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Abstract

In the Euclidean space E3 , it is well known that normal curves, i.e., curves with

position vector always lying in their normal plane, are spherical curves [3]. Necessary

and sufficient conditions for a curve to be a spherical curve in Euclidean 3-space are

given in [10] and [11].

In this paper, we give some characterizations of spacelike normals curves with

spacelike, timelike or null principal normal in the Minkowski 3-space E
3
1 .
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1. Introduction

In the Euclidean space E3, it is well-known that to each unit speed curve α : I ⊂ R→
E3 with at least four countinuous derivatives, one can associate three mutually ortogonal
unit vector fields T , N and B, called respectively the tangent, the principal normal and
the binormal vector fields. At each point α(s) of curve α, the planes spanned by {T,N},
{T, B} and {N,B} are known respectively as the osculating plane, the rectifying plane
and the normal plane. The curves α : I ⊂ R→ E3 for wich the position vector α always
lie in their rectifying plane, are for simplicity called rectifying curves, (see [3]). Similarly,
the curves for which the position vector α always lie in their osculating plane, are for
simplicity called osculating curves; and finally, the curves for which the position vector
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İLARSLAN

always lie in their normal plane, are for simplicity called normal curves. By definition,
for a normal curve, the position vector α satisfies

α(s) = λ(s)N(s) + µ(s)B(s),

for some differentiable functions λ and µ of s ∈ I ⊂ R.

Characterization of rectifying curves is given in [3] and these curves are studied in
Minkowski space E3

1 in [5]. In this paper, we characterize spacelike normal curves, lying
fully in the Minkowski space E3

1.

2. Preliminaries

The Minkowski 3-space E3
1 is the Euclidean 3-space E3 provided with the standard

flat metric given by

g = −dx2
1 + dx2

2 + dx2
3,

where (x1, x2, x3) is a rectangular coordinate system of E3
1.

Since g is an indefinite metric, recall that a vector v ∈ E3
1 can have one of three

Lorentzian causal characters: it can be spacelike if g(v, v) > 0 or v = 0, timelike if
g(v, v) < 0 and null (lightlike) if g(v, v) = 0 and v 6= 0. Similarly, an arbitrary curve
α = α(s) in E3

1 can locally be spacelike, timelike or null (lightlike), if all of its velocity
vectors α

′
(s) are respectively spacelike, timelike or null (lightlike). Denote by {T,N,B}

the moving Frenet frame along the curve α(s) in the space E3
1. For an arbitrary curve

α(s) in the space E3
1, the following Frenet formulae are given in [4, 9].

If α is a spacelike curve with a spacelike or timelike principal normal N , then the
Frenet formulae read  T

′

N
′

B
′

 =

 0 k1 0
−εk1 0 k2

0 k2 0


 T

N

B

 , (1)

where g(T, T ) = 1, g(N,N) = ε = ±1, g(B,B) = −ε, g(T,N) = 0, g(T, B) = 0, g(N,B) =
0.

If α is a spacelike curve with a null (lightlike) principal normal N , the Frenet formulae

54
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are  T
′

N
′

B
′

 =

 0 k1 0
0 k2 0
−k1 0 −k2


 T

N

B

 , (2)

where g(T, T ) = 1, g(N,N) = 0, g(B,B) = 0, g(T,N) = 0, g(T, B) = 0, g(N,B) = 1. In
this case, k1 can take only two values: k1 = 0 when α is a straight line; k1 = 1 in all
other cases.

Let m be a fixed point in E3
1 and r > 0 be a constant. The pseudo-Riemannian sphere

is defined by
S2

1(m, r) = {u ∈ E3
1 : g(u−m, u−m) = r2};

the pseudo-Riemannian hyperbolical space is defined by

H2
0(m, r) = {u ∈ E3

1 : g(u −m, u−m) = −r2};

the pseudo-Riemannian lightlike cone (quadric cone) is defined by

C(m) = {u ∈ E3
1 : g(u−m, u−m) = 0}.

3. The spacelike normal curves in E3
1

In this section, we give some characterization theorems for spacelike normal curves.

Theorem 3.1 Let α = α(s) be a unit speed spacelike normal curve in E3
1 with spacelike or

timelike principal normal N and with curvatures k1(s) > 0, k2(s) 6= 0 for each s ∈ I ⊂ R.
Then the following statements hold:

(i) The curvatures k1(s) and k2(s) satisfy the following equality

1
k1(s)

= c1 cosh(
∫
k2(s)ds) + c2 sinh(

∫
k2(s)ds), c1, c2 ∈ R;

(ii) The principal normal and binormal component of the position vector of the curve
are given respectively by

g(α(s), N) = a1 cosh(
∫
k2(s)ds) + a2 sinh(

∫
k2(s)ds)

g(α(s), B) = a1 sinh(
∫
k2(s)ds) + a2 cosh(

∫
k2(s)ds), a1, a2 ∈ R;
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(iii) If the position vector of the curve is null vector, then α lies on pseudo-Riemannian
lightlike cone C(m) and the curvatures k1(s) and k2(s) satisfy

1
k1(s)

= c1[cosh(
∫
k2(s)ds) ± sinh(

∫
k2(s)ds)].

Conversely if α(s) is a unit speed spacelike curve in E3
1 with spacelike or timelike

principal normal N , the curvatures k1(s) > 0, k2(s) 6= 0 for each s ∈ I ⊂ R and one of
the statements (i), (ii) and (iii) hold, then α is a normal curve or congruent to a normal
curve.

Proof. Let us first suppose that α(s) is a unit speed spacelike normal curve in E3
1 with

spacelike or timelike principal normal N , where s is pseudo arclength parameter. Then
by definition we have

α(s) = λ(s)N(s) + µ(s)B(s).

Differentiating this with respect to s and using the corresponding Frenet equations (1),
we find

ελk1 = −1, λ
′
+ µk2 = 0, µ

′
+ λk2 = 0. (3)

From the first and second equation in (3), we get

λ = − ε

k1
, µ =

ε

k2

(
1
k1

)′
. (4)

Thus

α(s) = − ε

k1
N +

ε

k2

(
1
k1

)′
B. (5)

Further, from the third equation in (3) and using (4), we find the following differential
equation [

1
k2

(
1
k1

)′]′
− k2

k1
= 0. (6)

Putting y(s) = 1
k1

and p(s) = 1
k2

, equation (6) can be written as

(p(s)y
′
(s))

′ − y(s)
p(s)

= 0.
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If we change variables in the above equation as t =
∫

1
p(s)ds, then we get

d2y

dt2
− y = 0.

The solution of the previous differential equation is

y = c1 cosh(t) + c2 sinh(t),

where c1, c2 ∈ R. Therefore,

1
k1(s)

= c1 cosh(
∫
k2(s)ds) + c2 sinh(

∫
k2(s)ds). (7)

Thus we have proved statement (i). Next, substituting (7) into (4) and (5), we get

λ = −ε[c1 cosh(
∫
k2(s)ds) + c2 sinh(

∫
k2(s)ds)],

µ = ε[c1 sinh(
∫
k2(s)ds) + c2 cosh(

∫
k2(s)ds)],

and

α = −ε(c1 cosh(
∫
k2(s)ds) + c2 sinh(

∫
k2(s)ds))N

+ε(c1 sinh(
∫
k2(s)ds) + c2 cosh(

∫
k2(s)ds))B.

(8)

Therefore, from (8) we easily find that

g(α, α) = ε(c21 − c22), (9)

g(α,N) = a1 cosh(
∫
k2(s)ds) + a2 sinh(

∫
k2(s)ds), (10)

g(α,B) = a1 sinh(
∫
k2(s)ds) + a2 cosh(

∫
k2(s)ds), (11)

where a1 = −c1 ∈ R, a2 = −c2 ∈ R. Consequently, we have proved (ii).
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Next, suppose that α is a normal curve with a null (lightlike) position vector. Then
we have g(α, α) = 0. Substituting this into equation (9), we obtain c21 = c22. Then (7)
becomes

1
k1(s)

= c1[cosh(
∫
k2(s)ds) ± sinh(

∫
k2(s)ds)]. (12)

On the other hand, let us consider the vector

m = α(s) +
ε

k1
N − ε

k2

(
1
k1

)′
B.

Differentiating this with respect to s and using corresponding Frenet equations (1), we
find m′ = 0, and therefore m = constant. Then g(α−m,α−m) = 0, which means that
α lies on C(m). Consequently, we have proved statement (iii).

Conversely, suppose that statement (i) holds. Then we have

1
k1(s)

= c1 cosh(
∫
k2(s)ds) + c2 sinh(

∫
k2(s)ds).

Differentiating this with respect to s, we get

[
1
k2

(
1
k1

)′]′
=
k2

k1
.

By applying Frenet equations (1), we obtain

d

ds

[
α(s) +

ε1
k1
N − ε1

k2

(
1
k1

)′
B

]
= 0.

Consequently, α is congruent to a normal curve. Next, assume that statement (ii) holds.
Then the equations (9) and (10) are satisfied. Differentiating (9) with respect to s and
using (10), we find g(α, T ) = 0, which means that α is normal curve. Finally, assume that
statement (iii) holds. Then α lies on light cone C(m) with vertex at m, m = constant
and curvatures k1(s) and k2(s) satisfy the equation (12). Hence we have

g(α−m,α−m) = 0.
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Differentiating this four times with respect to s and using Frenet equations (1), we get

α(s)−m = − ε

k1
N + (

ε

k2
)(

1
k1

)′B.

This means that, up to a translation for vector m, curve α is congruent to a normal curve.
Let us put m = 0. Then using (12) we easily find g(α, α) = 0, which proves the theorem.

2

Theorem 3.2 Let α = α(s) be unit speed spacelike normal curve in E3
1 with curvatures

k1(s) > 0, k2(s) 6= 0, non-null principal normal N and non–null position vector. Then:

(i) The position vector α is spacelike if and only if the curve α lies on the pseudo–
Riemannian sphere S2

1(m, r) and there holds

1
k1(s)

= ±
√
c2 + εr2 cosh(

∫
k2(s)ds) + c sinh(

∫
k2(s)ds), c ∈ R, ε = ±1; (13)

(ii) The position vector α is timelike if and only if the curve α lies on the pseudohyper-
bolical space H2

0(m, r) and there holds

1
k1(s)

= ±
√
c2 − εr2 cosh(

∫
k2(s)ds) + c sinh(

∫
k2(s)ds), c ∈ R, ε = ±1. (14)

Proof. Let us first assume that the position vector α is spacelike. Then g(α, α) = r2,
r ∈ R+. Substituting this into (9), we get c1 = ±

√
c22 + εr2. By using the last equation

and (7), we obtain that (13) holds. Next, let us consider the vector

m = α+ (ε/k1)N − (ε/k2)(1/k1)′B.

Differentiating this and using the corresponding Frenet equations, we get m′ = 0. Conse-
quently, m = constant. It follows that g(α−m,α−m) = r2, which means that α lies on
pseudo–Riemannian sphere S2

1 (m, r) with center m and of radius r. Conversely, assume
that (13) holds and that α lies on S2

1(m, r). Then g(α −m,α−m) = r2, where r ∈ R+.
Differentiating this four times with respect to s and using Frenet equations, we find

α−m = −(ε/k1)N + (ε/k2)(1/k1)′B.
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Therefore, up to a translation for a vector m, α is congruent to a normal curve. In
particular, let us put m = 0. Then (13) implies that g(α, α) = r2, which proves statement
(i).

The proof of statement (ii) is analogous to the proof of statement (i). 2

Remark. The spacelike curves with a null principal normal N , in the space E3
1 can have

the first curvature k1 = 0 or k1 = 1 [7]. If k1 = 0, then α(s) is straight line. Therefore
α(s) is in direction of T (s) for each s. For straight line we have N = B = 0, so we do
not have normal plane {N,B}. Therefore, if k1 = 0 then α(s) can not be normal curve.

Theorem 3.3 Let α(s) be unit speed spacelike normal curve in E3
1 with a null principal

normal N and k1 = 1. Then α is normal curve if and only if the principal normal and
binormal component of the position vector are, respectively, g(α,N) = −1, g(α,B) =
c, c ∈ R.

Proof. Let us first assume that α(s) is normal curve. Then we have

α(s) = λ(s)N(s) + µ(s)B(s). (15)

Differentiating this with respect to s and using Frenet equations (2), we get

µ = −1, λ
′
+ λk2 = 0 and µ

′ − µk2 = 0 (16)

We obtain from the third equation in (16) that k2 = 0. Then the second equation in
(16) implies λ

′
= 0. Thus λ = c, c ∈ R and therefore

α = cN −B. (17)

Finally, we obtain g(α,N) = −1, g(α,B) = c.
Conversely, let g(α,N) = −1, g(α,B) = c. Then differentiating with respect to s, we

find k2 = 0 and g(α, T ) = 0, which means that α is normal curve. 2

Theorem 3.4 Let α(s) be unit speed spacelike normal curve in E3
1 with a null principal

normal N and k1 = 1. Then α lies on pseudo-Riemannian sphere S2
1(m, r) if and only if

α is plane normal curve with the equation α−m = −r
2

2
N − B.
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Proof. Suppose that α lies on pseudo-Riemannian sphere S2
1(m, r). Then we have

g(α−m,α−m) = r2, r ∈ R+.

Differentiating this and applying Frenet formulae, we find

k2g(N, α −m) = 0.

Thus k2 = 0, and α is plane curve. We will prove that it is normal curve. Decompose
the vector α−m by

α−m = aT + bN + cB,

where a = a(s), b = b(s), c = c(s) are arbitrary functions of s.
Then g(α −m, T ) = 0 = a, g(α −m,N) = c = −1, g(α−m,B) = b. Differentiating

g(α −m,B) = b, we get b = b0 = constant. We obtain that

α−m = b0N −B,

and since g(α−m,α−m) = r2, we have g(α−m,α−m) = −2b0 = r2 and b0 = −r
2

2
.

Finally, α has the equation

α−m = −r
2

2
N −B,

and it is congruent to a normal curve.

Conversely, if α is plane normal curve with the equation α − m = −r
2

2
N − B

where r ∈ R+ and m = (m1, m2, m3) ∈ E3
1, then we have k2 = 0. Next, we get that

m = α+
r2

2
N +B which differentiating in s gives m′ = 0. Thus m = constant ∈ E3

1, (i.e.

m is constant vector). Therefore, α lies on S2
1(m, r). 2

Theorem 3.5 Let α(s) be unit speed spacelike normal curve in E3
1 with a null principal

normal N and k1 = 1. Then α lies on pseudo-Riemannian hyperbolical space H2
0(m, r) if

and only if α is plane normal curve with the equation α−m =
r2

2
N − B, where r ∈ R+
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Proof. The proof is similar with the proof of theorem 3.4. 2

Theorem 3.6 Let α(s) be unit speed spacelike normal curve in E3
1 with a null principal

normal N and k1 = 1. Then α lies on light cone C(m) with vertex at m if and only if α
is congruent to a normal curve with the equation α(s) = −B(s).

Proof. Suppose that α lies on light cone C(m) with vertex at point m ∈ E3
1. Then

g(α−m,α−m) = 0.

Differentiating the previous equation and using Frenet equations (2), we get g(α−m, T ) =
0, g(α−m,N) = −1 and k2 = 0. Next, decompose the vector α−m by

α−m = aT + bN + cB,

where a = a(s), b = b(s), c = c(s) are arbitrary functions of s.

Then g(α −m, T ) = 0 = a, g(α −m,N) = c = −1, g(α−m,B) = b. Differentiating
g(α −m,B) = b, we get b = b0 = constant. It follows that

α−m = b0N −B.

Since g(α −m,α−m) = 0 = −2b0, we get b0 = 0. Thus α−m = −B. Therefore, up to
a translation for the vector m, α is congruent to a normal curve and α = −B.

Conversely, assume that α is congruent to a normal curve with the equation α = −B.
Differentiating this we get k2 = 0. Let us consider the vector m = α + B. Taking the
derivative of the last equation, we find m = constant and finally g(α −m,α −m) = 0,
which means that α lies on the light cone C(m). 2
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