we can use (78), (81), (86) and (87). Now,
we prove the theorem by induction:

For k = 1, to prove (88), we divide both sides of the equation (78) by ¢(N, j, 3) and
use the estimations (86). Similarly, to prove (89) for k = 1, we divide both sides of the
equation (81) by b(N, 4, 3) and use the estimations (87).

Suppose that (88) and (89) hold for k = s, i.e.,

TN = )‘j,ﬁ + Es—l + O(p_saz), (92)
AN = Xj,ﬁ + Es—l + O(p—sag). (93)

First we prove that (88) holds for k = s+ 1. For this, we substitute the formula (92) into
the expression Zipzl S,.(Tn, Aj ) in equation (78) , then we get

2p
(TN - Aj,B)C(Nv Js 6) = (Z Sllc()‘jﬁ +Es1+ O(p_saz)v )‘jﬁ))c(Nv Js 6)
k=1
+C, + O(p7P*) (94)

Dividing both sides of (94) by ¢(N, j, 3) using (91) and (86), we have

2p
Tn =Xg+ D> Sk + Es1 + 0(p "), X ) + O(p~ P~ 92), (95)
k=1
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Now we add and subtract the term 27 | Sy (Es—1 + \j g, \j,5) in (95) then we have

Tn = Ajs + Es +O(p~ 9%

2p 2p
+) Sk (Mg + Eso1 +0(072), 0i8) — D Si(Bsm1 4 Ajp, A )] (96)
k=1 k=1

Now, we first prove that E; = O(p~*?) by induction. Ey = 0. Suppose that
E;_1 =0(p~*2), then a = \; 3 + E;_1 satisfies (84) and (85). Hence we get

Si(a,Ajg) = O(p~*2) = E; = O(p~*2). (97)
So to prove (88) for k = s+ 1, we need to show that the expression in the square brackets

in (96) is equal to O(p~(**t122). This can be easily checked by (97) and the obvious

relation

1 1
)\jﬁ + FEe_1 + O(p_saz) - )\jk75k B )\jﬁ + FEs_1 — )\jk75k

= O(p_(s'i'l)a2)7

for g% # 3. The formula (89) for k = s + 1 can be proved similarly. The theorem is
proved. O
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