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Abstract

In the Euclidean space 2, it is well known that normal curves, i.e., curves with
position vector always lying in their normal plane, are spherical curves [3]. Necessary
and sufficient conditions for a curve to be a spherical curve in Euclidean 3-space are
given in [10] and [11].

In this paper, we give some characterizations of spacelike normals curves with

spacelike, timelike or null principal normal in the Minkowski 3-space Fj.
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1. Introduction

In the Euclidean space E3, it is well-known that to each unit speed curve o : I C R —
E? with at least four countinuous derivatives, one can associate three mutually ortogonal
unit vector fields T, N and B, called respectively the tangent, the principal normal and
the binormal vector fields. At each point a(s) of curve a, the planes spanned by {T, N},
{T, B} and {N, B} are known respectively as the osculating plane, the rectifying plane
and the normal plane. The curves a : I C R — E? for wich the position vector o always
lie in their rectifying plane, are for simplicity called rectifying curves, (see [3]). Similarly,
the curves for which the position vector a always lie in their osculating plane, are for

simplicity called osculating curves; and finally, the curves for which the position vector
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always lie in their normal plane, are for simplicity called normal curves. By definition,

for a normal curve, the position vector « satisfies

a(s) = A(s)N(s) + u(s)B(s),

for some differentiable functions A and p of s € I C R.
Characterization of rectifying curves is given in [3] and these curves are studied in
Minkowski space E3 in [5]. In this paper, we characterize spacelike normal curves, lying

fully in the Minkowski space [E3.

2. Preliminaries

The Minkowski 3-space E? is the Euclidean 3-space E? provided with the standard

flat metric given by

g = —da? + dad + da?,

where (x1, T2, 3) is a rectangular coordinate system of E3.

Since g is an indefinite metric, recall that a vector v € E3 can have one of three
Lorentzian causal characters: it can be spacelike if g(v,v) > 0 or v = 0, timelike if
g(v,v) < 0 and null (lightlike) if g(v,v) = 0 and v # 0. Similarly, an arbitrary curve
a = a(s) in E$ can locally be spacelike, timelike or null (lightlike), if all of its velocity
vectors a (s) are respectively spacelike, timelike or null (lightlike). Denote by {7, N, B}
the moving Frenet frame along the curve a(s) in the space E$. For an arbitrary curve
a(s) in the space E$, the following Frenet formulae are given in [4, 9].

If « is a spacelike curve with a spacelike or timelike principal normal N, then the

Frenet formulae read

T 0 k O T
N | =] —eky 0 ko N |, (1)
B 0 ko O B

where g(T,T) =1,9(N,N) = ¢ = +1,9(B,B) = —¢,9(T, N) = 0,9(T, B) = 0,g(N, B) =
0.

If « is a spacelike curve with a null (lightlike) principal normal N, the Frenet formulae
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are
T 0 k 0 T
N |=] 0 ko 0 N |, (2)
B O B

where g(T,T) = 1,g(N,N) = 0,9(B,B) = 0,9(T,N) = 0,9(T, B) = 0,9(N,B) = 1. In
this case, k1 can take only two values: k1 = 0 when « is a straight line; k&1 = 1 in all
other cases.

Let m be a fixed point in E} and r > 0 be a constant. The pseudo-Riemannian sphere
is defined by
S2(m,r) = {u € E3: g(u — m,u —m) = r?};
the pseudo-Riemannian hyperbolical space is defined by
HZ(m,r) = {u € E3: g(u —m,u —m) = —r?};
the pseudo-Riemannian lightlike cone (quadric cone) is defined by

C(m) = {u € E}: glu—m,u—m) =0}

3. The spacelike normal curves in E}
In this section, we give some characterization theorems for spacelike normal curves.

Theorem 3.1 Let a = a(s) be a unit speed spacelike normal curve in E$ with spacelike or
timelike principal normal N and with curvatures k1(s) > 0, ka(s) # 0 for each s € I C R.
Then the following statements hold:

(i) The curvatures k1(s) and ko(s) satisfy the following equality

) =c cosh(/ ka(s)ds) + ca sinh(/ kao(s)ds), c1,c2 € R;

(ii) The principal normal and binormal component of the position vector of the curve

are given respectively by

gla(s),N)=a; cosh(/ ka(s)ds) + asq sinh(/ ka(s)ds)

g(a(s),B) = a; sinh(/ ka(s)ds) + as cosh(/ kao(s)ds), a1,as € R;
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(iii) If the position vector of the curve is null vector, then « lies on pseudo-Riemannian

lightlike cone C'(m) and the curvatures k;(s) and ko(s) satisfy

) =0 [cosh(/ ka(s)ds) :I:sinh(/ ka(s)ds)].

Conversely if a(s) is a unit speed spacelike curve in E? with spacelike or timelike
principal normal N, the curvatures k1(s) > 0, k2(s) # 0 for each s € I C R and one of
the statements (i), (ii) and (iii) hold, then « is a normal curve or congruent to a normal

curve.
Proof. Let us first suppose that a(s) is a unit speed spacelike normal curve in E$ with
spacelike or timelike principal normal N, where s is pseudo arclength parameter. Then
by definition we have

a(s) = A(s)N(s) + u(s) B(s).
Differentiating this with respect to s and using the corresponding Frenet equations (1),
we find

Mkp = —1, N + ke =0, u + Mo =0. 3)

From the first and second equation in (3), we get

Thus

als) =~ N+ (%) B. (5)

Further, from the third equation in (3) and using (4), we find the following differential
equation

HOIRS

Putting y(s) = - and p(s) = ,%2, equation (6) can be written as

1
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If we change variables in the above equation as t = f ﬁds, then we get

d2y
e v=0

The solution of the previous differential equation is
y = ¢ cosh(t) + co sinh(?),

where c¢1, co € R. Therefore,

1 .
) =0 cosh(/ ka(s)ds) + co smh(/ ka(s)ds).

Thus we have proved statement (i). Next, substituting (7) into (4) and (5), we get

A= —¢€lc cosh(/ ka(s)ds) + co smh(/ ka(s

w=e€lc sinh(/ ka(s)ds) + co cosh( /k2
and

a=—¢(cy cosh(/ ka(s)ds) + co sinh(/ ka(s)ds))N
+e(er sinh(/ ka(s)ds) + c2 cosh(/ ka(s)ds))B.

Therefore, from (8) we easily find that

g(a,a) = E(C% - C%)v
gla, N) =ay cosh(/ ka(s)ds) + aq sinh(/ ka(s)ds),

g(a, B) = ay sinh(/ ka(s)ds) + asq cosh(/ ka(s)ds),

where a3 = —¢; € R, a2 = —cy € R. Consequently, we have proved (ii).
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Next, suppose that « is a normal curve with a null (lightlike) position vector. Then

we have g(a, ) = 0. Substituting this into equation (9), we obtain ¢ = c¢3. Then (7)

becomes

) = [cosh(/ ka(s)ds) :I:sinh(/ ka(s)ds)]. (12)

On the other hand, let us consider the vector

€ € 1 '
= ‘N-2 (=) B
m = a(s) + i T (/ﬁ)

Differentiating this with respect to s and using corresponding Frenet equations (1), we
find m’ = 0, and therefore m = constant. Then g(a — m, @ — m) = 0, which means that
a lies on C(m). Consequently, we have proved statement (iii).

Conversely, suppose that statement (i) holds. Then we have

) =0 cosh(/ ka(s)ds) + co sinh(/ ka(s)ds).

Differentiating this with respect to s, we get

11N ] ks
ko \ Ky ok

By applying Frenet equations (1), we obtain

Consequently, « is congruent to a normal curve. Next, assume that statement (ii) holds.
Then the equations (9) and (10) are satisfied. Differentiating (9) with respect to s and
using (10), we find g(a, T) = 0, which means that « is normal curve. Finally, assume that
statement (iii) holds. Then « lies on light cone C'(m) with vertex at m, m = constant

and curvatures ki (s) and ko(s) satisfy the equation (12). Hence we have

gla—m,a—m) =0.
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Differentiating this four times with respect to s and using Frenet equations (1), we get

This means that, up to a translation for vector m, curve « is congruent to a normal curve.
Let us put m = 0. Then using (12) we easily find g(«, @) = 0, which proves the theorem.
O

Theorem 3.2 Let a = a(s) be unit speed spacelike normal curve in B3 with curvatures

k1(s) > 0, ka(s) # 0, non-null principal normal N and non-null position vector. Then:

(i) The position vector « is spacelike if and only if the curve « lies on the pseudo—

Riemannian sphere S%(m,r) and there holds

) =42+ er? cosh(/ ka(s)ds) + csinh(/ kao(s)ds), ceR, e==1; (13)

(ii) The position vector « is timelike if and only if the curve « lies on the pseudohyper-

bolical space H32(m,r) and there holds

(o) =42 —er? cosh(/ ka(s)ds) + csinh(/ ka(s)ds), ceR, e=+1. (14)

Proof. Let us first assume that the position vector « is spacelike. Then g(a, a) = 2,
r € RT. Substituting this into (9), we get ¢; = +/c3 + er?. By using the last equation
and (7), we obtain that (13) holds. Next, let us consider the vector

m =+ (E/kl)N - (6//62)(1//61)’3.

Differentiating this and using the corresponding Frenet equations, we get m’ = 0. Conse-
quently, m = constant. It follows that g(a —m, o —m) = 72, which means that « lies on
pseudo—Riemannian sphere S7(m, ) with center m and of radius r. Conversely, assume
that (13) holds and that « lies on S2(m,r). Then g(a — m, « — m) = r?, where r € R.

Differentiating this four times with respect to s and using Frenet equations, we find

oa—m = —(E/kl)N + (6//62)(1//61)’3.

59



ILARSLAN

Therefore, up to a translation for a vector m, « is congruent to a normal curve. In

particular, let us put m = 0. Then (13) implies that g(a, @) = 2, which proves statement
().

The proof of statement (ii) is analogous to the proof of statement (i). O

Remark. The spacelike curves with a null principal normal N, in the space E3 can have

the first curvature k; = 0 or ky = 1 [7]. If k1 = 0, then «(s) is straight line. Therefore
a(s) is in direction of T'(s) for each s. For straight line we have N = B = 0, so we do

not have normal plane {N, B}. Therefore, if k&; = 0 then «(s) can not be normal curve.

Theorem 3.3 Let a(s) be unit speed spacelike normal curve in S with a null principal
normal N and ki = 1. Then « is normal curve if and only if the principal normal and
binormal component of the position vector are, respectively, g(a, N) = —1, g(a, B) =
c, ceR.

Proof. Let us first assume that «(s) is normal curve. Then we have
a(s) = A(s)N(s) + p(s)B(s). (15)
Differentiating this with respect to s and using Frenet equations (2), we get
p=-1, AN +Xs=0 and u —pks=0 (16)

We obtain from the third equation in (16) that k2 = 0. Then the second equation in
(16) implies A" = 0. Thus A =¢, ¢ € R and therefore

a=cN —B. (17)

Finally, we obtain g(a, N) = =1, g(a, B) =ec.
Conversely, let g(a, N) = —1, g(a, B) = ¢. Then differentiating with respect to s, we

find ko = 0 and g(«, T') = 0, which means that « is normal curve. O

Theorem 3.4 Let a(s) be unit speed spacelike normal curve in ES with a null principal

normal N and k1 = 1. Then « lies on pseudo-Riemannian sphere S2(m,r) if and only if

2
r
a s plane normal curve with the equation o — m = —?N - B.
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Proof. Suppose that « lies on pseudo-Riemannian sphere S?(m,r). Then we have
gla —m,a—m)=r? recRT.
Differentiating this and applying Frenet formulae, we find
kag(N, o —m) = 0.

Thus ks = 0, and « is plane curve. We will prove that it is normal curve. Decompose

the vector a — m by

a—m=al +bN + cB,

where a = a(s),b = b(s),c = ¢(s) are arbitrary functions of s.
Then g(o« —m,T) =0=a, gla —m,N) =c=—1, g(a — m, B) = b. Differentiating
g(a —m, B) = b, we get b = by = constant. We obtain that

a—m="bN — B,

2

and since g(a — m, @ —m) = 72, we have g(a — m,a —m) = —2by = r? and by = —%.
Finally, a has the equation
a—m= —;N - B,
and it is congruent to a normal curve.
Conversely, if « is plane normal curve with the equation o — m = —;N - B

where r € R and m = (m1,mz, m3) € E}, then we have ky = 0. Next, we get that
2
r
m=a+ 5N + B which differentiating in s gives m’ = 0. Thus m = constant € E3, (i.e.

m is constant vector). Therefore, « lies on S3(m, 7). O

Theorem 3.5 Let a(s) be unit speed spacelike normal curve in ES with a null principal

normal N and k1 = 1. Then « lies on pseudo-Riemannian hyperbolical space HE(m,r) if

2
r
and only if a is plane normal curve with the equation o — m = 5N — B, wherer € RT
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Proof. The proof is similar with the proof of theorem 3.4. a

Theorem 3.6 Let a(s) be unit speed spacelike normal curve in B} with a null principal
normal N and k1 = 1. Then « lies on light cone C(m) with vertex at m if and only if «

is congruent to a normal curve with the equation a(s) = —B(s).

Proof.  Suppose that « lies on light cone C'(m) with vertex at point m € E$. Then
gla—m,a—m) =0.

Differentiating the previous equation and using Frenet equations (2), we get g(a—m,T) =

0,9(a —=m,N)=—1 and ko = 0. Next, decompose the vector & — m by
a—m=al +bN + cB,

where a = a(s),b = b(s),c = ¢(s) are arbitrary functions of s.
Then g(a —m,T) =0=a, gla —m,N) =c=—1, g(a — m, B) = b. Differentiating
gla —m, B) = b, we get b = by = constant. It follows that

a—m="byN — B.

Since g(a — m,a —m) = 0 = —2bg, we get bg = 0. Thus &« —m = —B. Therefore, up to
a translation for the vector m, « is congruent to a normal curve and o = —B.
Conversely, assume that « is congruent to a normal curve with the equation @« = —B.
Differentiating this we get ko = 0. Let us consider the vector m = « + B. Taking the
derivative of the last equation, we find m = constant and finally g(a — m,« —m) = 0,

which means that a lies on the light cone C(m). O
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