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Abstract
Background: The rollator is a very popular walking aid. However, knowledge about how a
rollator affects the walking patterns is limited. Thus, the purpose of the study was to investigate
the biomechanical effects of walking with and without a rollator on the walking pattern in healthy
subjects.

Methods: The walking pattern during walking with and without rollator was analyzed using a
three-dimensional inverse dynamics method. Sagittal joint dynamics and kinematics of the ankle,
knee and hip were calculated. In addition, hip joint dynamics and kinematics in the frontal plane
were calculated. Seven healthy women participated in the study.

Results: The hip was more flexed while the knee and ankle joints were less flexed/dorsiflexed
during rollator walking. The ROM of the ankle and knee joints was reduced during rollator-walking.
Rollator-walking caused a reduction in the knee extensor moment by 50% when compared to
normal walking. The ankle plantarflexor and hip abductor moments were smaller when walking
with a rollator. In contrast, the angular impulse of the hip extensors was significantly increased
during rollator-walking.

Conclusion: Walking with a rollator unloaded the ankle and especially the knee extensors,
increased the hip flexion and thus the contribution of hip extensors to produce movement. Thus,
rollator walking did not result in an overall unloading of the muscles and joints of the lower
extremities. However, the long-term effect of rollator walking is unknown and further investigation
in this field is needed.

Background
The rollator is a popular assistive walking device in most
European and especially the Nordic countries [1]. The
exact number of rollator users is unknown but about
6.4% of Danish 56–84 year-old people use a rollator and
in Sweden about 4% of the total population use a rollator
[1]. The terms "wheeled walker", "rolling walker", "three-

wheeled walker", four-wheeled walker" [2-4] are fre-
quently used synonymously with rollator, which can be
defined as a frame with three or four wheels; the rollator
has handles with brakes, and in some cases it has a seat, a
basket or a tray (Fig. 1) [1].
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The main purpose of using a rollator is to improve the
walking performance and minimize the risk of falling.
Studies have shown that the walking performance in eld-
erly subjects measured in terms of distance, cadence and
velocity is improved when they walk with a rollator [2].
Furthermore, a recent study has shown that rollator users
are generally satisfied with their rollator and consider it an
important prerequisite for living a socially active and
independent life [1].

However, knowledge about how the rollator affects the
walking pattern is limited. To our knowledge no studies
have investigated the biomechanical differences between
walking with and without a rollator except from one study
that observed a reduction in the vertical ground reaction
force during rollator walking [5]. Such information may
be clinically relevant in the decision-making process of
whether a rollator would be beneficial to a subject or not,
or whether the use of a rollator should be supplemented
with e.g. balance and/or strength training. Studies of walk-
ing with canes or walking poles have shown that these
walking-aids reduce the load on the lower extremities [6-
8]. Presumably, the rollator reduces the loads on the leg
muscles and the joints to some extent as well. However,
the specific changes in kinematic and kinetic walking pat-

tern parameters when walking with a rollator have not yet
been quantified.

It is unclear whether an unloading of certain muscle
groups and joints during walking would impair the func-
tional ability during other types of daily physical activities
and movements like sit-to-stand, short walking distances,
stair climbing, balance control during standing/squatting
etc. One study concluded that the use of walking-aids
combined with a high activity level may protect against
falls in elderly subjects [9]. Thus, information about how
muscle groups and joints in the lower extremities are
affected by walking with a rollator may be used in the
development of specific rehabilitation strategies in elderly
and disabled rollator users.

Accordingly, the purpose of the present study was to
investigate the biomechanical effects of walking with a
rollator on the walking pattern of healthy subjects. The
reason for studying a group of healthy subjects was that it
was both unethical and difficult to ask actual rollator
users to walk without their rollator.

Methods
Subjects
Seven healthy women (age: 34.7 (range: 25–57) years,
height: 1.70 (range: 1.64–1.78) m, weight: 64.7 (range:
55–75) kg) participated in the study. None of the subjects
had any history of injuries or musculo-skeletal dysfunc-
tions in their lower extremities. All subjects gave their
informed consent to participate in the experiments which
were approved by the local ethics committee.

Gait analysis
The subjects were fitted with fifteen small reflecting spher-
ical markers (12-mm diameter) according to the marker
set-up described by Vaughan et al. [10]. The markers were
placed on the head of the fifth metatarsal, the heel, the lat-
eral malleous, the tibial tubercle, the lateral femoral epi-
condyle, the greater trochanter, the anterior superior iliac
spine and sacrum. All subjects wore lightweight flexible
shoes with a thin, flat sole. The subjects were asked to
walk across two force platforms (AMTI, OR6-5-1) both
with and without a rollator (Fig. 1, Dolmite Maxi 650,
Dolomite AB, Anderstorp, Sweden) at a speed of 4.5 km/
h. The rollator was adjusted to each subject in an upright
standing position with the arms hanging down along the
body so that the handles were on a level with processus
styloideus ulnae. The Dolmite Maxi 650 rollator model
was used because it was wide enough to pass next to the
force platforms without touching them. However, pilot
studies showed that the wheels of the rollator sometimes
hit the first platform anyway. To solve this problem a
metal rail was fixed to the ground along the first platform
to ensure that the rollator wheels did not touch it.

This rollator, a Dolmite Maxi 650, Dolomite AB, Anderstorp, Sweden, was used in the studyFigure 1
This rollator, a Dolmite Maxi 650, Dolomite AB, Anderstorp, 
Sweden, was used in the study. It resembles a typical rollator 
with four wheels, handles with brakes and a seat.
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The subjects were allowed to practice walking both with
and without the rollator to become familiar with the
movements and the pre-determined walking speed. The
speed was controlled by photocells, which made it possi-
ble to teach the subjects to approach 4.5 km/h.

Five video cameras (Panasonic WV-GL350) operating at
50 Hz were used to record the movements. The video sig-
nals and the force plate signals were synchronized elec-
tronically with a custom-built device. The device put a
visual marker on one video field from all cameras and at
the same time triggered the analogue-to-digital converter
which sampled the force plate signals at 1000 Hz. The
subjects triggered the data sampling and synchronization
when they passed the first photocell.

The video sequences were digitized and stored on a PC.
Sixteen non-coplanar points on a standard calibration
frame (Peak Performance 5) were digitized to calibrate
each of the video sequences. The calibration frame was
placed in the middle of the walkway and covered both
force plates. Three-dimensional co-ordinates were then
reconstructed by direct linear transformation using the
Ariel Performance Analysis System (APAS).

Prior to the calculations, the position data were digitally
low-pass filtered by a fourth order Butterworth filter with
a cut-off frequency of 6 Hz, and the 1000 Hz force plate
signals were downsampled to 50 Hz to fit the video sig-
nals.

Calculations
Internal flexor and extensor joint moments about the
ankle, knee and hip were calculated using a three-dimen-
sional inverse dynamics approach described by Vaughan
et al. [10]. Furthermore, the internal adductor/abductor
moment was calculated for the hip joint. The joint
moments were expressed in an anatomically based refer-
ence system. The anatomical axes for the flexor and exten-
sor moments of the ankle, knee and hip joint were the
mediolateral axes of the segment reference frames of the
shank, the thigh and the pelvis, respectively [10]. The ana-
tomical axis for the hip adductor/abductor moment was
the so-called floating axis that was perpendicular to the
mediolateral axis of the pelvis segment frame and the lon-
gitudinal axis of the thigh segment frame [10]. Ankle dor-
siflexor, knee extensor, hip flexor and hip abductor joint
moments were considered positive, while ankle plantar-
flexor, knee flexor, hip extensor and hip adductor joint
moments were considered negative. The angular impulse
(i.e. the area under the joint moment curve) quantifies the
total contribution of a joint moment towards producing
movement. It has been shown that in some cases the
angular impulse values may be relevant to the evaluation
of walking patterns of different groups [11]. Accordingly,

the angular impulse (Nm· s) was calculated by integra-
tion of the area under the joint moment curves. The angu-
lar impulses of the plantarflexors (i.e. the negative part of
the ankle moment), knee extensors (i.e. the first positive
part of the knee moment) and the hip extensors (i.e. the
negative part of the sagittal hip moment curve), flexors
(i.e. the positive part of the sagittal hip moment curve)
and abductors (i.e. the positive part of the frontal hip
moment curve).

The peak values as well as the angular impulses of the
ankle, knee and hip moment were calculated and used as
input parameters for the statistical analyses.

The angular position of the ankle, knee and hip joints was
calculated to describe the movements in the sagittal plane.
In addition, the angular position of the hip movement in
the frontal plane was calculated. Zero degrees defined the
anatomical position (foot at 90° to leg) and positive val-
ues reflected ankle dorsiflexion, knee hyperextension, hip
flexion and hip abduction.

The average angle as well as the range of motion (ROM)
[12], i.e. the difference between the maximum and mini-
mum joint angles, were calculated for the stance phase
and used as input parameters for the statistical analyses.

MATLAB was used for all calculations.

Data reduction
Data obtained from the left leg during the stance phase
were analyzed. Six gait cycles were normalized and aver-
aged for each subject and situation (with (rollator-walk-
ing) and without (normal walking) a rollator,
respectively). Normalization was performed by interpo-
lating data points to form 500 samples for each gait cycle.
The joint moments were normalized to body mass.
Ensemble averages were then calculated for rollator (n =
7) and normal walking (n = 7) using the mean value for
each individual subject.

Statistics
A Student's t-test for paired data was used to identify sta-
tistically significant differences between rollator- and nor-
mal walking in selected kinematic and kinetic variables of
the walking patterns. All results are presented as means
(SD). The level of significance was set at 5%.

Results
There was no difference in the walking speed between rol-
lator- (4.49 (0.05) km/h) and normal walking (4.51
(0.03) km/h) (p = 0.731).

The joint angular kinematics were significantly different
between rollator- and normal walking (Fig. 2, Table 1).
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During rollator-walking the ankle and knee joints were
less dorsiflexed/flexed and had a smaller ROM than dur-
ing normal walking (Fig. 2, Table 1). In contrast, the hip
joint was more flexed during rollator-walking than nor-
mal walking (Fig. 2, Table 1). There was no difference in
the hip ROM in the sagittal plane, while the hip ROM in
the frontal plane was significantly smaller during rollator-
walking than normal walking (Table 1).

The joint moments were significantly different at each
joint between the two situations (Fig. 3, Table 2). The
peak plantarflexor moment and the plantarflexor angular
impulse of the ankle joint were significantly smaller dur-
ing rollator-walking than during normal walking (Fig. 3,
Table 2). The knee joint moment was significantly
reduced during rollator-walking (Fig. 3, Table 2). During
rollator-walking both the peak knee joint moments and
the angular impulse of the knee extensors were reduced by
approximately 50% when compared to normal walking
(Fig. 3, Table 2). The angular impulse of the hip flexors
was significantly smaller during rollator-walking (Fig. 3,
Table 2). In contrast, the angular impulse of the hip exten-
sors was significantly larger during rollator-walking than
during normal walking (Fig. 3, Table 2). Thus, the shift
from hip extensor dominance to flexor dominance in the
stance phase occurred significantly later during rollator-
walking (54.5% (9.5) % of stance phase) than during nor-
mal walking (40.0% (7.7) % of stance phase) (p < 0.001)
(Fig. 3).

The peak hip abductor moment in the first half of the
stance phase was significantly smaller during rollator-
walking than during normal walking (Fig. 3, Table 2).
Although the angular impulse of the hip abductors tended
to be smaller during rollator-walking no statistical signifi-
cance was observed in this parameter between the two sit-
uations (Table 2).

Average joint angular curves (degrees) of the ankle, knee and hip in the sagittal plane and of the hip in the frontal planeFigure 2
Average joint angular curves (degrees) of the ankle, knee and 
hip in the sagittal plane and of the hip in the frontal plane. 
Dotted lines reflect walking with a rollator (n = 7) and solid 
lines reflect normal walking (n = 7). Positive values indicate 
hip abduction/extension, knee extension and ankle plantar-
flexion. 0 % on the x-axis is heel strike and 100 % is toe-off.

Table 1: Joint position variables.

Variable Rollator (n = 7) Normal (n = 7) P-value

Ankle – sagittal
Avg stance pos -9.0 (3.4) -10.5 (2.3) 0.031
ROM in stance 25.2 (2.8) 29.0 (3.1) 0.031
Knee – sagittal
Avg stance pos -13.0 (3.9) -15.9 (4.0) 0.013
ROM in stance 44.8 (3.6) 49.5 (1.9) 0.013
Hip – sagittal
Avg stance pos -10.6 (4.6) -8.0 (3.0) 0.013
ROM in stance 43.9 (2.5) 42.8 (2.7) 0.166
Hip – frontal
Avg stance pos -0.7 (3.1) 0.2 (2.0) 0.211
ROM in stance 11.6 (3.7) 14.5 (2.3) 0.029

Values are means (SD) in degrees. Negative values indicate flexion/dorsiflexion/adduction. Avg stance pos, average angular position during stance. 
ROM, range of motion.
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Discussion
The present study demonstrated significant differences
between normal and rollator-walking patterns. The study
included seven healthy subjects between the ages of 25
and 57 years who were able to walk with and without a
rollator at identical walking speeds (4.5 km/h), which is
important when comparing joint moment curves [13-15].

The main findings of the present study showed that walk-
ing with a rollator resulted in a remarkable reduction in
the knee extensor moment and thus an unloading of the
quadriceps muscle during the stance phase. There were
also small but significant reductions of the ankle plantar-
flexor and hip abductor moments. In contrast, the angular
impulse of the hip extensors and the duration of the hip

extensor moment were increased during rollator-walking.
The hip joint was generally more flexed throughout the
whole stance phase during walking with the rollator,
while the ankle and knee joint were less dorsiflexed/
flexed. In addition, the ankle and knee ROM in the sagittal
plane along with the hip ROM in the frontal plane were
decreased during rollator-walking.

These results confirm that although the weight of the
trunk was supported by the rollator, this did not result in
an overall reduction of the joint moments around all
three joints in the lower extremities. The unloading of the
ankle and knee joints during rollator-walking seemed to
be partly compensated by an increase in the hip extensor
moment, which probably was needed to push the rollator
in a forward direction and keep up its horizontal velocity.

The increased hip flexion throughout the whole stance
phase was due to the increased forward flexion of the
trunk during rollator-walking. The increased hip flexion
could possibly explain the increased hip extensor moment
during rollator-walking. This concurs with other studies
that have observed increased hip flexion along with an
increase in the hip extensor moment during walking [12].

The sagittal ankle, knee and frontal hip joint ROM's were
reduced and the knee and ankle joints were less flexed
during rollator-walking. During normal walking the time
period between heel strike and peak knee flexion in the
first half of the stance phase reflects the weight acceptance
and energy absorption controlled by the knee extensors
[16]. During rollator-walking the demand for knee exten-
sor energy absorption is reduced because part of the body
weight is supported by the rollator which possibly may
explain the reduced knee moment and knee flexion
observed in the present study. The reduced knee flexion
during rollator-walking could possibly explain the
reduced dorsiflexion of the ankle joint observed in this sit-
uation.

The rollator is a common and popular walking-aid among
elderly and disabled subjects [1,2,17]. Rollator users are
typically older than the subjects that participated in the
present study or disabled and they would probably not be
able to walk safely at the same walking speed without
their rollator. Therefore, the observed changes in the walk-
ing pattern during walking with and without a rollator
may not necessarily apply to elderly and/or disabled rol-
lator users. However, it may be very difficult, if not impos-
sible to investigate the differences between walking with
and without a rollator in actual rollator users as they are
unlikely to be able to walk without any walking-aid. Thus,
in the present study a biomechanical method was estab-
lished to investigate the differences between walking with
and without a rollator, and the results may be used as a

Average joint moment curves (Nm/kg·100) of the ankle, knee and hip in the sagittal plane and of the hip in the frontal planeFigure 3
Average joint moment curves (Nm/kg·100) of the ankle, knee 
and hip in the sagittal plane and of the hip in the frontal plane. 
Dotted lines reflect walking with a rollator (n = 7) and solid 
lines reflect normal walking (n = 7). Positive values indicate 
hip abductor/flexor dominance, knee extensor and ankle 
dorsiflexor dominance. 0 % on the x-axis is heel strike and 
100 % is toe-off. Asterisks indicate statistical significant differ-
ences between peak values of the joint moments during rol-
lator- and normal walking.
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model for general changes in the joint moment pattern
and the kinematics during rollator-walking in healthy
subjects.

The rollator is definitely a very effective walking-aid that
supports the body, improves the walking performance in
terms of distance, cadence and velocity [2] and in many
cases serves as a pre-requisite for living a normal life [1].
From a clinical viewpoint there is no doubt that if the
alternative is complete immobilization of a person, the
rollator seems a perfect solution that ensures at least a
minimum of physical activity, which is ultimately benefi-
cial for the cardiovascular [18,19] and the musculo-skele-
tal systems [20,21]. However, the rollator may also be
used as part of a rehabilitation program in order to help a
person to learn to walk without a walking-aid. In such sit-
uations it may be important to be aware of the results that
revealed that rollator-walking led to a remarkably reduc-
tion of the knee extensor moment and thus an unloading
of the quadriceps muscle, which is a very important mus-
cle in movements like sit-to-stand, postural control, stair
climbing in healthy subjects [21,22]. The hip abductor
moment, which plays a significant role in balancing the
trunk during walking [23], was also reduced during rolla-
tor-walking. It is unclear whether this unloading has neg-
ative consequences for balance control and functionality
in other types of movement and daily activities. One study
concluded that the use of walking aids combined with a
high activity level may protect against falls in elderly sub-
jects [9]. Another study concluded the functional ability

was not negatively influenced in long term rollator users
[24].

Conclusion
The rollator-walking pattern in healthy subjects was char-
acterized by increased hip flexion, decreased ankle dorsi-
flexion and knee flexion, and reduced the ankle and
especially the knee joint moments significantly, while the
contribution from the hip extensors to produce move-
ment was increased. However, the functional conse-
quences of these changes and the long-term effects of
rollator-walking are unclear and further investigation in
this field is needed.
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