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Abstract

In the present paper we prove that the mixing property of positive L1-contraction
of finite von Neumann algebras implies the property of complete mixing.
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1. Introduction

Let (X,F , µ) be a measure space with probability measure µ. Let L1(X,F , µ) be

the associated L1-space. Assume that T : L1(X,F , µ)→ L1(X,F , µ) is a linear positive
contraction (i.e. Tf ≥ 0 whenever f ≥ 0 and ‖T‖ ≤ 1). Then (see [7], Ch. 8, theorem
1.4) the following fact is known:

Theorem 1.1 Let T : L1(X,F , µ)→ L1(X,F , µ) be a positive contraction. Assume that

there exits no non zero y ∈ L1(X,F , µ), y ≥ 0 such that Ty = y. If for z ∈ L1(X,F , µ),

the sequence (Tnz) converges weakly to some element of L1(X,F , µ), then lim
n→∞

‖Tnz‖ =

0.

In this paper we to extend this result to a non-commutative setting, since the large
time behavior of quantum processes has been the subject of a number of investigations.
Note that the formulated theorem is a variant of the Akcoglu and Sucheston theorem
[1]. By means of theorem 1.1 they proved certain weighted ergodic theorems, namely an
extansion of the Blum-Houson theorem (see [7], Chapter 8). It is our hope the present
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work will find application towards the proof of weighted ergodic theorems in the frame
work of van Neumann algebras, since it seems to be an area of active investigaton (see
for example, [3], [8]).

2. Preliminarles

Throughout this paper M will be a von Neumann algebra with unit 1I and τ a faithful
normal finite trace on M . Therefore we omit this condition from the formulation of
theorems. Recall that an element x ∈ M is called self-adjoint if x = x∗. The set of
all self-adjoint elements is denoted by Msa. A self-adjoint element p ∈ M is called a
projection if p2 = p. The set of all projections in M we will denote by ∇. By M∗ we
denote a pre-dual space to M (see for definitions [2], [13]).

The map ‖ · ‖ : M → [0, ∞) defined by the formula ‖x‖ = τ (|x|) is a norm (see [13]);

here, |x| = (x∗x)1/2. The completion of M with respect to the norm ‖ · ‖ is denoted by

L1(M, τ). We will use the fact [13] that the spaces L1(M, τ) and M∗ are isometrically
isomorphic, therefore they can be identified.

Theorem 2.1 [10] The space L1(M, τ) coincides with the set

L1 = {x =
∫ ∞
−∞

λdeλ :
∫ ∞
−∞
|λ|dτ (eλ) <∞}.

Moreover,

‖x‖ =
∫ ∞
−∞
|λ|dτ (eλ).

It is known ([10]) that the equality

L1(M, τ) = L1(Msa, τ ) + iL1(Msa, τ )

is valid. Note that L1(Msa, τ ) is a pre-dual to Msa.

Let T : L1(M, τ) → L1(M, τ) be a linear bounded operator. We say that a linear
operator T is positive if Tx ≥ 0 whenever x ≥ 0. A linear operator T is said to be a
contraction if ‖T (x)‖ ≤ ‖x‖ for all x ∈ L1(Msa, τ ).
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3. Main Result

Let M be a von Neumann algebra with faithful normal finite trace τ . Let L1(M, τ)

be the associated L1-space.

Let T : L1(M, τ)→ L1(M, τ) be a contraction. Define

ρ̄(T ) = sup
{

lim
n→∞

‖Tn(u− v)‖
‖u− v‖ : u, v ∈ L1(Msa, τ ), u, v ≥ 0, ‖u‖ = ‖v‖

}
,

and ρ(T ) = lim
n→∞

‖Tn‖ − ρ̄(T ).

The magnitude ρ(T ) is called the asymptotic Dobrushin coefficient of ergodicity of T
(see [4]). If ρ̄(T ) = 0 then T is called completely mixing. Recall that a positive contraction

T is mixing if for all x ∈ {a ∈ L1(Msa, τ ) : τ (a) = 0} and y ∈M, the following condition
holds:

lim
n→∞

τ (Tn(x)y) = 0.

Before proving our main theorem let us give the following auxiliary.

Lemma 3.1 Let x ∈ L1(M, τ). If the inequality

τ (xy) ≥ 0 (1)

is valid for every y ≥ 0, y ∈M , then x ≥ 0.

Proof. Write x = x+ − x−. Let

x =
∫ ∞
−∞

λdeλ

be the spectral resolution of x. Set

p =
∫ 0

−∞
deλ.

Then according to (1) one gets τ (xp) ≥ 0. On the other hand we have xp = −x−,

hence τ (x−) ≤ 0, Since x− ≥ 0 and τ is faithful, we infer that x− = 0. Therefore

x = x+ ≥ 0. 2
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Theorem 3.2 Let T : L1(M, τ)→ L1(M, τ) be a positive contraction such that |T (x)| ≤
T (|x|) for every x ∈ L1(Msa, τ ). Assume that there exits no non-zero y ∈ L1(M, τ),

y ≥ 0 such that Ty = y. If for z ∈ L1(M, τ) the sequence (Tnz) converges weakly to

some element of L1(M, τ), then lim
n→∞

‖Tnz‖ = 0. In particular, if T is mixing, then T is

completely mixing.
Proof. The contractivity of T implies that the limit

lim
ν→∞

‖Tnz‖ = α

exists. Assume that α 6= 0. Define λ : Msa → R by

λ(x) = Lim((τ (x|Tnz|)n∈N))

for every x ∈Msa, where Lim means a Banach limit (see, [7]). We have

λ(1I) = Lim((τ (|Tnz|)n∈N)) = lim
n→∞

‖Tnz‖ = α 6= 0,

therefore λ 6= 0. Besides, λ is a positive functional, since for positive element x ∈Msa,
x ≥ 0 we have

τ (x|Tnz|) = τ (x1/2|Tnz|x1/2) ≥ 0,

for every n ∈ N.
For arbitrary x ∈M , we have x = x1 + ix2 and define λ by

λ(x) = λ(x1) + iλ(x2).

Let T ∗∗ be the second dual of T , i.e. T ∗∗ : M∗∗ → M∗∗. Let λ = λn + λs be a
Takesaki decomposition (see [13]) of λ on normal and singular components. Now we will
show that λn is nonzero. Consider a measure µ := λ �∇. It is clear that µ is an additive
measure on ∇. Now let us prove that it is σ-additive. To this end, it is enough to show
that µ(pk)→ 0 whenever pk+1 ≤ pk and pk ↘ 0, pk ∈ ∇.

Let ε > 0. From pn ↘ 0 we infer that τ (pn) → 0 as n → ∞. It follows that there
exists kε ∈ N such that τ (pk) < ε for all k ≥ kε. Since Tnz converges weakly then the

set {Tnz} is relatively compact in L1(M, τ), hence according to Theorem 5.4 Ch.3 [13]
we obtain

τ (pk|Tnz|) < ε, ∀k ≥ kε,
for every n ≥ n0. From a property of the Banach limit, one gets

λ(pk) = Lim((τ (pk|Tnz|)n∈N) < ε for every k ≥ kε.
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This means µ(pk) → 0 as k → ∞. Therefore, we conclude that the restriction of λn on
∇ coincides with µ. Since

τ (p⊥|Tnz|) > τ (|Tnz|)− ε ≥ inf ‖Tnz‖ − ε = α− ε

and ε has been arbitrary, so α − ε > 0, and hence µ(p⊥) > 0 for all p ∈ ∇ such that
τ (p) < δ. Therefore µ 6= 0 and, consequently, λn 6= 0.

From this, we infer that there exists a positive element y ∈ L1(M, τ) such that

λn(x) = τ (yx), ∀x ∈M.

The property of T implies

τ (Tyx) = τ (yT ∗x)

= Lim((τ (|Tnz|T ∗x))n∈N)

= Lim((τ (T |Tnz|x))n∈N)

≥ Lim((τ (|Tn+1z|x))n∈N) = τ (yx)

for all x ≥ 0. Hence, for every x ≥ 0 we have

τ ((Ty − y)x) ≥ 0.

According to Lemma 3.1 we infer that Ty ≥ y. Since T is a contraction one gets Ty = y.
But this contradicts the assumption of the theorem. 2

Remark 3.3 The proved theorem is a non-commutative analog of Theorem 1.1. Certain
similar results have been obtained in [9],[5] for quantum dynamical semigroups in von
Neumann algebras.

Corollary 3.4 Let α : M → M be a normal Jordan automorphism of finite von Neu-
mann algebra such that there exits no non-zero y ∈ L1(M, τ), y ≥ 0 such that α∗y = y,

where α∗ is the conjugate operator to α. If for z ∈ L1(M, τ) the sequence ((α∗)nz)

converges weakly to some element of L1(M, τ), then lim
n→∞

‖(α∗)nz‖ = 0.

The proof immediately comes from Theorem 3.2 since for Jordan automorphisms the
equality |α(x)| = α(|x|) is valid for all x ∈Msa (see [2]).
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Remark 3.5 Note that an analogous theorem has been recently proved by A.Katz [6] for
∗-automorphisms of an arbitrary von Neumann algebra. It is known ([2]) that not every
Jordan automorphism is an ∗-automorphism of M ; therefore Corollary 3.4 extends the
result of [6] to Jordan automorphisms, but only for finite von Neumann algebras. Here
it should be also noted that linear mappings of von Neumann algebras which satisfy the
condition |α(x)| = α(|x|) have been studied in [12], [11].
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