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Abstract
Background: Gastrointestinal (GI) endoscopy has been popularly applied for the diagnosis of
diseases of the alimentary canal including Crohn's Disease, Celiac disease and other malabsorption
disorders, benign and malignant tumors of the small intestine, vascular disorders and medication
related small bowel injury. The wireless capsule endoscope has been successfully utilized to
diagnose diseases of the small intestine and alleviate the discomfort and pain of patients. However,
the resolution of demosaicked image is still low, and some interesting spots may be unintentionally
omitted. Especially, the images will be severely distorted when physicians zoom images in for
detailed diagnosis. Increasing resolution may cause significant power consumption in RF
transmitter; hence, image compression is necessary for saving the power dissipation of RF
transmitter. To overcome this drawback, we have been developing a new capsule endoscope,
called GICam.

Methods: We developed an ultra-low-power image compression processor for capsule
endoscope or swallowable imaging capsules. In applications of capsule endoscopy, it is imperative
to consider battery life/performance trade-offs. Applying state-of-the-art video compression
techniques may significantly reduce the image bit rate by their high compression ratio, but they all
require intensive computation and consume much battery power. There are many fast
compression algorithms for reducing computation load; however, they may result in distortion of
the original image, which is not good for use in the medical care. Thus, this paper will first simplify
traditional video compression algorithms and propose a scalable compression architecture.

Conclusion: As the result, the developed video compressor only costs 31 K gates at 2 frames per
second, consumes 14.92 mW, and reduces the video size by 75% at least.

Background
Gastrointestinal (GI) endoscopy has been popularly
applied for the diagnosis of diseases of the alimentary
canal including Crohn's Disease, Celiac disease and other
malabsorption disorders, benign and malignant tumors
of the small intestine, vascular disorders and medication

related small bowel injury. There exist two classes of GI
endoscopy; wired active endoscopy and wireless passive
capsule endoscopy. The wired active endoscopy can ena-
ble efficient diagnosis based on real images and biopsy
samples; however, it causes patients discomfort and pain
to push flexible, relatively bulky cables into the digestive
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tube. To relief the suffering of patients, wireless passive
capsule endoscopes are being developed worldwide [1-4].
The capsule moves passively through the internal GI tract
with the aid of peristalsis and transmits images of the
intestine wirelessly.

The state-of-the-art is the commercial wireless capsule
endoscope product, the PillCam capsule, developed by
Given Imaging Ltd. The PillCam capsule transmits the GI
images at the resolution of 256-by-256 8-bit pixels and
the frame rate of 2 frames/sec (or fps). The PillCam has
been successfully utilized to diagnose diseases of the small
intestine and alleviate the discomfort and pain of patients.
However, based on clinical experience; the PillCam still
has some drawbacks. First, the PillCam cannot control its
heading and moving direction itself. This drawback may
cause image oversights and miss a disease. Second, the res-
olution of demosaicked image is still low, and some inter-
esting spots may be unintentionally omitted. Especially,
the images will be severely distorted when physicians
zoom images in for detailed diagnosis. The first drawback
is the nature of passive endoscopy. Some papers have pre-
sented approaches for the autonomous moving function
[5,6]. Very few papers address the solutions of the second
drawback. Increasing resolution may alleviate the second
problem; however, it would result in significant power
consumption in RF transmitter. Hence, applying image
compression is necessary for saving the power dissipation
of RF transmitter. The paper [11] provides a thorough
review on GI image compression and motivated our
research. To overcome the second drawback, we have
been developing a new capsule endoscope, called GICam.
Fig. 1 illustrates the system diagram of the proposed cap-
sule endoscope. We attached an ultra-low-power image
compressor to the CMOS sensor to deliver a compressed
512-by-512 image while the RF transmission rate is at 2
megabits per second. To reduce the buffer size between
the CMOS sensor and the image compressor, the scanline

controller is dedicated to scan out R, G1, G2, and B signals
in a certain order.

The scope of this paper is the design of an image compres-
sion processor for capsule endoscopes. Instead of apply-
ing existing compression standards, we developed
simplified image compression specifically for capsule
endoscopes. Unlike the general image compression tech-
niques, the proposed image compression starts from raw
images in the format of Bayer patterns and processes R,

The Bayer patterns in the raw imageFigure 3
The Bayer patterns in the raw image.
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The system structure of GICam (1: Len; 2,3: LEDs; 4: CMOS sensor; 5: Image compressor; 6: Scanline controller; 7: Bat-tery; 8: RF transmitter; 9: Antenna)Figure 1
The system structure of GICam (1: Len; 2,3: LEDs; 4: CMOS 
sensor; 5: Image compressor; 6: Scanline controller; 7: Bat-
tery; 8: RF transmitter; 9: Antenna).
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(a) A typical image compression algorithm (b) The GICam image compression algorithmFigure 2
(a) A typical image compression algorithm (b) The GICam 
image compression algorithm.
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G1, G2, and B signals separately. Comparing with the tra-
ditional image compression, the proposed image com-
pression is low-powered for three reasons. First, the
proposed image compression does not need demosaick-
ing, and hence saves the computing power of interpola-
tion steps. Second, the proposed compression starts from
the raw image, and does not need inner product opera-
tions for color-space transformation. Finally, the compu-
tation load of the 8-by-8 discrete cosine transform (DCT)
can be reduced by the factor of 3.

Methods
The proposed image compression algorithm
Traditional image compression algorithms use the opti-
mized quantization for YCbCr image to reduce com-
pressed image size while the visual distortion is low. In
order to quantize YCbCr image, the typical image com-
pression requires two preprocessing steps that are demo-
saicking and the color space transformation. However, the
demosaicking step requires weighted sums for color inter-
polation and the color space transformation requires cal-
culation of inner products. From the view point of
GICam, it is not worth it to dissipate power for both pre-
processing steps as long as the compression quality and
ratio are acceptable. The measure of compression quality
is the peak signal-to-noise ratio (PSNR). The calculation
of PSNR is formulated as Eq. (1):

Where MSE is the mean square error of decompressed
image. The compression ratio (CR) is defined as the ratio
of the raw image size to the compressed image size. The
measure of the compression ratio is the compression rate.
The formula of the compression rate is calculated by Eq.
(2):

compression rate = (1-CR-1) × 100%  (2)

Fig. 2 illustrates the power saving on the proposed image
compression. First of all, the GICam image compression
directly processes raw images without demosaicking and
color space transform. For a 512 × 512 image, when using
the Bayer format, the image has 256 × 256 Bayer patterns.
Fig. 3 shows the Bayer patterns in the CMOS image sensor.
So, the incoming image size to the 2D-DCT is 256 × 256
× 8 × 4 bits, where each pixel is an 8-bit datum and each
of R, G1, G2, and B components has 256 × 256 pixels.
Since the image size after preprocessing in the traditional
algorithm is 512 × 512 × 8 × 3 bits, the computational
load of 2D-DCT and quantization is reduced by the factor
of 3. Traditional compression algorithms employ the
YCbCr quantization to earn a good compression ratio
while the visual distortion is minimized, based on the fac-
tors related to the sensitivity of the human visual system
(HVS). However, for the sake of power saving, our com-
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The modified RGB quantization tableFigure 4
The modified RGB quantization table.
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pression rather uses the RGB quantization to save the
computation of demosaicking and color space transfor-
mation. According to [7], the RGB quantization can result
in similar decompressed image quality as the YCbCr quan-
tization. As mentioned above, the advantage of applying
RGB quantization is two-fold: saving the power dissipa-
tion on preprocessing steps and reducing the computing
load of 2D-DCT and quantization. Although the RGB
quantization for the Bayer-formatted image requires four
quantizing products, the number of tables is three in that
G1 and G2 components can share the same green quanti-
zation table. Moreover, to reduce the hardware cost and
quantization power dissipation, we modified the RGB
quantization tables in [7] as shown in Fig. 4. In the mod-
ified tables, the quantization multipliers are power-of-
two's. As shown in the simulation result, the degradation
of compressed image is low when comparing with the
original RGB quantization. The minor shortcoming of the
RGB quantization is that the quantization latency is
longer than the YCbCr quantization when the R-G1-G2-B

quantizations are pipelined. Thanks to the low frame rate
specification in capsule endoscopy, the increasing of
quantization latency is acceptable.

In GICam, the Lempel-Ziv (LZ) coding [8] is employed for
the entropy coding. The reason why we adopted the LZ
coding as the entropy coding is that the LZ encoding does
not need look-up tables and complex computation. Thus,
the LZ encoding can consume less power and use smaller
silicon size than the other candidates, such as the Huff-
man encoding and the arithmetic coding.

The target compression performance of the GICam image
compression is to reduce image size by 75% at least. To
meet the specification, given the quantization tables, we
exploited the cost-optimal LZ coding parameters. There
are two parameters in the LZ coding to be determined;
they are the window size, w, and the maximum matching
length, l. The larger the parameters, the higher the com-
pression ratio but the higher the implementation cost. As

The simulation results of the GICam image compressionFigure 5
The simulation results of the GICam image compression.
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per the experimental results shown in the Fig. 5, the
increase in compression ratio becomes very slow, as the
parameters are large; however, the implementation cost
keeps growing linearly. Hence, we set the values of param-
eters by using the compression ratio of 4:1 as the thresh-
old. Our goal is to determine the minimum (w, l) set
under the constraint of 4:1 compression ratio. The results
in Fig. 5 are collected by simulating the candidate LZ
encoding schemes with the 8-by-8 2D-DCT and the RGB
quantization. As seen in Fig. 5, simulating with 12 endo-
scopic pictures, (64, 16) is the minimum (w, l) set to meet
the compression ratio requirement. Using (64, 16) as the
parameter set, in Fig. 6, we can see the performance in
terms of the quality degradation and compression ratio.
The result shows that the degradation of decompressed
images is quite low while the average PSNR is 32.51 dB.

The block diagram of 2D-DCTFigure 9
The block diagram of 2D-DCT.
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The original image involved in the PSNR calculation is the
Bayer pattern image. According to the objective criterion
of medical doctors the PSNR higher than 30 dB is accept-
able. To demonstrate the results, Fig. 7 illustrates the com-
pression quality of two test pictures. The difference
between the original image and the decompressed image
is invisible.

Architecture design and implementation of GIcam image 
compressor
Fig. 8 shows the architecture of the GICam image com-
pressor. The GICam image compressor processes the
image in the order of R, G1, G2 and B. Because the data
stream from the image sensor is block-based, the GICam

image compressor requires intermediate memory units to
hold each block of data. Because the 2D-DCT is a row-col-
umn recursive structure, its input data are queued by a set
of ping-pong buffers. In addition, the 8-by-8-memory
array between the quantizer and the LZ77 encoder is used
to synchronize the operations of quantization and LZ77
encoding. Since the frame rate of GICam is 2 frames/sec-
ond, the 2D-DCT can be folded to trade the hardware cost
with the computing speed, and the other two data
processing units, quantization and LZ77 encoder, can
operate at low data rate.

The FPGA prototype of the CICam image compressorFigure 13
The FPGA prototype of the CICam image compressor.

The block diagram of LZ 77 encoderFigure 11
The block diagram of LZ 77 encoder. (LMDB: Longest match 
length decision block)
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Fig. 9 illustrates the block diagram of 2D-DCT. The 2D-
DCT alternatively calculates row or column 1D-DCTs. The
1D-DCT is a multiplier-less implementation using the
algebraic integer encoding [10]. The algebraic integer
encoding can minimize the number of addition opera-
tions. Doing so, we can produce a low-cost, power saving
DCT datapath. According to the report from Prime-
Power™, the logic part of 2D-DCT consumes 1.53
mW@1.57 MHz and the transpose memory costs 2.80
mW. As regards the RGB quantizer, the GICam image
processor utilizes the barrel shifter for power-of-two prod-
ucts. The power-of-two quantization table shown in Fig. 4
can reduce the cost of multiplication while quality degra-
dation is quite little. As shown in Fig. 10, we use the barrel
shifter to perform the quantization. According to the
PrimePower™ report, the quantization consumes 0.115
mW. Finally, the LZ77 encoder is implemented by block-
matching approach as shown in Fig. 11[9]. The detail of
each processing element (PE) is shown in Fig. 12. As the
result of simulation, the power consumption of LZ77 is
3.87 mW.

To validate the GICam image processor, we used the FPGA
board of Altera APEX2100 K to verify the function of the

GICAM image processor and the prototype is shown in
Fig. 13. Test results are the same as simulation results of
the algorithm level using MTALAB. After FPGA verifica-
tion, we used the TSMC 0.18 µm 1P6M process to imple-
ment the GICam image compressor. The logic part is
synthesized by using Synopsys Design Analyzer™. The gate
count of 2D-DCT, quantizer, and LZ77 encoder is 31 K
gates. There are two clocks in the chip. One at 1.57 MHz
is for 2D-DCT and Quantizer, and another at 12.58 MHz
is for LZ77 encoder. When operating at 1.8 V, the power
consumption of logic part is 5.52 mW, estimated by using
PrimePower™. The memory blocks are generated by Arti-
san memory compiler and consume 9.40 mW. Fig. 14
illustrates the layout of the GICam image compressor.
When comparing the proposed image compression with
the traditional one in Fig. 15, the power dissipation can
save 98.2% because of the reduction of memory require-
ment. Except comparing with the traditional one, we fur-
ther analysis the power saving from system perspective.
For a 512-by-512 GI images, if we do not use the proposed
image compressor to compress the data of GI image, the
total power dissipation is 33.5 mW, in which, the sensor
consumes 8 mW, the RF transmitter consumes 24 mW
and LEDS consumes 1.5 mW respectively. However, the
GICam compresses the GI image and total dissipation
power is 33.5 mW. The power dissipation of the RF trans-
mitter can be reduced to 6 mW and the proposed image
compressor consumes 14.92 mW. Hence, using the pro-
posed image compressor can efficiently save the total
power dissipation of 3.08 mW and substantially reduce

The comparison of proposed image compression and the tra-ditional image compression applying for GICam applicationFigure 15
The comparison of proposed image compression and the tra-
ditional image compression applying for GICam application.
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the damage of the human body health from the RF trans-
mitter.

Conclusion
This paper presents an ultra-low-power image compres-
sion processor for capsule endoscope or swallowable
imaging capsules. In applications of capsule endoscopy, it
is imperative to consider battery life/performance trade-
offs. Instead of applying state-of-the-art video compres-
sion techniques, we propose an RGB-based compression
algorithm in which the memory size and computational
load can be significantly reduced. We first simplified tra-
ditional video compression algorithms by removing the
color-space transformation. As shown in the result, the
developed video compressor only costs 31 K gates at 2
frames per second, consumes 14.92 mW, and reduces the
video size by 75% at least.
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