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On Space of Parabolic Potentials Associated with the
Singular Heat Operator

Sinem Sezer, Ilham A. Aliev

Abstract

Anisotropic spaces Ly, ., of parabolic Bessel potentials, associated with the sin-

n
02 42y
| ax% Ty " OTn

gular heat operator I — A, + %, where A, = are introduced, and

making use of special wavelet-type transform, a characterization of these spaces is

obtained.
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1. Introduction

The classical Jones-Sampson parabolic Bessel potentials H* f , (o > 0) are defined in

the Fourier terms by

FIHO) (@,8) = (1+ |al® +it) $F [f] (2. 1) | (L.1)

where z € R” , t € R! ; F is the Fourier transform. These potentials are interpreted as
n

negative (fractional) powers of the heat operator I + A + %. Here, A = > 8%27 is the
k=1 "k

Laplacean and I is an identity operator. Parabolic potentials were introduced by B. F.
Jones [8] and C. H. Sampson [13] and studied in [5, 6, 7, 10]. The space of parabolic
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Bessel potentials

Lg:{f: sz“go,(pELp(R"H)} , 1<p<oo (1.2)

were introduced by C. H. Sampson [13], studied by R. Bagby [5], V. R. Gopala Rao [7],
S. Chanillo [6] and generalized by Nogin and Rubin [10].
Singular parabolic equations were studied by many authors (see, e.g. [4] and references

therein). The relevant singular parabolic potentials, associated with the singular heat

n 2
operator, I — A, + % , where A, = 8‘9? + 5—7 . %, (v > 0) were introduced and
k:l k n n

studied by I. A. Aliev [3]. These potentials are defined in terms of the Fourier-Bessel

transform F, by

Ey [HOf] (m,t) = (L4 |z +it) 2 F, [f] (z,t), (x€RY, teR, a>0). (1.3)

The wavelet approach to these potentials was studied by I. A. Aliev and B. Rubin [1,

2]. In this paper we introduce the spaces of singular parabolic potentials

Lo ={f: f=Hlp,p € Ly( R} xRY; a2'dxdt )} (1.4)

by

and give the “wavelet-type” characterization of these spaces. In subsequent publications

we plan to give some applications of our results to singular heat equations.

2. Preliminaries

Let R = {x e R" : & = (21,%2, ... ,Tn—1,Tn), Tn >0};
R% xR = {(z,t): 2 € R}, t € R'}; and let ST = S(R} x R') be the class of Schwartz
test functions on R"} xR, which are even with respect to z,,. The Fourier-Bessel transform

of f(z,t) and its inverse are defined by

(B, ) ) = / P, e V) () dv (@), (2.1)
]Ri xR
(F'y_lf)(yv 7—) = C(?’L, 7)(F’Yf)(_y17 <o T Yn—1,Yn, _7—)7 (22)

where 2/ -y = z1y1 + - + Tn_1Yn_1; dv(z) = 22Vdx = 22Vdxy ... d2,,y > 0; ja(2) =
22T (A + 1)2=*J)(2) is the normalized Bessel function such that j,(0) = 1 (see [9, 1, 3]);

and ¢(n,v) = [(2m)"227 7102 (y + %)]—1
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We need the following weighted L, —spaces:

Lys = Ly(R} x R dv(@)dt) = {£ : ]

)

py = ( / |f(x,t)|pdu(x)dt)% < oo}

R% xR1

1 < p < oo. (In the case p = oo, we identify L, . with C°-the corresponding space of
continuous functions vanishing at infinity).

Forz e R} ,y €R} and t,7 € R, the generalized translation of f : R? x R! — Cis
defined by

l s
TY7 f(x,t) = 71)) /f(gc' — /s /22 — 22y, cos B+ y2;t — 1) sin? L Bd3  (2.3)
2
0

(cf. [9, 1, 3]). Here we actually deal with the ordinary translation in #’ and ¢, and with

the generalized translation in z,,. It is known that for 1 < p < oo,

177 f1, < Mfllpy > (Y05, 7) € RE x RY); (2.4)

[T f = fll,, =0 as |y[ +[r] = 0. (2.5)

The generalized convolution associated with the generalized translation (2.3) is defined

as

(f ®g)(t) = / 9y, 7) (TV (1)) dv(y)dr. (2.6)
]Ri xR

It is known that (see, e.g. [9, 1]) F(f ® 9) = F,(f)Fy(9) , (f,g € L1,), and

1 1 1
1f®gllry < (I fllpy - llgllgy » 1< pgr <00, }—74‘6:;“‘1- (2.7)
We need below the generalized Gauss-Weierstrass kernel:
_ (n+29) 9 "
Wy (y,s) = c(n,7)(2s)" 2 exp(—|y|°/4s) , y € R}, 5> 0; (2.8)

¢(n, ) being defined as in (2.2) (see [14] for n = 1 and [1, 3] for any n > 1).

301



SEZER, ALIEV

Lemma 2.1 (see [1]):
1) e (750, 8)) () = exp(—slaf?), (45 > 0); (2:9)
F, 4z being the Fourier-Bessel transform in y € R’} .
2) W,(AZy,As) = A7 E W, (y,5), (Vy €RY, s>0, A > 0); (2.10)
in particular, Wv()\%y, N =AW (y, 1)
(2.11)

3) / W, (y, s)dv(y) =1, (Vs > 0).

R%
The generalized parabolic potentials HS f, initially defined by (1.3), can be represented

as an integral operator [1, 3]

o [ W) @ S vy,

(H:f)(l’,t) - I‘(a/2)

(2.12)

R xRY

which is clear in terms of Fourier-Bessel transform. Here and on, we suppose that W, (y, 7)

is extended by zero to 7 < 0.
By setting hq(z,t) = F(al/z)t_% Tl —¢51if ¢t >0 and t_%_l =0

if t <0, we have (HSf)(z,t) = (ha ® f)(,1).
From Young’s inequality (2.7), and the fact that ||ha|/1,, = 1, it follows that

“eTtW, (2, t) with t_%

py > L Sp <00 (2.13)

oy < /]

[[HS f]

Definition 2.2 The spaces of singular parabolic potentials is defined by

Lgv—{f:R’}erl—><C|f:H$<p, <peLm}, 1<p<oo

with the norm HfHL;‘;W = |lellpy -

Now, as in [1, p. 6], we define a special wavelet-type transform needed in Section 3.

Definition 2.3 Let p be a finite (signed) Borel measure on RY such that supp p C [0, 00)
and p (RY) = 0. Let the generalized Gauss- Weierstrass kernel W., (y, T) be extended by zero
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to T < 0. The generalized anisotropic and weighted wavelet transform of f : RY x R!' - C
is defined by

V) Gt = [ (TV97 o, ) W m)e " duly)du(r)

R xR?

= / (T\/’_’y’mf(x,t)) W, (y, 7)e” T dv(y)du(r), (n>0). (2.14)
R% x[0,00)

Remark 2.4 Using (2.10) and changing variables, we have

(Vuf) (z,t;m) = / (T\/"_Ty””f(x, t)) W, (y, D)e™"dv(y)du(T). (2.15)
R% x[0,00)

Remark 2.5 The Minkowski inequality with (2.4) and (2.11) yields that for any fixed

n>0
[ (Vf) (5 -5m) poy With [lu]l = [u|(RY) < oo.

The next lemma shows that the potentials HS f can be represented via the wavelet-

poy < llull-1 ]

b
type transform (2.14). From now on, the notation [ g(t)du(t) designates [ g(t)du(t).
a [a;b)

t—at

I g()dp(?).
(a.b)

b
If lim g(t) = oo, then it is assumed that w({0}) = 0 and therefore [ g(t)du(t) =

Lemma 2.6 Let f € L,,, 1 < p < co (where Ly~ = C°-the class of continuous
functions vanishing at infinity). Further let p be a (signed) Borel measure supported by
[0, 00), such that

/7_%d|u|( )< oo and c(a, p) ;f/T_%d/L(T) #0, (a>0). (2.16)
0 0
Then
(HSf)(z,t) = a/2 /77% Y (z,t;m)dn . (2.17)

0
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Proof. From (2.16) it follows that u({0}) = 0. By making use (2.15) and Fubini’s

theorem, we have

o0

/77%_1 (Viuf) (2, t;m)dn

0

= / W, (y: 1) /T“”_Ty’”f(w,t)e‘”n%‘ldn dv (y)dp(7)
R? % (0,00) 0
s ds 1 1\t
<We PUtU:;» dn:?v QZ%U, dv(y) = <_S> d”(“))
, 1 . .
= / sT2 7Y WW(TU, D (T*?f(z,t)) 57_1e_sdu(u)ds/ T2 du(T)
s
]Rix(O,oo) 0
n 1 o
= c(a, p) / sz 7 Wv(ﬁ% ) (T" f(x,t)) 82 te *dv(u)ds

R% % (0,00)

=2 cfa, ) / Wi (1, 8) (T (2, 1)) % e " dv(u)ds

R xRY

(212) I‘(%)c(a, 1) (HSf) (. t).

We need in Section 3 the following lemmas.

Lemma 2.7 ([11], p. 8) Let A > 0 and p be a finite Borel measure on R such that supp
u C[0,00), and

a) [sidu(s) =0, j=0,1,...,[A] ([N is the integer part of X ) ,
0

b) [ sPd|p|(s) < oo for some B> .
0
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Denote by
»t / — ) 2.18
0
the Riemann-Liouville fractional integral of the measure p. Then
O(s*) s—0
23R 5) = ) , 2.19
( M)() O(%) , s—o00 ( )
where 6 = min{8 — X\, 1 + [A] — A}, (6 € (0,1]). Moreover,
des o0 =) [ sMpu(s) , if AN¢N
= / (IM1p) = oy o0 . (2.20)
5 ( 12! [ s*ogs du(s) , if AeN
0
Lemma 2.8 ([1], p. 13) Let the wavelet-type transform V,, and generalized parabolic
potential operators HS be defined as (2.14) and (2.12), respectively. Then for any g €
Ly, 1<p<oo,
(HSg) (z,t;m) = (9 ® hi )(x, 1), (2:21)
where
hE (@, 1) = e~ W, (o, ) E = (I3 1) (/) (2.22)
and
. t
(13 0(0) = gy [ (=D dutr)
® J

is the Riemann-Liouville fractional integral of order & and of measure u
(I p)(t) and IZ 1y be the Riemann-Liouville fractional

Lemma 2.9 Let A\, (1)
(e>0;t>0, z€RY)

t)=1(I%
o [
integral of order § 41 of measure . Let further d(§, p) be defined as in (2.20). Denote
305
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Then

Ye(z, t)dv(z)dt =1, Ve > 0. (2.23)

R% % (0,00)
Proof. Owing to (2.11) and (2.20), by Fubini’s theorem it follows that

Ye(z, t)dv(z)dt = i 17/” /)\a(t)(/Wv(x,ta)du(x))dt
0 R

w[Q

n

R% % (0,00)

[Nlfe)

1 o0
= 0 M)O/)\a(t)dt:l.

3. “Wavelet-type” characterization of the spaces L7 |

The main result of the paper is the following.

Theorem 3.1 Leta >0, v>0, 1 <p < oo and p be a finite (signed) Borel measure
on RY such that supp p € [0,00) and

o0

/tjdu(t)zo, j=0,1,...,]

0

e

], ([%] is the integer part of %); (3.1)

o0

/t5d|u|(t) < oo for some (> af2. (3.2)
0

Then

o0

@ _ , V£ (=, t;m)
Lp,’y == f (S Lp,'y . i]i% / Tdn < o0
€ D5y
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Proof. Here and on, the abbreviation (f, w) will denote the value of distribution f

at a test function w € ST. If f is a regular distribution (e.g. f € Ly ), then

(f,w)= / flz, )w(z, t)dv(z)dt.
R xR?

The parabolic potentials HY f, (a > 0) of distribution f are interpreted as a
distribution defined by duality: (HSf,w) = (f, ’I:lijw), where ’F(ﬁjw = UHSUw,
(Uw)(z,t) = w(—x, —t); (w is even with respect to x,).

For good f the above equality is the consequence of the identity
(u®p, w)=(u, p.®w), p,we ST, (3.3)
where (p_(.’L',t) = (U(p)(.’L',t) = (p(_l', _t)

For arbitrary f € L, ~, (1 < p < 00) the result follows by density.

To prove the theorem it suffices to show the equivalence

o i dn
[ =MHg < sup /(Vuf)(x,t;n) irE < 00, (3.4)
e>0 n 2
€ Py

for some g € Ly .
Let f = Hg, g € Ly,. It follows from (2.13) that f € L, ., and therefore the
wavelet-type transform V), f is well defined (see Remark 2.5). Denote

o0

D290 = gz [t T (>0

€

Assuming f = HSg, g € Ly -, we first show that

(D?f)(.%’,t) =e! we(w,t)(@g, (35)

where

Ye(z,t) =

Vs a1 é )\a(g), (3.6)

Aa(t) = H(ITF1p)(t), IT 1 is the Riemann-Liouville fractional integral of p (see (2.18)),
and W, (x,t) is extended by zero to ¢t < 0.
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Using Lemma 2.8 we have

« o T dn (2.21) T g dn
d(g»ﬂ)(Da f)(.’L',t) = /(Vuf)(w>t§77)n1+% = /(9®hn )(l’,t)an%
r d —r a o T T
[ [T Wit ) ) (1) dvlwir
€ ]Rix]Rl

(we use Fubini’s theorem and the convention W, (y,7) = 0 for 7 < 0)

- / (T**g(y. 7)) 6= (y. 7)dv(y)dr.

R% % (0,00)
Here,
T 1 ., a1/ T
by, 7) = 771T%e Sy, T) n2 (Izu)(g)dn
€
ey )7 an %—1](7 >%_1d(>
I'($) Y J T )\ g e

3 U
&S] oo a_q
1 (r—np)%
= ay € TW. Yy, T / / 3 d?’] d/L 14
P(f) ’Y( ) 771+2 ( )

o0

(m —1p) T —np)*" 2 (7 \%
/ o dnE/( 1+i d77=—(——,0)2~
itz itz at \e +

0

€

+ e
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Further,

|
—_

€
where A, (t)

(T2 p)(t), 13+ s defined as in (2.18).
Hence, (D2 f)(z,t) = e " (z,t) ® g, and 1), is defined by (3.6). Now, using Young’s
inequality (2.7) we have

1D fll, < 14|

1,’y'Hng7'y;
e, . = c et W@ 62 Do (D) dv(a)dt
1,y RAN € €
R% % (0,00)

1
:c/e_t—

t
0 5 )\a(g)‘dt/Wv(x,t)du(x)

n
R

o0

. 1
@1V c/e_t —

t _ —te
- )\a(g)‘dt—c/e [Aa(t)] dt

0 0
o] <>o1 o
<c [ () dt=c ¥|(Iz
0

(2.19)
p)(t)|dt < oo.
0

o0

Hence,

I1D2 fllp - <

by —

C. Hng7'y = S]i%HD?pr'y <00
€

Let now f € Ly, 1 <p < oo and sup||Dgf|,. < oo. We want to show that f = HSg,
e>0 ’

for some g € Ly, . Since the Schwartz space S is dense in L, , it sufficies to show that

(f,w)=(HSg, w), Ywe St (3.7
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for some g € Ly . Since sup || D¢ f||, ., < oo, a function g € L, , and a sequence &, — 0,
e>0 ’

(k — o0) exist by Banach-Alaoglu theorem, such that (D2 f, w) — (g, w) as k — oo for

any w € Ly -, ]% + le =1 (in particular, for all w € ST).

We want to prove that the function g € L, ., satisfies the equality (3.7). For this g

and any Schwartz function w € ST we have

(H$g, w) = (g, Hyw) = lim (D2, f, H§w) = lim (f, DG HSw),  (3.8)

v k

where D?kgo =UDg Uyp and ’F(ﬁjw =UHUw.

Since (Uw)(z,t) = w(—x,—t), then U? = E (identity operator) and therefore (3.8)
yields that

(H$g, w) = lim (f, UDE,HSUw). (3.9)

k

Set Uw = v. It is clear that Uw € St if w € ST. We first show that

klilgo ||D§ Hiv — v||(m =0, YveSt Vge(l,00).

k

By (3.5), D HSv = e " i, (2, t) ® v, where 1), is defined as in (3.6). Hence

D¢ Hv(z,t) =e " Yo (a,t) ®v = / e e, (y, 7) (TY"0(z, 1)) dv(y)dr

R% % (0,00)

(we set 7= peg, dr =epdp; y=erz, dv(y) = 5Z+%du(z) and use (2.10))

= / e~ Py (2, p) (T\/az’a’“pv(x,t)) dv(z)dp,
R% % (0,00)

310



SEZER, ALIEV

where ¢1(z, p) = T W, (2, p)Aa(p). Further, owing to (2.23) we have

Dg H5v(x,t) —v(z,t) = / e~ P (z, p) (T\/az’a’“pv(x,t)) dv(z)dp

]Rix(O,oo)

- [ nGo i = [ @ =) (1)

R% % (0,00) R% % (0,00)
xav@dp + [ rle) (TR0~ u(e0)) dv()dp.

R% % (0,00)

By making use the Minkowski inequality we have

| D2 HSv(x, t) — v(z,t)|| < / (1 — e ") |Y1(z, p)| HT\/aszkpv(x,t)

k q, a7y
R% % (0,00)
xdv(2)dp + / |¢1(z,p)|HTﬁz,mﬂv(w,t)_v(gﬁ,t) dv(z)dp.
9,y

R% % (0,00)

Owing to (2.4), (2.5) and the Lebesque dominated convergence theorem, it follows that
the right-hand side tends to zero as €, — 0. Thus

lim [|[UDEHSUw —w| =0, YweS*. (3.10)

Ek—>0
Now let us show that for f € L, , and any w € ST the equality
lim (f, UDZ HSUw) = (f , w) (3.11)

Ek—>0 k

holds. The Hoélder inequality yields

1 1
(7 UDEHSUw) = (F w)] < W1, [UPEHGVw = w]l, s~ o =1,

(=

From (3.10) it follows that the right-hand side of last expression tends to zero as e — 0.
Thus (3.11) holds.
Now the equalities (3.9) and (3.11) show that for any w € ST

(HSg, w) = {f, w),
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and as a result, f(z,t) = Hg(x,t) for almost all (x,t) € R} x R'.
The proof of the Theorem is completed. O

The following theorem contains a description of the space Ly . in terms of convergence

in the L, -norm of the “truncated” integrals D¢ f as e — 0.

Theorem 3.2 Let a measure p satisfies the conditions (3.1) and (3.2) of Theorem 3.1.

Then f € Ly ., (1 <p <oo) if and only if f € Ly, and the family of truncated integrals

o0

d
/(Vuf)(w,f%mnu—z/z

€

(D2 f)(z,t) = FTEND)
2

converges in Ly, y-norm as € — 0.

Proof. Let f € L, and the family DZ f converges in f € L, ,-norm as ¢ — 0. Then
there exist a constant ¢ > 0 such that sup || D2 f||,,~ < ¢ and therefore, by Theorem 3.1, f
e>0

belongs to Ly . Conversely, let f € L . Then there exist g € L,  such that f =Hg.
Using this representation of f we have by (3.5) that

(DEf)(a,t) = e oty g = / ey, 1) (TV g, ) dv(y)dr,
R% % (0,00)

where the function 1), is defined by (3.6).
By setting y = \/z, T = ep, dv(y)dr = e**3 1 dv(2)dp, and using (2.10) we have

Depa= [ ) (10w ) s (312
R% % (0,00)

where the function ©; = 9.|.=1. Further, by (2.23) it follows that

oo, 1) = / r(2, p)g(, ) (2)dp. (3.13)
R% % (0,00)
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Using (3.12) , (3.13) and Minkowski inequality we get

1D f = gllp~ < / e — 1| [z, DIV g 2, t) |y, dv(2)dp
R% % (0,00)

+ / (2, P IITVE=2 g, £) — gl )y dir(2)dp.

R% % (0,00)

Now by virtue of (2.4), (2.5) and the Lebesgue theorem on dominated convergence, it
follows that liII(lJ 1D f — g
£—

p.v = 0. The proof is completed. O

!
Remark 3.3 Take a measure = (_1)k(1lc)5k , where [ > § and 0y = 6 (t) is the
k=0

unit mass at t = k, (k =0,1,...,1), that is (§,w) = w(k), (k =0,1,...,0). It is well
known that (see, e.g. [12], p.116-117)

o0 l
/tmdu(t) = Z(_nk(,i)km =0, Ym=0,1,...,01—1.
J -

k=0

It is also clear that |u|(R') < co and supp p C [0,00). Thus the measure yu satisfies all
the conditions of Theorem 3.1.
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